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We consider the formulation of marked multivariate point process 
models for job response times in multiprogrammed computer systems. 
Complementing queueing network representation of the structure of the 
system to be modeled, the particular R-process (Response time process) 
model we propose permits representation of resource contention, facilitates 
the incorporation of realistic workload characteristics into system perform- 
ance predictions, and can reproduce inhomOgeneities observed in running 
systems. Specification of the structure of the R-process model is conditional 
on workload marks; this effectively separates the difficult problem of formal 
representation of workload characteristics from the overall problem of 
response time prediction. To illustrate these ideas, an application to database 
management systems is considered. Evidence of the predictive capability 
of the R-process model, based on statistical analysis of response time data 
from an IMS system, is also given. 

KEY WORDS: Performance models; multiprogrammed systems; response 
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1. I N T R O D U C T I O N  

This paper  is concerned with the stochastic model ing of  mul t ip rogrammed  

compute r  systems, with emphasis  on the predict ion o f  job  response times. 

Mot iva t ed  by the desire to facilitate the incorpora t ion  o f  realistic work load  
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characteristics into system models from which useful performance predic- 
tions can be efficiently obtained, we consider the construction of marked 
multivariate point process models. Complementing widely used queueing 
network representations of the interactions between the processing and input- 
output resources of multiprogrammed systems, such point processes model 
resource contention among job streams and should be useful in prospective 
performance evaluation studies. 

Networks of queues provide a convenient means of representing the 
interaction between the processing and input-output resources of (multi- 
programmed) computer systems and subsystems. In general, the represen- 
tation of the structure of a system as a network of queues, at a level of detail 
deemed appropriate, can be readily accomplished. Formal representation 
of workload characteristics of the system within a network of queues, how- 
ever, is more difficult. One of the advantages of a queueing network represen- 
tation is that the flow of jobs through the system is made explicit and can be 
easily visualized by means of one or more graphical displays associated with 
the network. Also, the interpretation of service centers in the network 
(e.g., hardware components of the system), along with service times and job 
routing, is usually apparent, and selection of parameters for the system 
representation is facilitated by these interpretations. 

The setting down of stochastic fine structure assumptions (e.g., arrival 
processes, service time distributions, and routing probabilities) within such 
a queueing network system representation gives rise to a queueing network 
model. There is much literature dealing with such models. 1~,6,13,14,161 Under 
the usual convenient, but not necessarily realistic, queueing-theoretic assump- 
tions (e.g., independent and identically, often exponentially, distributed 
service times) analyses of queueing network models based on a "numbers-in- 
queue" state space can be carried out (see refs. 1, 7, 11, and 17), yielding 
expressions for stationary queue length distributions that can be evaluated 
numerically. Measures of system performance derivable from the stationary 
queue length distributions such as device "utilizations" and job " throughput"  
can then be obtained from such analyses. 

Other measures of system performance (calculated as sums of queueing 
times) involve the distribution of times for a job to traverse a portion of the 
network. Certain such times (in closed networks complete circuits or loops, 
and in open networks times from source to sink) are often interpretable 
as job response times; these response times are likely to be particularly sensi- 
tive to workload characteristics. Analyses based on the numbers-in-queue 
state space yield expected values for response times, but do not yield other 
characteristics of interest such as percentiles or quantiles. Since alternative 
analyses to provide these characteristics are in general not available, it is 
necessary to undertake simulation studies of the queueing network. For  
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certain classes of closed and finite capacity open queueing networks, efficient 
regenerative process methods have recently been developed for estimation 
of general characteristics of long-run response times through simulation. (s,9) 
For simulation of response times in more complex queueing networks used 
in detailed system simulations, little information seems to be available. 
It is our feeling that such simulations are inherently difficult and likely to be 
time-consuming and costly to carry out. 

In this paper we consider the formulation of marked multivariate point 
process (MMPP) models for job response times in multiprogrammed systems. 
A (univariate) stochastic point process provides a formal probabilistic 
structure for a series of events occurring in time. In a multivariate point 
process, there are events of two or more types. (5~ The events in an MMPP, 
in addition to having a type, carry a real, possibly vector-valued mark. In 
our context, event types generally will provide qualitative information about 
the multiprogrammed processing of jobs (e.g., job start, job termination, 
and job stream identity) whereas event marks will provide quantitative 
workload information. 

We envision that prospective point process models of this kind can be 
developed from a queueing network system representation, and that the 
inputs required will be similar to those required for a queueing network 
model. We anticipate, however, that the point process models will facilitate 
the incorporation of realistic workload characteristics into performance 
studies and be capable of reproducing the gross time inhomogeneities 
(nonstationary behavior) observed in running systems. (15~ Such inhomo- 
geneities (e.g., in job response times and throughput) generally result from 
changing workload characteristics. Although important for understanding 
system performance, these inhomogeneities are often not reflected in perfor- 
mance models. We also anticipate that these point process models can be 
simulated more efficiently to obtain characteristics of job response times 
than can comparable queueing network models. 

In Sec. 2, some examples are given which lead to consideration of a 
particular multivariate point process model (having limited dependence 
and restrictions on event types). A formal definition of this model, termed an 
R-process (Response-time process), appears in Sec. 3. The selection and 
interpretation of parameters in an R-process model based on a queueing 
network system representation is discussed in Sec. 4. Evidence of the predic- 
tive capability of the R-process model is given in Sec. 5, where results 
are reported of an analysis of response time data obtained from a 
database management system. Parameter estimation procedures are given 
along with a comparison of ~the data with R-process simulation output. 
Some remarks and directions for further work are contained in a final 
section. 
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2. DESCRIPTION OF THE MODEL A N D  EXAMPLES 

