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A decision theory method (DTM) is presented for the analysis of texture.
1t is based on the principles of statistical decision theory. This method,
combined with other procedures described, is versatile enough to deal with
a wide range of problems involving either statistical or structural textures.
Its ability to perform scene segmentation using textural information, and
edge/border detection, and to provide discrimination/recognition of both
spatially and chromatically textured scenes is demonstrated with examples.
Generation of 2D filters that act as textural feature detectors is illustrated
with the help of interval covering theory.
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1. INTRODUCTION

There seems little doubt that texture plays an important role in visual percep-
tion. It has been convincingly argued®® that textures do carry information of
use in object detection and recognition. Many laboratory studies(?-8.13.32.41)
have also shown that various types of textural information have measurable
effects on the perception of the depth, slant, and shape of surface. In spite
of its importance, the textural information found abundantly in almost every
visual scene in the real world was not profitably used in earlier research
projects involving computer vision. Instead the work was carried out in a
highly contrived experimental environment, that is, working with line
drawings with the assumption of smooth surfaces, sharp edges, and so on.
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This restriction upon the class of scenes admissible for machine analysis
can be mainly attributed to the lack of a general method suitable for the
interpretation of textural information and yet permitting ready machine
implementation. In this context the following problems have recently received
wide attention: scene segmentation using textural information,®*% texture
discrimination/recognition,®2%37  texture description,®® texture analy-
sis,(22:33.35.3% and texture synthesis. (63

In this paper we present a decision theory method for texture analysis.
It will be shown that this method is sufficiently versatile and is adequately
adaptive to deal with a wide range of texture problems.

2. REVIEW OF EARLIER WORK

2.4. Visual Texture

Everyone seems to understand what “texture” means, since we live
in a world rich in textures. If viewed at an appropriate angle, texture can be
seen in almost every scene. Yet it is one of those terms which has escaped
a precise scientific definition. As a matter of fact, the host of visual scenes
indicated by the term texture is so enormously large and varied in nature
that it is a very difficult task to span the varied concepts of texture by a
single definition. A definition like ‘“texture is that property of material
which indicates what it feels like if touched,” and adjectives like “rough,”
“smooth,” etc., deal with tactile textures. We are here exclusively interested
in visual textures.

Pickett®® observes that for any visual scene to be seen as texture, there
should be “a large number of elements (spatial variations in intensity and/or
wavelength)” and that the “elements and rules of spacing or arrangements
may be arbitrarily manipulated provided a characteristic repetitiveness
remains.” He adds. “provided there is sufficient detail shown in a smalil
enough visual angle, a characteristic texture emerges even when the basic
elements or spacings are randomly distributed.” Thus the primary attributes
of visual texture are “many variations” and “repetitive variations.”

Similar aspects are found in other available definitions. But even after
a suitable choice of a working definition, there remain many difficulties
inherent in the task of texture extraction technology. Hawkins®® enumerates
these in great detail and comes to the conclusion that ““texture classification
may very well be one of the more difficult tasks in the field of image
processing.”

Visual texture is really very sensitive to external conditions, such as
lighting and angle of view. The same scene may present a very different
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texture even for slight modification in the external conditions. Pictures in
Brodatz’s®® book can be used to endorse the above statement. To simplify
the already complicated problem, we assume that the scenes with which
we are concerned are taken under similar conditions.

With these problems and having applications in such important fields
as biomedical sciences and remote sensing of the environment, texture
analysis is both an attractive and challenging area.

2.2. Classification of Textures

Textures can be subdivided into at least two categories: statistical
textures and structural textures.®® Statistical textures in a visual scene can
be regarded as defined by a set of statistics extracted from a large ensemble
of local measurements made on the scene. We need more information than
this to define a structural texture; here the texture is considered to be defined
by subpatterns which occur repeatedly within the overall pattern according
to well-defined. placement rules, as, for example, in a wallpaper design.

Though we find many textures which can be classified adequately
under one of these limiting categories, there are still-many textures for which
a strict classification may be questionable.

2.2.1. Structural Textures

As its name suggests, the subpattern/placement model®® appears to
be the most appropriate model to deal with structural textures. This model
is by far the one most widely used in the literature. The “subpattern” is
sometimes referred to as the “unit cell.” Usually, but not necessarily, the
subpattern itself contains subsub patterns and so on.