The particular marked multivariate point processes we consider, 
R-processes, are built up from a finite number of (dependent) marginal point 
processes. Let J be a positive integer and consider 2J  (mutually exclusive) 
event types, denoted a l ,  a2 ,..., as,  bl,  b2,..., bs. With each j, 1 ~< j ~< J, 
associate a bivariate point process (series of events of two types) composed of 
alternating event types as and bj.  Each event within a marginal bivariate 
point process carries a real, possibly vector-valued mark. The marks are 
such that an event of type aj and the immediately following event of type bj 
are identically marked. The total series of events comprising the R-process 
is obtained by superposition of the J marginal processes. For n >~ 1, denote 
by S~ j) the time of the nth event of type aj after an arbitrarily chosen time 
origin. Similarly, denote by T~ ~ the time of the nth event of type b~. after the 
first type aj event following the time origin. Also, define To ~jl to be the time 
of the first event of type bj after the origin, provided that it occurs before 
time S{~); otherwise define To ~j) equal to O. In terms of these {S~ j)} and {T~J)}, 
define times between events in the j th  marginal process by 

R(J) T(J) __ ,q'(J) n = A n  - ~ ,  n > ~ l  

and 

= ~ + 1 - -  ~ ,  n > /0  

Finally, denote the mark on the event at time S~ I by W{ j). See Fig. 1 for a 
graphical presentation of these quantities. Some motivation is provided by 
the following examples. 

Example I .  Consider the closed queueing network of Fig. 2 (see ref. 8). 
There are a fixed number J of jobs denoted 1, 2 ..... J in the network. Upon 
completion of service in center 1 which renders c~ service, in accordance with 
a binary-valued variable ~, the job joins the tail of the queue in center 1 
(when ~b = 1) or (when ~ = 0) joins the tail of  the queue in center 2 which 
renders fi service. Neither center 1 nor center 2 service is subject to interrup- 
tion. Both queues are assumed to be serviced according to a first-in-first-out 
(FIFO) discipline. A quantity of interest is R, which is the time required by 
a particular job to enter the tail of  the center 2 queue after completing a 
center 2 service. To associate a marked multivariate point process with the 
queueing network of Fig. 2, view an event of type aj as occurring when job j 
completes service at center 2 and joins the tail of the queue in center 1. 
Similarly, view an event of type bj as occurring when job j joins the tail of  
the queue in center 2. Identify with W~ ~) the number of center 1 services 
received by job j between its (n -- 1)st and nth center 2 services. Then R~ ~ 
is the nth occurrence of the time R for job j. 
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Fig. 2. Closed queueing network. 

Example  2. Consider the finite capacity open queueing network of  
Fig. 3 (see ref. 12). Jobs arrive to the network from an external source and 
depart to an external sink. Feedback to the queue in center 1 occurs in 
accordance with the binary-valued variable r The waiting room in center 2 
is assumed to be finite. The center 1 server is blocked and ceases to render 
service when there are K jobs waiting or in service at center 2. Service at the 
first center resumes when the queue length in center 2 falls to K -  1, Jobs 
arriving when the network already contains J (>~ K) jobs are turned away. 

I~4 - - R  kxl 
[ I 

i < K  - -  1~ 

Fig. 3. Finite capacity open queueing network. 
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Both queues are assumed to be serviced according to a FIFO discipline. A 
quantity of  interest is the total time spent by a job in the system, indicated 
by R in Fig. 3. 

Associate a marked multivariate point process with the network o f  
Fig. 3 by assigning a number 1 ~< j ~ J to an arriving job as follows. Assign 
to a n  arriving job the smallest possible number, subject to the restriction 
that no two jobs in the system may have the same number. View an event 
of  type aj as occurring when a job arrives and is assigned the number j;  
similarly view an event of  type bj as occurring when a job numbered j departs 
from the system. Identify with W,~j ) the number of  times the n th job numbered 
j undergoes feedback to center 1 upon completion of service at center 2. 
Then R~ j) is the total time spent in the system by the n th job numberedj.  

Example 3. Consider the closed queueing network of Fig. 4. The inter- 
pretation of this diagram differs from that of a conventional queueing network 
in that services are distinguished from the servers that perform them. Thus 
circles in the figure represent services rather than servers. Five types of  service, 
denoted by ~0, ~1, c~2, % ,  and/3 are represented. The ~ services are per- 
formed by a single server, and the /3 service is represented by a second 
single server. I t  is assumed that no two ~ services can be performed con- 

qo,o 

q0,1 
-~ I I52-  

~4 - R  )'-I 
I 
I 
I 
I ~ q2,2 1 ~3 

Fig. 4. IMS DL/I component model. 

(i) Processor renders %, cq, c~, and % services. 
(ii) I/O unit renders/3 service. 
(iii) %, cq, c~2, and/3 services are not interruptable. 
(iv) % service has preemptive resume type interruption at completion of/3 service. 
(v) Processor scheduled according to priority ordering of queues q0.0, q o . t ,  ql.1, 

qz.~, q2A, q2.~, and q z  �9 

(vi) Routing determined by binary valued random variables ~bz, ~b2, and ~b~. 
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currently, but that any c~ service can be performed concurrently with a fl 
service. Each of c~0, ~1, c~2, and/3 services is assumed to be noninterruptable. 
The % service, however, is interruptable at the completion of a fi service, 
this interruption being of  the preemptive-resume type. A fixed number of  
prioritized jobs, denoted 1, 2 , . ,  J (in order of decreasing priority) circulate 
in the network from time zero. In each of the c~ queueues service is rendered 
according to job priority. Jobs are routed through the network in accordance 
with the binary-valued variables r r and r The epoch of completion 
of any ~ service, or the epoch of completion of a fi service at which either no o~ 
service is in progress or an % service is in progress is called a scheduling 
decision epoch. The next c~ service to be initiated, if any, is determined by 
a scheduling algorithm that employs a total ordering of the queues: ql,2, q2,~, 

ql,1 , q2.z, qo.1, q0.0, qa. 
This queueing network is a representation at the transaction level of 

the DL/I  component of an Information Management System (IMS) data- 
base management system (see ref. 10). It is based on the model given by 
Lavenberg and Shedler, (~a) to which the reader is referred for a detailed 
discussion of the system context. Briefly, the ~ services are rendered by a 
processor and the/3 services by an I/O unit. A transaction against the data- 
base, executing in one of  J application regions, given rise to a sequence of  
DL/I  calls, each of  which results in an access path search of physical blocks 
until the target segment is found. In the network a job is a transaction 
executing in a particular region, and the routing labeled 1 --  r is inter- 
preted as a further search for the target segment of a DL/I  call; similarly, 
the routing labeled r corresponds to an additional DL/I call for a trans- 
action. The routing r is interpreted as a block exception, i.e., an I/O 
operation to the data base to retrieve a required path block. Of interest in 
this model are the response times for transactions. 

Associate with the queueing network of Fig. 4 a marked multivariate 
point process related to transaction response times as follows. Define the 
start of a transaction to be the epoch at which processing to determine the 
first path segment to be accessed for the first DL/I  call begins; these epochs 
correspond in the queueing network to the start of the first % service for the 
transaction (cf., ref. 13, p. 441). View an event of type at as occurring when 
job j begins ae service from q0,o and view and event of type bj as occurring 
when, upon completion of a~ service, job j enters qo,0. Identify W~ (j) as the 
number of times the nth job j enters qo.z between its (n --  1)st and nth 
entrance into q0,0. Then R~] ) corresponds to the response time of the nth 
transaction executed in region j. Note that the workload mark W~ (j) corre- 
sponds to the number of DL/I  calls in the nth transaction executed in regionj. 
Other definitions of workload measures requiring vector-valued marks will 
be discussed below. 
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Common to all three examples is that there are several concurrent job 
streams contending for service, and that this contention directly affects 
the response time of a job. Job response time in the network representation 
is a random sum of queueing times, where components of the random sum 
are determined by the routing of  the job through the network. Aspects of  
the job routing, including the number of times a particular path is taken, 
can be thought of as characteristics of the load placed on the system by the 
job. The R-process model defined in Sec. 3 is an abstraction, focusing on 
response times, of the contention among job streams in which starts and ends 
of individual job response times are events, and the event marks carry the 
workload information related to job routing. In the next section we give an 
interval specification of  the R-process model. 

3. S P E C I F I C A T I O N  OF  T H E  R-PROCESS M O D E L  

The counting specification of a multivariate point process is in principal 
fundamental; thus, for example, a bivariate point process of type a events 
and type b events is specified by ~/" = (N(t l ,  t2): q ,  t2 ~ 0} where 

N ( q ,  t2) = (Na(q), Nb(t2)) 

Na(q) = cumulative number of type a events in (0, q] 

and 

Nb(t2) = cumulative number of type b events in (0, t~] 

An interval specification of the process is often more convenient; see Cox 
and Lewis (5~ for a detailed discussion of the specification of dependence and 
correlation in multivariate point processes. 

Definition 1. Let J be a positive integer and for 1 ~ j ~ J, let sequences 
of real, possibly vector-valued constants {w~ j :n  ~ 1} be given. Then an 
MMPP having (mutually exclusive) event types aa, a2 ,..., as, bl,  b2 ..... bs 
is an R-process provided that conditions 1-6 hold. 

1. In the marginal bivariate point process ~Aro)={NCJ)(tl,t2): 
q ,  t2 ~ 0} of type aj events and type bj events, the event types alternate. 
For 1 ~ j ~< J and n ~ 1, denote by S~ j) the time of the nth type aj- event 
in Jff(~) following the time origin. Also, denote by T~ j) the time of the nth 
type bj event after time S~ jl. Define To ~j) to be the time of the first type bj 
event following the time origin provided that it occurs before time S~ jl, and 
0 otherwise. 

2. For 1 ~<j ~< J and n ~ l, w,~" o) is the mark on the nth event in 
JV "<~1 after the time origin; if this nth event is of type a j ,  t hen ,  o) = w~') ,v~+ 1 
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. For 1 ~ j ~ < J a n d  n ~> 1, 

P{T,  (~) S~ (5) ~< t l [T~ (k), S~ (~), W~(k); 0 ~< m ~< ~,b t~,, s, 

= P { T  (j) - -  S(g ) <~ t i W ('), Z(S(f)} 

where for t ~ O, 

Z ( t )  g ' [O (1) ~p(l) lfff (1) S (J) T (J )  ixz(J)  
= J ~ ) N ( 1 ) ( t )  , IN(1)(t  ) , VVN(al)(t ) , . . . ,  N(J)(i) , N(J)(t) , ~'VN(J)(t )) 

f o r f  a real, possibly vector-valued function. 

4. For 1 ~< j ~< J, independent of n, 

P { T  (~) - -  S(~ ) ~ t l W (j) = w, Z ( S  (j)) = z} = F(J)(t; w, z) 

5. For 1 ~ j  < ~ J a n d n  ~> 1, 

p[.~ (~) T (j) Ar OdiT (J)~ ~ + 1 - -  ~ ~ t i [ T  (k),S (~), W~(~);0 ~ m  ~ , b  ~ J ,  

m(k)(T(~hl" 1 <~ k ~ J }  1 ~ l ~ . , ~  ~ ,  

where Z(.) is defined in condition 3. 

6. For 1 4 j  4 J, independent of n, 

P~(J) - -  Y (D Z T (j)~ tJ +l t [  = z} = G(J)(t; z)  

By condition 1, an R-process can be thought of as being built up by 
superposition of J (dependent) marginal bivariate point processes having 
alternating event types. Condition 2 says that in each of these J marginal 
processes the event marks on a type a event and the immediately follow- 
ing type b event are identical. Dependence of the J marginal processes is 
specified by conditions 3-6. Condition 3 says that in the j th  marginal process 
the time from a type aj event to the next (type bj) event depends on the mark 
on the type a~ event and also on the past history of the process; dependence 
on the past is only through the value of  Z at the time of the type a~ event. The 
function f in the definition of Z restricts the dependence on the past to the 
times of the last type b events and the times and marks on the last type a 
events in the other processes. As discussed in Sec. 4, t he f func t ion  permits the 
representation of the effects of contention among different job streams. 
Condition 5 is similar to condition 3 in that it restricts the dependence on the 
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past of the time from a type bj event until the next (type at) event. Conditions 4 
and 6 are time homogeneity conditions. Observe that in accordance with 
Definition 1 the structure of an R-process is specified by J, the function f ,  
and probability distribution functions F(1),..., F (s) and G(1),..., G (s). For 
generation of an R-process beyond a fixed time origin, specification of initial 
conditions is also required. 