If we accept this model, the description of texture is indeed simplified
to developing a language to describe the unit cell(s) and to spelling out the
rules of its placement over a given region. Similarly, synthetic generation
can be employed to develop the unit cell(s) and distribute it over the given
area according to (appropriate curvilinear) placement rules. The work of
Trout,“® Conroy,® and Rosenfeld®® reflects a similar treatment of these
problems. The success of such methods depends entirely on the choice of
the vital parameters of the model, such as primitives, signs, unit cells, and
placement rules. In most of these methods such choice is made on a trial
and error basis. It is highly desirable, though, that these parameters be
determined from the analysis of “parent” texture, i.c., the scene that is
being described or reproduced. This is by no means an easy task, especially
when dealing with natural textures.
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2.2.2. Statistical Textures

Many investigators in this field have developed methods which are
usually statistical in nature when working with natural textures. Rosenfeld
et al. have attempted to discriminate textures by merely detecting the differ-
ences In averages of local properties. They demonstrate their scheme by
detecting textural edges using the gray level as the local property.@?

Muerle®® also uses statistical analysis for the discrimination of textures.
He divides the whole scene of analysis into many cells. Starting with a single
cell, he expands the region by comparing the statistical distributions of the
cell with those of its neighbors and adding the new cells to fragments that
have similar distributions.

Bajcsy® also proceeds in a similar direction, that is, by dividing the
region of analysis into “windows,” extracting “‘texture descriptors” in each
window, and patching windows that have “‘similar” descriptors. Her work
mainly deals with textural scenes that occur in nature (natural textures),
such as trees, clouds, water, grass, etc. “Texture descriptors” are evaluated
in both the spatial domain and the frequency domain.

It may be noticed that most of the methods discussed so far concentrate
on at most one problem involving either statistical textures or structural
textures, but not both. The decision theory method which we introduce in
this paper is very general and with simple extensions and in combination
with other procedures we have developed®® it is quite capable of dealing
with several problems involving both classes of texture.

3. DESCRIPTION OF THE DECISION THEORY METHOD

3.1. Texture Recognition as a Statistical Decision Problem

To serve as an introduction to the method, let us initially attack the
problem of texture recognition. Texture recognition can be basically viewed
as a statistical decision problem where, as in a single trial of a psycho-
physical experiment, a cycle begins with the presentation of textural scenes
and ends with the response of the decision maker. The type of responses
expected of the decision maker varies with the problem. For example, in
a typical recognition problem, given a textural scene Tz, a decision is to
be made if it belongs to 7% or T° Here 77 represents a family of visual
scnes consisting of a particular texture, or one of the hypotheses. The
alternate is 7% which does not contain that particular texture. The anticipated
response here would be either 1 or 0, representing “signal” and “noise,”
respectively. This is the binary case and the decision problem can be extended
to a case with multiple hypotheses.
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3.2. Description of the Scheme

Ideally, each texture is composed of one single pattern, “the unit cell,”
and if one is able to extract it, the texture recognition problem would be
reduced to comparing unit cells. But as we have already discussed, things
need not be so simple: more than one unit cell may be present in a given
scene, the placerment rules may be difficult to extract, or no unit cell may be
detected.

We avoid these problems by defining our own universe of local patterns
of selected size, shape, and orientation. We search for the occurrences of
these “known” patterns in the texture families presented for analysis.
Using the elements of statistical decision theory, we extract disjoint sets of
local patterns that characterize each family at the same time distinguishing
it from the others. Extraction of these disjoint sets of patterns is the basic
first step in the decision theory method (DTM). It is possible to determine
whether or not the texture families are distinguishable when we use the local
patterns defined by templates of selected size, shape, and orientation. If they
are not, we can change the shape or increase the size or both to get better
performance.

In what follows, we define some of the basic terms needed for further
presentation of the method.

3.2.1. Local Patterns (Events)

We define a template of selected size, shape, and orientation centered
around a point which samples the patterns from the scene of analysis. Each
possible pattern is an s-tuple of gray levels of the nearest n neighbors of
the given point and is represented as the #-dimensional vector, e.g.,
e = (X1, X3 ,..., X,,), and is regarded as an “event.” All possible local patterns
define the universe of events, EV. For example, if the digital picture was
quantized to / gray levels and the sampling template has n-pixels, then there
are h" elements in EV. Figure 1 shows the number of elements in the universe
for the templates shown.

3.2.2. Likelihood Ratio

The “events” just described now serve as the local evidence for the
decision maker at the local level. The “likelihood ratio” of an event is a
single number which is an indicator of the strength of evidence that the
occurrence of that particular event would provide for the presence of the
signal. More precisely, it is the ratio of the probability of the occurrence of
the event in 7™ to that in 7°. This is estimated from the “training samples”
provided from both the families of 7Tt and 77
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Fig. 1. Total number of events in the universe for
various templates.