Note that in the definition of the R-process, we have made no stochastic 
assumptions concerning the sequences of event marks (w~: n ~> 1}, and have 
defined the process conditionally on the event marks. In particular, no 
assumption of stationarity of event mark sequences has been made. The 
conditional definition of R-process that has been given permits us (as in 
Sec. 5) to consider response times resulting from deterministic sequences of  
event marks derived from system traces. 

An R-process is well defined by Definition 1 in the sense that, given 
sequences of event marks �9 (57. {w~ . n ~> 1}, the total series of marked, typed 
events is determined. To show this we shall outline a method for generating 
the R-process; this provides a basis for estimation of job response times by 
simulation of the R-process model. The procedure given in Sec. 3.2 generates 
sequences of times-to-events {S(n ~)} and {T,~ j~} on a fixed interval (0, to], given 
sequences of event marks (w~;~)}. The total series of events comprising the 
R-process is obtained by superposition of the events occurring at *S(~)*< ~ , and 
{T,~)}. It is assumed in Sec. 3.2 that the first event after the time origin in the 
j th  marginal process is of type aj and that it occurs at given times S~ j). It 
is also assumed that the times and marks of the last two events in each of the 
j marginal processes prior to the time origin are given. 

The following notation is required: 

I. For 1 ~<j ~< J, I (j) = 1 if the last event prior to time t in the j th  
marginal bivariate point process is of type a j ,  and 0 otherwise. 

2. N~ j) and N~ j) are counters of the numbers of events of types a and b 
generated for marginal processj  and N (~) = N~ j) -( N~ j). 

3. For  1 ~ j ~< J, Y(J) is the time of the last event generated in the 
j t h  marginal process. 

3.1. G e n e r a t i o n  M e t h o d  

1. 

2. 

3. 

Initialize for 1 ~ < j ~ J :  1 ( j ) = l ,  Y ( J ) = S  (j>, N~ ( j )=  1, Nb ( j ) = 0 ,  
N (j) = 1. 

Let k be the index of min{Y (1) ..... Y(J)}. I f I  (k) -- 0, go to 4; 

Set I (k) = 0, N (~) = Nb (k) + 1. Generate X having distribution 
F(k)(t; (7~) T(k) y(k) ]4;N(k) , Z(YO~))). Set N(/z) = + X. Go to 5; 
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4. 

. 
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Set I (k) = 1, ~,~7r (I~) = ~.~v (k) + 1. Generate X having distribution 
G(l~)(t; Z(Y(k))). Set S(~) : y(k) + X; 

Set N(~) : N(~) + Nb(k), y(k) : y(k) _5 X. i f  t0 >/min{Y(Z),..., y(S)}, 
go to 2. Otherwise, exit. 

4. S E L E C T I O N  OF PARAMETERS IN  A N  R-PROCESS 

In accordance with Definition 1 given in the preceding section, an 
R-process is specified by 

1. a positive integer J, determining the number of marginal bivariate 
point processes; 

2. a real, possibly vector-valued function f determining the nature 
of the dependence on the past of conditional times between events in the 
marginal processes; 

3. for 1 ~ j ~< aT, a distribution function F(~)(t; w, z) for the condi- 
tional time from an event of type aj to the next type b~- event; and 

4. for 1 ~< j ~< J, a distribution function G(J)(t; z) for the conditional 
time from an event of type bj to the next type a~ event. 

In this section we indicate ways in which these inputs to the R-process model 
can be selected, given a queueing network system representation. 

The selection of a value for J in the R-process is straightforward, e.g., 
for the queueing networks of Examples 1, 2, and 3, J is, respectively, the 
fixed number of jobs, finite capacity of the network, and maximum number 
of active regions. Selection of a funct ionf to  represent the effects of contention 
among job streams, however, is more involved. We give several examples. 

Example  4. Consider the queueing network of Example 1 in which 
an event of type aj (resp. bj) is the start (resp. termination) of a response time 
for j obj.  A response time for j ob j  depends not only on the number of center 1 
services it receives (the mark W~ (j)) and their durations, but also on 
the durations of services for other jobs for which it waits in queue. In parti- 
cular, the response time depends on the number of jobs ahead of job j 
each time during the response time that job j enters the queue in center 1. 
As a simple representation of the effects of this complex queueing pheno- 
menon, we might define the f function in the R-process by 

y 

f ( s l  , t~ , w l  . . . . .  s j ,  t j ,  w~) = Z I(~,~ - tk) 
lc=1 

8 z 8 / 7 / z - 8  
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where I (x )  equals 1 if x >~ 0 and 0 otherwise. Then Z(S~  ~)) is precisely the 
number of jobs at center 1 when the nth response time for job j starts. 

Example 5. Consider the queueing network of  Example 3 in which 
an event of type aj (resp. b~) is the start (resp. termination) of a transaction in 
application region j and W~ ~) is the number of DL/I  calls in the nth trans- 
action executed in region j. The response time for a transaction in region j 
depends in a complex manner on the number of  other regions executing 
transactions, the number of DL/I  calls and segment searches in these trans- 
actions, the pattern of block exceptions and scheduling priorities, etc. 
As a simple representation of the effects of this resource contention we might 
define 

J 

f ( s l ,  t l ,  w l  . . . . .  s j ,  t j ,  = Z x(s  - 
k = l  

Then Z ( S ~  ~) is the total number of DL/I  calls in transactions active at the 
start of the nth transaction in region j. 