Let E* and E° be the sets of events obtained from scanning 7™ and 7¢
with a given template, respectively. Let m,(e;) be the number of occurrences
of event e, in T7, ny(e;) the number of occurrences of event e, in 79, nT?
the number of events in 7%, nT° the number of events in 77, and Pe, | 79
the probability of occurrence of e, in 77, i.e., the probability of ¢, conditional
on T1:

Ple, | TY) = nyfe,)/nT?

P(e, | T9) is defined similarly.
Then the “likelihood ratio” of the event ¢ is

LR(ex) = yPle | TH/Plex | T°)

where y is a normalization factor which compensates for the intrinsic
probabilities.

The a posteriori probability, that is, the probability of truth of the
hypothesis at a local level conditional on the occurrence of the event, can
be shown to be

P(T"| e) = LR(ey)/[1 + LR(ey)]

3.2.3. Decision Goals: Optimal Decision Making

There are four outcomes in the binary signal detection problem: two
errors and two correct decisions. A “false alarm™ occurs if the choice is 77
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when it should have been 7° and a “miss” is the converse. A “hit” is a
correct choice of 77, and the correct choice of 7° is known as a “correct
rejection.” There may be different values associated with the correct decisions
and different costs associated with the errors.

There can be many alternative decision goals. One of the goals, for
" instance, is to maximize the expected value. The “‘expected value” is the
sum of the four terms, each representing the value or cost associated with
an outcome weighted by its probability. Other decision goals could be to:
maximize a weighted combination, maximize the percentage of correct
responses, satisfy the Neyman-Pearson objective, and so on. These are
discussed in detail by Green and Swets"® and they prove that whatever is
the decision goal, the likelihood ratio criterion is the optimal decision rule,
that is, to choose 7% if LR(e;) > B, where 8 is a positive number. 8 may
vary for each decision goal.

With this background, we are ready to partially define a local categorizer
i on the basis of a training set of information: Let EV be the event space
and :

F18 = {e|eec E'U E®and LR(e) > 8}
F% = {elec E'U E®and LR(e) < B}
F* = {e| ec EV\EL U EY)}

Then, define ¢ by its acceptance set R, i.e.,
ple) =1 if eeR

where F¥ < R < F¥ U F*and RNF% = .

Note that the determination of which events in F* are in R has not
been made at this point. These represent the “don’t-care” events and their
assignment will be deferred until later.

3.2.4. Operating Characteristics Curve

The operating characteristics (OC) curve (Fig. 2) is a useful device for
observing and predicting the behavior of these categorizers. To make the
curve, each event € E' U E9 is regarded as a two-component vector with
x = p(e{ T and y = p(e | T*). An ordering can be imposed on these vectors
by sorting them in descending order by the likelihood ratios of the e’s.
The curve is generated by placing the tail of the first vector at the origin
and then concatenating the rest in order (Fig. 2a). The OC displays several
useful items of information in an easy to see form. For one thing, the
training-set performance of a categorizer for each value of 8 is shown directly,
since for each threshold, the y coordinate is equal to Y i rwsa Ple | TY
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and the x coordinate is equal to 2 girr(»s (e | 79. The point on the
OC corresponding to a given value of § is easy to find, since it is the head
of the vector with siope equal to 8. (Note that 8 has only a discrete number
of values.) The OC also provides a measure of the inherent separability of
the textures in the training set. The area 4 under the curve is equal to 0.5
if the textures are indistinguishable (all events occur with equal probability
in both textures) and is equal to 1.0 if the textures are perfectly distinguishable
(all events occur in one or the other texture but not both).

The OC curve can be displayed in another form, by plotting it on
probability scales, that is, on axes scaled linearly for normal deviate
(Fig. 2b). This type of representation will be useful when the density functions
of the events extracted from 7% and T are of certain forms, such as Gaussian,
exponential, etc. The OC curves will be straight lines for Gaussian and
exponential distributions. In such cases the measure of separability can be
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specified by a single parameter.“? This measure, unlike 4, permits the
reconstruction of the OC curve from which it is derived. But the value of A
has another property useful for conceptual purposes, in that it is equal to
the percentage of correct choices that the system will make when attempting
to select, from a pair of events, one extracted at random from 7! and the
other extracted at random from 7°, the one that belongs to 771.(12.40

3.3. Coloring the Scene of Analysis and Classification Scheme

It is sometimes convenient to have the following transformation of the
scene. A point in the transformed plane is marked 1 (or dark) if the corre-
sponding point in the scene of analysis has an event in the acceptance set R.
Otherwise, it is marked O (light). The resultant picture is the “colored”
image of the scene of analysis. An ideal case: colored images of samples
of T would be all “dark” and those from 7° would all be “light.”
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In practical cases classification of the scene would be achieved based
on the global characteristics, such as distribution of 1's and 0's in the
“colored” scene. The thresholds needed for the classification can be estimated
from training samples.

3.4. Multiple Textures

Thus far we have considered only binary signal detection (7 and T°).
The scheme can be extended to multiple textures in the same way that the
binary signal detection is extended to that of M-ary signal detection. When
- there are M different classes of texture present {7y, 75 ,..., Ty), we need to
calculate at least M — 1 “likelihood ratios” from which other likelihood
ratios can be calculated. Here

LR;(er) = yiPlex | T)/Pley | T))

The universe of events will be partitioned into M-disjoint acceptance
sets. An event e, will be included in the R; acceptance set, iff

LR;(er) > 1 forall i+#j

In general for satisfactory results, for larger M, we need a larger universe
of events, which means more computation time.

3.5. Texture Discrimination

We can mark the various textural regions in a composite scene if we
are given the samples of textures that might be present in it. The procedure
is the same as before: Extract disjoint acceptance sets of events representing
each texture, and “color” the composite scene with each textural region
marked with a different appropriate “color.”

3.6. Analysis of Color Images

Thus far we have discussed only black and white pictures. In practice
we come across many color images. The spectral (color) information appears
to be very valuable and is used in many classificatory schemes involving
natural biological images“® and also in remote sensing technology for
photointerpretation. We can perform the analysis of color images using the
decision theory method by modifying the interpretation of the “event.”
Here the event is allowed to extract the spectral information of each point
defined in the template. One way is to codify the “spectral signature” of each
point; the event extracts the k-tuple of values {8, Sy ,..., S}, Where A;
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is a discrete frequency in the visible spectrum and £ is finite. Thus the “event”
is an (n X k)-dimensional vector for an n-point neighborhood as defined by
the template. After defining the event in this manner, we can proceed with
the decision theory method for the analysis of chromatically textured scenes.
Normally we use a triplet of values of S, for each point, corresponding to
colors red, green, and blue in order to match the performance of the human
eye.

3.7. Generation of Textural Feature Detectors Using the Concepts
of Interval Covering Theory

An earlier version of the decision theory method with main emphasis
on the generation of “intervals” that act as texture feature detectors was
presented by Read and Jayaramamurthy.® To preserve the continuity of
the present paper, we review the concepts of interval covering theory very
briefly. For further details the reader is referred to Refs. 27, 28, and 34.

In the case of binary signal detection, the events from F# can be con-
sidered a “true” set and those from F% are considered a “false” set. The
disjunctive normal form can be expressed as V, £,(e;), where £, is a predicate
that has output “true” when the input is a particular event, e;, from F4
and output “false’ if it is from F®. The symbol V represents the logical “OR”
of the predicates. Events from F£* are considered as don’t-care events.
McCormick and Michalski have developed “interval covering theory” as
a generalization of switching theory®® which permits the transplantation
of much of the minimization machinery already in existence. In particular,
Michalski’s 42 algorithm®? for generation of quasiminimal covers can be
used.

3.7.1. Notation

To explain the method, it is necessary to introduce a few items of nota-
tion from Ref, 27: EV is the event space as before. That is, the set of all
events

€ = (X1, Xg youry Xy) where 0 < x;, <h— L

A literal %X} is the set of all events e € EV whose ith component lies
between a; and b, :

""'Xf" = {(xy, X5 e, X)L, < x; < B}
An interval is a set-theoretic product of literals,

L= %X}, I1C{,2,.,n}

tel
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The interval represents a “box” in hyperspace which includes all events
between (a,,d,,...,a,) and (b,.b,....b,). Note that components not
specified by the interval are free to take on any integer value in [0, & — D).

An interval cover of the set F'# against F is defined as a union of inter-
vals L; such that

8 <UL, < F18U F*

Thus an interval cover contains all the events in F'8, possibly some in F*,
but none in F%, However, the interval cover will represent this partitioning
of the space of possible events much more concisely than just enumerating
all the events in the acceptance set for T Also, the interval cover can
classify events which were not in the training set, because of the inclusion of
F* events in the “boxes.”

Thus an interval cover can provide an efficient implementation of the
local categorizer described earlier.

3.7.2. Generation of Interval Cover

A quasiminimal interval cover can be generated with the help of
Michalski’s 42 algorithm, which is based on what is known as the “disjoint
star method.” Briefly, the procedure is as follows.