Alternatively, take W~ j) to be the total number of access path segment 
instances searched for the nth transaction in region j. To take into account 
the effect of priority scheduling of regions, we might define a vector-valued 
f func t ion  

f ( s z ,  t l ,  wz ,..., ss ,  t s ,  ws) ---- z = (zl ,..., zs) 

where 
J--1 

zj = ~ wk I(sk - -  tk) 
k = l  

Here z~. is the total number of  access path segments searched in transactions 
active at the start of  the nth transaction in region j and executing in a region 
having higher priority. The distribution function FIJ)(t; w, z) would depend 
on z only through zj .  

Selection of the distribution function F~J~(t; w, z) and G(J)(t; z) for con- 
ditional times between events can be approached in the following way. 
Recall, for example, that for 1 ~ j ~ J, 

FIS)(t; w, z) = P{T~ ') - -  S(~ ) <~ t [ W~ j) = w,  Z(S~  j)) = z} 

and denote the mean function of this distribution by/,~)(w, z). This quantity 
/~7)(w, z) is the mean time from an event of type aj until the next type bs 
event, given that the mark on the type aj event is w and z is a measure of  the 
dependence of this time between events on the past. The distribution 
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F~(t; w, z) is probably then most easily specified by restriction to a single 
standard form for the distribution (e.g., exponential, gamma, mixed expo- 
nential) and then providing mean functions and perhaps other necessary 
functions (e.g., for variance) to reflect the conditioning variables. 

Given a queueing network system representation showing the flow of  
jobs through the network, mean values of the time to traverse a portion of  
the network can generally be obtained from (presumed) known information 
(e.g., service time, routing) when there is only a single job in the network. 
The effect of  contention among jobs is to increase this mean time. The con- 
ditional mean time between events tz~J~(w, z) that we must specify in the 
R-process can be chosen by carrying out a single-job flow calculation with 
respect to the queueing network representation, and then making an addi- 
tional assumption about the nature of the time increase. Assume that the 
measure z increases with contention, and let z 0 be the value of z corresponding 
to no contention. One way to proceed is to assume a product form 
for/x~>(w, z), i.e., 

where he(w) >~ O, g~)(zo) = 1 and dg~)/dz >~ O. The last two constraints 
ensure consistency and guarantee that the effect of contention is to increase 
the mean time between events. Other models, e.g., an additive form, can also 
be considered. 

Note that an explicit assumption [e.g., the function g~)(z)] about the 
effect of contention among job streams is an input to an R-process model. 
This is to be contrasted with a queueing network model in which the assump- 
tion is made implicitly when particular queueing-theoretic (e.g., independent, 
identically distributed) stochastic assumptions are put forth. 

Exa mple  6. Consider the queueing network of Examples 1 and 4. 
Here W~ ~1 corresponds to the number of center 1 services received by job j 
during its nth response time. Then, for 1 <~ j <~ J, hF(w) = E{c~} w, where 
E{o~} is the mean center 1 service time. If, as in Example 4, Z(S~ j~) corresponds 
to the number of jobs enqueued at center 1 when the nth response time for 
job j begins, then z o = 1 and a plausible assumption in the R-process model 
might be that g~>(z) = 1 + c(z -- 1) for some nonnegative constant c. 

5. A N A L Y S I S  O F  R E S P O N S E  T I M E  D A T A  

In this section we report the analysis of  transaction processing data 
obtained from a running database system and observe its conformity to an 
R-process model. The database system considered is the online portion of 
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IMS/VS 1.0.11z~ running under OS/VS Release 1.6 on an IBM System 
370/145 with 1 megabyte main storage. The particular configuration of 
IMS studied here has two online message processing regions and a 100K 
byte buffer pool. The database is from an IMS manufacturing production 
control system running on an IBM 370/155, and the workload is a re-creation 
of a day's transaction stream from that system, based on a recorded trace. 
In re-creating the workload of the original system, activity outside the 
DL/I component (database access section) of IMS is minimized in the 
following way. In the original system instances of a number of transaction 
types occur, each of which is processed by a corresponding application 
program that must be scheduled and loaded in a message processing region. 
In the experimental system this workload is re-created by initially loading 
each message processing region with a program that processes messages 
from a message queue pre-loaded for that region. The messages in the queues 
consist of a sequence of transaction header messages, each followed by 
messages containing the exact sequence of DL/I calls issued by a particular 
transition instance as it actually occurred in the original system. The program 
in each region merely receives these messages and issues the DL/I calls. 
In this sense the experimental system runs in a fully saturated mode, and 
the measured response times consist essentially of time spent in the DL/I 
component oflMS. 

The processing by IMS of the entire day's re-created transaction stream 
was traced, and the times of transaction instance start and end were recorded 
along with message processing region, transaction type, and counts of DL/I 
calls and access path segments searched. 

After examination of the gross features of the data for the entire day, 
a serial section of length to = 1800 (in unspecified time units) was selected 
for detailed analysis. This section showed a relatively high transaction com- 
pletion rate in both regions with a correspondingly low average response 
time, as well as relatively low average numbers of DL/I calls and access 
path segments searched per transaction instance. The section contained 
1490 transaction instances in region 1 and 394 in region 2. 

In examining the data to get some indication of the overall behavior 
of the system during the selected time period, an immediate observation was 
the inhomogeneity of the several univariate point processes of transaction 
completions. Figure 5 is a plot of the cumulative number of transaction 
completions, along with the cumulative number for each of the regions 
individually, versus time. In a stationary point process the cumulative- 
number-of-events plot would be close to a straight line. Here there is an 
indication of some fluctuation in the transaction completion rate throughout 
the section and a definite decrease toward the end. This inhomogeneity 
could be caused by a blocking phenomenon within the DLf[ component or 
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be a direct effect of  a changing transaction mix. A similar inhomogeneity 
was observed in the original system (see ref. 15). 