Consider the events in the sets F18, F% and F* as “ones,” ‘“‘zeros,” and
“don’t cares,” respectively. The cover is found by an iterative procedure
which begins by picking the first “one” encountered in the set F¢ and
discovering all of the maximal intervals that include that “one” but no
zeros (an interval “star”). One of these, the interval including the most
“ones,” is added to the covering set (initially empty). All of the “ones”
included .in the “star” are temporarily eliminated from F*%. The iteration
continues by selecting the first “one” encountered in F'¢. Eventually all the
“ones” have been eliminated. If all the “ones” are included in the covering
set, then, the cover is minimal. Otherwise, the cover is extended to include
the neglected events, and may not be minimal. '

3.7.3. Intervals as Textural Feature Detectors

Intervals were achieved as “boxes” into which events from the accep-
tance set R were efficiently packed. Since the events in the acceptance set
occur more frequently in 77 than in 79, the intervals that are nothing but
groups of such events have a tendency to define features that are more
likely to be found in 77 than in 7°. It has been found in a practical case that
some intervals pick up features like vertical lines, horizontal lines, herring-
bone patterns, etc. which are readily perceived by human beings. Features
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extracted by other choices of intervals may be very poorly matched for
human perception. Strategies for the choice of “good™ intervals remain
largely unexplored.

These “intervals” can be treated as 2D filters which detect textural
features more common to Tt than 7° The normalized “output count” of
the filters (normalized number of input “local patterns” from the scene of
analysis that fall in the “pass band” of the filter) can be used as a feature
vector. In this multidimensional space, we will be dealing with clusters of
the scenes from 77 and 7° and for classification purposes we can resort to
any popular cluster analysis method.

It may be noted that the generation of “interval covers” was possible
for the binary case only. Extension of this procedure for the case of multiple
textures is reserved for further investigation.

As we have seen, the success of the decision theory method depends
heavily on the choice of appropriate template. The OC curve helps us select
a “good” template among several possible choices. Sometimes, when we
do not meet early success, this search can be very lengthy. Hence there is
a need for a method that would help us determine the size, shape, and
orientation of the template, preferably by making use of the information
extracted from the scene of analysis. One such method is described in the
appendix.

4. APPLICATION OF THE DECISION THEORY METHOD

4.1. Texture Recognition

We illustrate the applicability of the decision theory method to the
problem of texture recognition with an example. Here T represents a family
of textures which consist of grids of different sizes with varying amounts of
noise added (Fig. 3a). Some random pictures shown in Fig. 3b belong to
the family 7° All these samples are digitized binary pictures containing
32 x 32 pixels. We selected a 3 X 2 template to extract sets of events E!
and E° from these training samples. For convenience, we define the following
disjoint sets of events, which we frequently refer to later:

F': {elec F'and e ¢ E%}
Fo: {e|ee E®and e ¢ E1}
Fe; {elec(E'U EYF1U F9
The events in F? are arranged in descending order according to their likeli-

hood ratios. The OC curve for this example is shown in Fig. 3c. We selected
B =1 in order to maximize the percentage of correct responses,'® and
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Fig. 3a.

Samples of texture 7 (various grid sizes with and without noisej.
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Fig. 3b. Samples of texture 7° (random pictures).
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Fig. 3c. Operating characteristic curve for textures shown in Figs.
3a and 3b.

extracted the sets F18 and F%. As described in Section 3.3, we have colored
the training samples and calculated the thresholds on the percentages of 0’s
and 1’s that enable us to correctly classify a maximum number of training
samples. Using these thresholds, we attempt to classify the test samples
shown in Fig. 3d and 3e. The results of the classification (Fig. 3f) show that
all samples in the first set of test samples have been correctly identified. In
the second set, as test samples we used grids of larger sizes with added noise.
Here, too, the classification is correct except in the presence of excessive
noise.

A similar experiment was conducted for recognition of textures of
chromatin samples and artifact samples from Pap smears, and is described
in detail in Ref. 34.

4.2, Border Extraction

When two textured regions meet, the events picked up along the border
can be expected to be different from those that occur in the core of either
regions, for the simple reason that they are made up from parts of both the
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Fig. 3f. Results of classification.

regions. We may say that the “border texture” is different from the textures
on eithef side. We can use this fact to force all the events in the border into
a set. Later, when this set is colored, the border will appear distinctly.

Let ¢, and t, be the protosamples of textures present in a combined
scene 71. Let us consider the union of 1, and ¢, as 7° We proceed as before
and obtain FY, F*, and FP sets. It is intuitively clear that F%is a null set because
t, and ¢, are part of 7. F? contains all events in both ¢, and ¢,. F* contains
only the events that occur in 7! exclusively, which are nothing but the
border events; therefore when we color the F! set, we obtain the location of
the border (Figs. 4a and 4b).