Next we examined the transaction response times themselves. Table I 
gives sample statistics for sequences of  response times in each region, 
sectioned serially into 10 sections in region 1, and five sections in region 2. 
I t  can be seen that the characteristics of  the sections differ widely, indicating 
that  the response times are not homogeneous in time. Similar sectioning 
and calculation of  sample statistics was performed for the transaction work- 
load measures: the number of  DL/ I  calls and access path segments searched 
per transaction instance. Comparison of these statistics with those for 
response times in each region showed that to a great extent the response times 
mimicked changes in the workload measures. This is illustrated in Fig. 6, 
a plot of  the means of the response times and the workload measures of  the 
transactions in region 1 for each of the 10 sections on a common scale that  
gives their overall mean the same order of  magnitude. This type of behavior 
was also observed in the other sample statistics such as variance. This suggests 
in a general way that a model of  the R-process type, where response times 
reflect variations in workload characteristics, may be appropriate. 

Accordingly, the focus of  the remaining data analysis is on providing 
the necessary concomitants of  an R-process model. We consider R-process 
models in which the bivariate point processes are the sequence of trans- 
action starts and ends in the J = 2 message processing regions. The work- 
load marks on the events are taken to be vector-valued, consisting of the 
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Table I. Sample Characteristics of Response Times in Serial Sections 

Section 

Sample Sample S.D. of Coefficient of Coefficient of Coefficient of 
mean variance mean variation skewness kurtosis 
(x)  (s 2) (sx) (s ix) (~1) (~2) 

Region 1: Section size = 149 

1 0.9784 0.9544 0.0800 0.9985 2.1934 9.2259 
2 0.6233 0.6022 , 0.0636 1.2450 4.2741 24.9627 
3 0.7565 6.3256 0.2060 3.3246 8.6298 84.2965 
4 0.8175 4.1492 0.1669 2.4917 9.3442 101.6443 
5 0.5316 0.3421 0.0479 1.1003 6.6353 60.8537 
6 0.9769 5.9130 0.1992 2.4893 5.9178 38.7558 
7 0.8246 1.0440 0.0837 1.2391 4.7371 32.9017 
8 0.9266 2.7614 0.1361 1.7934 6.2700 47.1030 
9 1.7174 3.7906 0.1595 1.i337 1.2191 3.1611 

10 1.6866 35.3707 0.4872 3.5261 11.0734 130.1037 

Region 2: Section size = 7 8  

1 1.6867 1.6400 0.1450 0.7592 3.6967 23.0232 
2 3.2475 53.1111 0.8252 2.2441 6.1901 44.2911 
3 4.1003 13.6466 0.4183 0.9009 2.4918 11.9608 
4 5.0246 19.1029 0.4949 0.8699 2.0771 8.7578 
5 5.2204 23.5742 0.5498 0.9301 3.4759 19.9693 

I I 1 I I 
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Fig. 6. Means of transaction response 
times and workload measures in region 1 
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counts of DL/I  calls and access path segments searched for each transaction 
instance. Based on this structure we consider distributional forms for the 
conditional response times and the conditional intertransaction times, and 
the specification of their dependence on the workload measures and the past 
history of the process. 

We examine the transaction response times first. It is clear conceptually 
that a response time is a sum of the times to initiate each contained DL/I  
call (e.g., interpret the search argument) and to search the segments in each 
catl's access path. Therefore, since the available workload mark on each 
transaction (W = (111, X~), say) gives the number of DL/I  calls (X0 and 
access path segments searched (X2) in the transaction, the response time 
conditional on the workload mark might be expected to have a mean value 
that is approximately linear in the components of the mark. 

It  is also clear that the past history of the transaction processing stream 
could affect the response time. In particular, a transaction that runs in one 
of the message processing regions while the other region is inactive can be 
expected to fill the buffer with its required blocks, to the detriment 
of the response time of a transaction starting subsequently in the other 
region. 

In the R-process model such contention may be made explicit through 
the process {Z(t)} defined in Sec. 3.1 which is a possibly vector-valued function 
f of  the latest times of  transaction starts and terminations and the latest 
workload marks in all regions at time t. For  the two-region example con- 
sidered here, the f function may be written as f ( s~ ,  q ,  wz ,  s2, t2, w2). To 
indicate the type of contention discussed, we de f ine f to  be vector valued with 
components (f~, f~) defined by 

f l ( s l ,  q ,  wl ,  s~, t2, w~) = I(s2 -- t~) min(sl -- s~, sl -- tl) 

q- I(t2 - -  sO I(t2 - -  q )  m i n ( t ~  - -  s ~ ,  t~ - -  q )  

andfz the same with the one's and two's interchanged on the right-hand side. 
Thej th  component of the funct ionfis ,  at the start of a transaction in region j, 
the amount of time since the most recent transaction termination in region j 
that the most recent transaction in the other region has run. During this 
time the transaction in the other region is executing by itself; therefore, the 
greater this time, the greater its expected effect on the response time of the 
transaction about to start in region j. A simple way of incorporating this 
dependence explicitly is to let an expected response time in region j, condi- 
tioned on Z(t )  at the transaction start, increase linearly with thej th  component 
of Z. 

Accordingly, a model for the mean response time R~ ~) of  the nth trans- 
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action in the jth region, conditional on the workload mark W~ j) and on 
is 

e(R(2 1 " = ( x l ,  z(s 2) = ( x2 ) ,  

'~(J) (J) (5.1) + p?z  + x. 

where the/3's are unknown parameters. The parameter/30, in effect, gives 
the average overhead time for transaction processing; /31 and /32 give the 
average increase in response time due to an additional DL/I call or access 
path segment searched; and/33 gives the average penalty in response time 
for each unit of time that the prior transaction in the other region ran alone. 