4.3. Extraction of Texture Regions

Given protosamples of textures present in a composite scene, we should
be able to mark each texture region separately. For this purpose we analyze
the protosamples and extract disjoint acceptance sets for each texture as
described in Section 3.4. We then analyze the composite scene and mark
the events belonging to each acceptance set differently. The result of such
an experiment on a composite scene (Fig. 5a) is shown in Fig. 5b. Here we
notice that each texture region is marked uniformly and differently.

We repeated this experiment with natural textures, this time using the
protosamples of the textures of nucleus, cytoplasm, and the background of
the brain cells. The result of “coloring” the composite scene is shown in
Fig. 6. This is the raw output picture and it is possible to “clean” it, by

removing, for example, points that do not have a certain number of neighbors
belenging to the same class.
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Fig. 4a. Border extraction: example 1. The bottom picture contains “salt
and pepper” noise.

4.4. Iteration

After obtaining F* and F° for a given pair of textures 7% and T°, if we
go back and color the original scenes as described in Section 3.3, we obtain
T and T, This output pair is more easily distinguishable than the original
pair. As a matter of fact for an ideal case, 7,! and 7,° should be uniform
and in completely different colors. When this is not the case, as happens in
general, we can repeat the whole process using the colored pair as input
pictures.
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Fig. 5a. A scene with multiple textures.

Let us define an operator C which operates on a pair of scenes:
{11, 79 -S> (T2, T %
By repeated application of operator C,
(T, Touosy =5 (T, TS}

we can go on iterating until we obtain a satisfactory separation in the output
pair (Figs. 7a and 7b). The improvement in OC curve toward the ideal case
with each iteration can be seen in Fig. 7c.
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Fig. 5b. Filtered image of the scene shown in Fig. 5a (each texture
" region marked differently).

It is clear that each point in the output picture is a function of neighbors
around a given point in the original picture. As a result of iteration, the
points in the output plane depend (maybe weakly) on a larger and larger
area in the original scene. That is to say, we are operating on the original
pictures at a more and more global level with each iteration.

The test picture also will be colored iteratively using the results obtained
at each iteration and can be subjected to the filtering process with the filters
obtained at the last iteration that has given satisfactory separation of the
original pair. At this point a decision will be made as to which scene the
test scene belongs.



24 McCormick and Jayaramamurthy

SEPHHH SHMMMO B em b s b= o - o o
CHOHR=80 082 $HNHS SLL N (=
EABLZ 0 p e a8 bt asan kaliyn
C HMMEH —toereasiestrears
PHHH= #9080 0 4630 8b00s0ntiylie = w — - -
- MHHH= 3 b b0 sabsatsbprntiinT = = o o
~ SHHHE PRI &4~ = = = 44 - - Ll e T y .
S OHHINHHIHE = = = = KM HNHM=sor st vensroron M
AR = HibHos e bersgosepbosns o i
'GNWHNHHHNNNH ------- R e T P el

e L L L e T A R Y. U e N R L
R MUMUHHHEHH U HE b = = = = = - e o > = o~ - Ceesd = HHRIBIHH ~3 086000886 —finidite = w = = tirie s
------- FHEDETRAHUIHHES = = = = = = w = o= HHHH= = HHHHHHHH= 0020800 46= HHHIIY o = = < —puH~

B L LI A Y AR
PUPTRPNOT

TR LR AHHNM'NlIO‘ObOQA - . -
LR URI 32 L -

T R

FYTTHTRNS -
- =R b LM HHEHE O HHHHRR b= = = = = = = e = o = = e = HEMMAMR ¥ bm tiresde

. LHHHM S HHAL QGUIHFHHHAUHRHHERHHHH S $ 8= = = .~ = = = = = = «» + <HHHMHHHM= =~ <pii= ~ =

= =4 HEH A HHUH! AH$tds = = = = = &= = e HHURUREREHBEY Y - = = o e = - - - -
~ = FRHith HH HHHRE o= s e e mo, - SHHRHHHEIHEH = = o = = o = = o -
- 40l hH (28 BGUGEET IHHHH - = - HHIEHHHEMMNE ~ - -

- UbREFIE HO b R ORI TR THY P——— BHIMHANEY -

- = HHHH IR MM bR A HRH . = o R

- - i «HHH* HHREH b E DiHHre= = = = o — - - ==

- ATHHE RO G A B HBRY muuum‘u M N = - .-

= HOLARH RO AR R T ;

- MHG

- HAHH P HRIMHIGOEE S w = = e HES e~

R

-uvmuh 1141} HHHIHH e -

NI ARSI THE -

¥ z -
~HEHH 1 6 vuuwwn HETHMHMI - HRAR RSN HY 5 = = - =
S RHHIHRHHHHHH] M G EHHANHHHAO B s~ =
- PR ')l HH R EHH Y RO MM H HH R - -

PSR a1

- = w eI iisp 14 MY = o = = = = e = . .-
P I (IHHE [} g @ mm e e e e e eem e mm = memomem e omoeem oo e
PN AT ] i i HHH= = = = = = = = & = & = =
- e = o= HER I, -uummmuulwmumwwulmu HIHHMMAHA b " = = = = @ = = = @ = o = = = = % 2 w oo = &« @ =
e e hHHH=b b HHHH = = = m e = m m . om e ow w T T T T I
P4 = o =HRde £ 804400 ¢ CHUHHMHIHFHERE PHREHEHEMA D = -
PHetdbn o BHL =000 80t b EHHRIRRIHITRHRHAHI MY 5
AHHH e 6~ = HHe t 4086 mHYHNMIHHERRERITH S l‘b- -
AHHURAIN @ "= ML cbe b pte HIHHHHHRHIENHERDPHEHHE = @ o o o o o = o = = = o @ = = =% =% o = == o
T R L LR T L X e T TP T TR P A

L R N A N L e R T T T T R A

Fig. 6. Filtered image of the brain cells (the background, cytoplasm, and nuclei have been
marked differently).

4.5. Interval Complexes

We obtained eight interval complexes with 7° containing regular
herringbone textures and 77 containing a set of textures that do not contain
a herringbone pattern. We used binary pictures and a 3 x 3 template in this
analysis. The intervals are shown in Fig. 8a. These intervals, acting as
2D filters, are supposed to block regular herringbone patterns. Figure 8b
shows the multiple texture scene. It contains a herringbone pattern slightly
above the lower right-hand corner. Figure 8e shows the union of the output
of all eight filters for the scene of analysis. Figures 8c and 8d show the output
of individual filters for the same input scene. It can be seen that features
like horizontal lines and vertical lines have been passed through.

Derivation of interval complexes while experimenting with biological
textures is explained in detail in Ref. 34.
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Fig. 7a. Textures of straw (77) and wood grain (7).

5. SUMMARY AND CONCLUSION

In this paper we have presented a method for the analysis of texture
suitable for computer implementation.

We have demonstrated that the decision theory method is versatile
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Fig. 7b. Filtered images of Fig. 7a at the end of five iterations.

and can deal with various problems concerning visual texture, such as scene
segmentation using textural information, extraction of texture borders, and
discrimination/recognition of both spatially and chromatically textured
scenes. This method, coupled with the application of interval covering
theory, has been shown to be capable of generating 2D filters which act as
texture feature detectors for the analysis of the input scene.
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Fig. 7c. Operating characteristic curves for five iterations for textures shown
in Fig. 7a.

By virtue of the present interpretation of the “event,” the decision
theory method of analysis of texture is based on the statistics of local patterns
only. It is possible to extend the analysis to the global level by modifying
the interpretation of an event. Here each variable in the event is allowed to
represent, instead of a local property such as gray level of a point, some
measure of a global property. Examples of global variables include the
number of edges per unit area, the gray level distributions, and spatial
frequency spectrum. These measures are then quantized and digitized. Each
variable can assume different discrete range of values.

When a “global event” is defined in this manner we can perform analysis
of the scene at global level. The “likelihood ratio” criterion used in this
way then provides a better “similarity criterion” than those found in other
methods performing similar analysis.(.16.2%
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Fig. 8a. Interval complexes
(2D filters) for T* = random
texture and 7° == herringbone
pattern,

APPENDIX. A METHOD FOR DETERMINING THE SIZE
AND SHAPE OF THE TEMPLATE

A model has been suggested®® that views the pixels of a digitized
2D texture scene as a two-way seasonal time series. We show here that the
parameteis of this model are helpful in determining the appropriate template
to be used in the decision theory method of analysis.

We describe the time series model very briefly. For further details the
reader is referred to Refs. 18, 24, and 26.

Let

w3 Zicas Loy s Lty Zigy 5eee (A.1)

be the time series, which is denoted as [Z,]. Here the Z’s represent the pixel
values in a discretized TV scan of a texture scene.

A series of values a; is assumed to be generated from a white noise
process with mean zero and variance o2

B is the backward shift operator such that

BZ,=Z,,
Hence BZ, = Z,_;.
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Fig. 8b. Multiple textural scene (input scene).