Assuming that the conditional response times are uncorrelated random 
variables with means given by (5.1) and equal variances, the unknown param- 
eters in the conditional expectation may be estimated from the data by 
ordinary least squares methods. This has been done for each region, and 
ostensibly the model (5.1) for the mean fits well since it explains almost all 
the variation in the response times as indicated by the squared multiple 
correlation coefficient. However, plots of residuals from the fitted model 
reveal that in each region the variation of the residuals increases with the 
magnitude of the predicted expected value. The increase appears to be such 
that the residual variance is approximately proportional to the square of 
the predicted expected response time. Such an inequality of the variance 
lessens the efficiency of the least squares parameter estimators (which are, 
however, still unbiased), and wholly distorts the usual estimators of their 
standard errors. An estimation procedure suitable for this situation is iterative 
weighted least squares (IWLS) which is described in Appendix 1 (cf., 
Bradley (2) or Charnes et al.(4)). 

Estimation by this method was done for each region, and examination 
of the weighted residuals indicated that the variance had been equalized, 
a confirmation of the procedure. The estimated parameters for each region 
are given in Table II, where the fourth column gives the estimated coefficient 
divided by its estimated standard error. This t statistic may be treated as 
approximately normally distributed, and its absolute value indicates how 
significantly different from zero the coefficient is. All the estimated param- 
eters for both regions are significantly different from zero with the exception 
of the constant for region 2. Though this estimate is actually negative and 
could legitimately be dropped from the model in region 2 due to its insigni- 
ficance, we retain it for consistency with the observation that it causes no 
problems, since every transaction must have at least one DL/I call and search 
one path segment; thus no negative response times will be predicted. Note 
also that the estimated parameters for region 1 are generally smaller in 
magnitude than the corresponding estimates for region 2, apparently a 
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Table II. IWLS Parameter Estimates for the Conditional Mean Response Times 

Coefficient Estimate Estimated S.E. t 

Region 1 

Constant .0505 .0060 8.44 
No. DL/I calls .0696 .0025 28.10 
No. access path segments .0048 .0002 21.88 
Contention measure .1799 .0285 6.31 

Constant of proportionality IWLS:. 1815 ML:. 1650 

Region 2 

Constant --.0385 .0708 --.54 
No. DL/I calls .3635 .0160 22.65 
No. access path segments .0053 .0014 3.71 
Contention measure .2929 .1324 2.21 

Constant of proportionality IWLS: .2399 ML: .2001 

reflection of the different scheduling priorities between the regions. The model 
for the means and variances has been further checked, particularly using 
residual plots to verify the linear form of the mean, and has been judged 
to represent the data adequately. 

Finally, a complete specification of the R-process model requires a 
particular conditional response time distribution function incorporating 
the observed mean and variance function. Since the response times are posi- 
tive random variables with variance proportional to the mean squared, a 
number  of  standard families of  distributions with these properties, such as 
the lognormal and gamma, are immediate candidates. Examination of the 
response times revealed that a gamma distribution with mean specified by 
(5.1) and a constant shape parameter  provided an adequate fit in each region. 
Since the parameterization of a gamma distribution in terms of its mean, 
and fitting a linear model for this mean may not be well known, we present 
details in Appendix 2. 

Under the gamma assumption the maximum likelihood (ML) estimates 
of  the parameters in (5.1) are the same as the [WLS estimates; therefore they 
have the values exhibited in Table 2. The ML estimates of the constants of  
proportionality are also given in Table 2 and, since they are smaller than the 
IWLS estimates, the estimated standard errors of  the coefficients are slightly 
smaller and the t statistics slightly greater under the gamma assumption. 
The gamma assumption itself was examined through gamma probability 
plots of  the normed response times (i.e., observed divided by fitted). Such 
a plot should fall along a straight line of slope 1 through the origin, with 
!arger departures possible in the tails, if the gamma assumption is correct. 
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It was observed, as for instance, in the plot for region 1, which is given in 
Fig. 7, that the gamma parametric model with the mean function (5.1) and 
the estimated parameters of Table 2 appears to describe the conditional 
response time distribution well. 

The intertransaction times in each region were considered in the same 
fashion as the response times, and it was observed that the workload marks 
had no discernible influence. A number of plausible measures of the effects 
of  contention on these times were also considered. What appeared to be 
significant was a vector-valued function with two components whose j th  
component at the end of a transaction in thej th  region is defined as follows. 
I f  there was no transaction active in the other region, the value is zero; if 
there was a transaction active, the value is equal to the time that this trans- 
action ran simultaneously with the prior transaction in the j th  region. We 
believe that this function gives a measure of how long the other transaction 
will hold the inner loop of the DL/[  component, thereby delaying the 
start of a new transaction in the j th  region. 

Thus, formally, the {Z(t)} process described here for the response times 
is expanded to a four-component vector containing the above function for 
each region as its third and fourth components. The conditional expectations 
Of the intertransaction times were modeled as linear in this contention 
measure, and again gamma models for these times, using the [WLS estimates 
of the unknown parameters, fit the data adequately. This provides the formal 
specification of the conditional distribution of the times between events 
required for the R-process model. 

With the selection of the conditional distribution of the response times 
and intertransaction times in each region, we have completed the specification 
of an R-process model. We now consider the overall goodness of fit of  this 
model. Formal tests of the dependence structure in an MMPP, and in parti- 
cular for an R-process, are not available. However, we can address the good- 
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ness of fit by informal graphical comparisons of characteristics of the original 
point process data with the corresponding characteristics of the fitted 
R-process model. 

The procedure used to select forms for an estimate parameters of the 
conditional distributions of response times, and our examination of the 
residuals ensure a good fit of the R-process model in terms of the intervals 
(times between events) in the marginal bivariate point processes. However, 
the interaction of these specifications to produce an MMPP that resembles 
the data (including its inhomogeneities) is not implicit in the procedure. 
One way to examine this aspect of the fit of the model is to compare the 
expected values over time of the various counting processes in the fitted 
model with their empirical counterparts from the data. Note that dependence 
between the marginal bivariate point processes in the R-process is reflected 
in these counting processes. 