V is the backward difference Operator such that

VZ,=Z,—Z,, = (1 — B) Z,

\vad Zt

(1—B™Z, and V,Z, = (I — B Z,

19
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Fig. 8c. Output of one of the filters with the scene shown in Fig. 8b
as input,

If the time series [Z;] shows a seasonal behavior (with period s), then
it can be represented by the following multiplicative model:

B,(B) Bp(B*) ViV, 2Z, = 6,(B) 6,(B*) a,

where @,(B) and §,(B) are polynomials in B of order p and ¢ and are known
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Fig. 8d. Output of another filter for same input.

as “‘autoregressive” and “moving average” operators, respectively; and
& ,(B*) and fo(B*) are polynomials in B* of order P and Q and are known
as “seasonal autoregressive” and ‘“seasonal moving average” operators,
respectively.

This model can be easily extended to take care of multiple seasonalities.
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Fig. 8e. Union of the output of all eight filters for the input
scene shown in Fig. 8b.

To illustrate, we fit the above model to some natural textures. The
texture scenes shown in Figs. 9a and 9b belonging to texture families 7%
and T? are represented respectively by the following time series models:

(1 4 0.15B%) V,Z, = (1 — 0.25B)(1 — 0.58°) a, (A.2)
(1 —0.80B%) Z, = (I + 0.25B)(1 — 0.58°) a, (A.3)

I
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Fig. 9a. Cheesecloth texture.

Fig. 9b. Texture of handmade paper.

where o,% is the variance of the a,’s, —1.03; and o,2 is the variance of the
ay’s, =3.27. Here s is found to be the length of row (i.e., 32 pixels in the
present case).

We shall rewrite the above models as pure autoregressive models of
the form

SBYZ, - a,, i 1,2 (A.4)

828/4/1-3
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The autoregressive operators ®4(B) and ®*(B) are in general rational func-
tions of B. These, in turn, can be approximated by polynomials in B; their
coefficients are arranged diagrammatically and shown in Fig. 10. These
values indicate the influence of the neighboring pixels in determining the
values of Z,, apart from the residual a,, whose mean value is zero.
Figure 10(d) shows the template that picks up Z; and its neighboring pixels.
The set of pixels picked up by the template constitutes an “event,” as defined
before. The autoregressive operator operating on Z; can be viewed as if the
“event” picked up by the template is passed through the ““filter” formed by
the coefficients. The contour of the smallest significant coefficient value
determines the upper limit on the size and shape of the template. The selec-
tion of a larger template would not yield any new information on *local
properties” of the texture scene. Equation (4) indicates that the ‘“‘events”
picked up by this template when passed through appropriate ‘‘coefficient
filters™ yield an output consisting of random shocks a, , which are normally
distributed. From the engineering point of view, we can considerably reduce
the size and shape of template, and yet preserve the above-mentioned
property (approximately), by selecting a suitable cutoff value of the
coefficients. _

In the case of texture families 7" and 72, the template 6 (shown in
Fig. 11) appears to be suitable. The output of the “coefficient filters” C*
and C? (Fig. 10) appears to be fairly random when “events” extracted from
T and T2 are passed through them, respectively. The randomness is tested
by plotting the autocorrelation function of the output.

-
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Fig. 10. Relationship between the coefficient values of pure
autoregressive operators and the size of the template,
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Fig. 11. Operating characteristic curves for textures shown in Fig. 10
(obtained using the set of templates shown).

In the decision theory method, we need to consider one more criterion,
viz. the template size and shape should be judicially selected in order to
effect good discrimination between the pair of texture families considered.
We show how the coefficient values of the autoregressive operators help
make this choice, too.

The OC curves for 7" and T families are obtained (Fig. 11) using the
six templates shown. Here we notice that template 3 is more discriminating
than template 2 although they are of the same size. The explanation is as
follows: Consider the diagram of values | C* — C?| (Fig. 10c). It can be
seen that coefficients of B are more distinctly different than those of Bs.
This means that the influence of Z;_, on Z, is more discriminatingly different
in 71 and T2 than is that of Z;_, on Z,, and so is the joint distribution of
[Z;-,, Z,) as opposed to [Z,_,, Z,].

Thus in selecting the size and shape of the template for 71 and 72
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discrimination we require that the corresponding cells from time series
analysis have significant values of C!, €%, and | C* — 2. In addition, we
impose optional requirements like connectivity, symmetry, etc. on the
resulting template. After making this choice, we check whether or not in its
truncated form the corresponding autoregressive operator still satisfies

Eq. (4).
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