We compare graphically, for each of the regions and for both combined, 
the expected number of transactions completed in the fitted R-process model 
and the number observed in the original data as a function of time. To do so 
requires the calculation for the R-process model, using the estimated param- 
eters, of the quantities E{N~I)(t)} and E{N~)(t)} for t in (0, to]. These cal- 
culations appear to be very difficult, and instead we resorted to simulation 
of the R-process model. Using APL implementations of algorithms for 
generation of random numbers given by Robinson and Lewis ~ls) we made 20 
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replications of the specified model on the interval (0,1800]. From these 
replications the values of the several counting processes were collected 
at 100 equally spaced time points in the interval. At each of these time 
points, the sample mean of the counts from the 20 replications was 
computed to provide a point estimate of the expected value there. In Fig. 8 
these point estimates of the mean numbers of transaction completions are 
plotted (as solid lines) for each region and both regions combined, along with 
numbers (dots) for the original data from Fig. 5. It is clear that, based on 
these counting processes, the R-process model closely approximates the data 
and reflects its constituent inhomogeneities. 

6. C O N C L U D I N G  R E M A R K S  

The R-process model introduced in this paper provides a framework for 
the formal description of the response time behavior of multiprogrammed 
systems. The R-process privides a high-level model for prediction of charac- 
teristics of job response times for specified workloads. Prospective use of the 
R-process model involves the setting down of a (possibly quite detailed) 
queueing network representation of the system being modeled; this repre- 
sentation serves as the basis for the formulation of the R-process model 
and for the selection of parameters therein. 

The specification of the structure of the R-process conditional on the 
workload marks effectively separates the difficult problem of formal repre- 
sentation of workload characteristics from the overall problem of response 
time prediction. In particular, note that we need not have a formal model 
for the workload marks in order to use the R-process model; data sequences 
obtained from system traces can be used directly. 

Although the analysis of data reported in this paper is from a single 
database management system, we feel that the type of gross inhomogeneities 
observed in this system (primarily caused by a rapidly changing transaction 
mix) are likely to be found in Other systems. Performance studies that fail 
to reflect the inhomogeneous behavior of running systems can be misleading; 
the R-process model provides a convenient way of approaching this aspect 
of system performance prediction. 

Several directions for further work are apparens Methods for the efficient 
simulation of general characteristics of response times in R-processes need 
to be developed. In this connection simulation experience with particular 
R-process models and related queueing network models would be of interest. 

Formulation of more general marked multivariate point process models 
(e.g., allowing multivariate marginal processes along with more general 
patterns of event types) can be considered. Such extensions of the R-process 
model have application to performance prediction for database management 
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system in that more detail of  the pattern of  access to the database can be 
represented. 

A P P E N D I X  1 

Let u be an N • 1 dimensional random vector and X = (Xij) be an 
N x K matrix of  constants and random variables, such that 

E(Y I X) = Xla 

for 13 a K • 1 vector of  unknown parameters, and 

Cov(Y l X) = r = Diag(a~2,..., ~N 2) 

where the cr~ ~ are N unknown positive scalars that give the variances of  
the components of Y. I f  the ai ~ were known up to a constant of proportion- 
ality, the weighted least squares (WLS) estimator of  [3 for a given observation 
y of  Y could be found by solving the linear system 

x ' r - l ( y  _ X~) = 0 

This results in a simple closed form for the WLS estimator which can be cal- 
culated through a slight variant of ordinary least squares, which is the special 
case when all of  the ai 2 are equal. When the variances are not known but 
a functional form for each (~2 in terms of the {x~j : 1 ~ j ~ K} and the 
unknown ~ is known up to a constant of  proportionality, an estimate of  [3 
may be found by solving the system 

x ' ( r ( , ~ ) ) - l ( y  - v ~ )  = o 

in }. Here r(13) indicates that the variances depend on f~. Since the resulting 
estimator ~ may be calculated through an iterative sequence of weighted 
lead squares computations, it is termed the iterative weighted least squares 
estimator. The estimated covariance matrix of  I~ is s2(X'(r(l~)) -1 X) -1, where 
s 2 is the IWLS estimator of  the constant of  proportionality given by 

1 

and r = y --  X~ is the residual vector. 
In the data examined in Sec. 5 the variance of the residuals for the 

conditional response times appeared to increase as the square of the expected 
value given by (5.1). Thus we have a functional form up to a constant of  
proportionality and, therefore, IWLS may be used to estimate the unknown 
parameters. 
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A P P E N D I X  2 

Let Y be a gamma variate with mean/~ > 0 and shape parameter r > 0. 
Then Y has the density function 

/ r ~  yr--1 

and variance tx2/r. Thus the variance is proportional to the mean squared, 
and 1/r is the constant of proportionality. Denote this distribution as G@, r). 
Given a number of Yi independently distributed as G(ixi, r), the normali- 
zation Yi/ixi yields independent variates, identically distributed as G(1, r). 
If  we have N observations { yi} of variates distributed as G(~i, r), where the 
means/~ are a linear combination of known constants and unknown param- 
eters [e.g., (5.1)], the IWLS estimator of the unknown parameters is also 
maximum likelihood (cf., Bradley(2)). However, the IWLS estimator of  the 
variance constant of proportionality is generally different from the more 
efficient maximum likelihood (ML) estimator 1If. The estimate ~' may be 
found by a computational procedure that is equivalent to treating y i / ~  
as G(t, r) where/~ is the predicted mean, and performing a usual maximum 
likelihood calculation. Further results on maximum likelihood estimation 
yield that the ML estimators of the parameters in the mean are asymptotically 
normally distributed about the correct values with an estimated covariance 
matrix as given in Appendix 1 for IWLS estimators, only with the ML 
estimator of the constant of proportionality replacing the IWLS estimator. 
Finally, a partial verification of this type of gamma parametric form may be 
made by plotting the ordered values of Yi /~  against the appropriate percen- 
tiles of the G(1, ~) distribution (i.e., the ith largest Yi/~i plotted versus the 
1 -- i/(n + 1) percentage point) to form a gamma probability plot. 
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