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The access-control authorization scheme, which is being used for the protec- 
tion of operating systems, is found to be inadequate in other areas, such 
as in databases and information systems. A new authorization scheme, 
which is a natural extension of access control, is proposed. The new scheme, 
which is called "operation control," is shown to be superior to the access- 
control scheme in a number of ways. In particular, it facilitates more natural 
and efficient representations of policies, particularly the type of complex 
policies that appear in information systems, it facilitates enforcement by 
compile-time validation due to a greater stability of authority states, and it 
reduces the need for revocation. 
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1. I N T R O D U C T I O N  

Author iza t ion  in computer  systems is a discipline under  which an action on 
the system can be carried out by a user or by one of the modules of the system 
only if the actor is authorized to perform this action. Such a discipline is 
necessary for the protect ion of  the security and  integrity of systems. 

Most  current  protect ion techniques are based on the so-called access- 
control  approach to authorizat ion.  This approach has been developed by 
Lampson,  <7~ G r a h a m  and Denning ,  (3) W u l f  and Jones/is)  and others, mostly 
in the context of operat ing systems, and it enjoys a considerable degree of 
success in this area. Unfor tunate ly ,  however, this success has no t  been 

1 This work was partially supported by Grant DAHCIS-73-G6 of the Advanced Research 
Project Agency of the US government. This paper is a modified version of the paper 
"An Activator-based protection scheme," July 1976 (SOSAP-TR-25). 

2 Rutgers University, Department of Computer Science, New Brunswick, New Jersey. 
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matched in other areas, such as databases and information systems. It  is 
our contention that this failure is a result of  some fundamental limitations 
of  access control as a scheme for representation of authority structures. These 
limitations are discussed in Sec. 2. A generalization of the access-control 
authorization scheme is suggested in Sec. 3, and its merits are discussed in 
Sec. 4. 

2. T H E  A C C E S S - C O N T R O L  (AC)  A P P R O A C H  T O  
A U T H O R I Z A T I O N  

The access-control approach to protection and authorization is well 
documented in the literature. In particular, the reader is referred to the 
excellent review articles by Saltzer and Schroeder a6~ and by Linden. (9) 
Here we outline only the essential features of  this approach and discuss 
some of its limitations. 

The system to be protected is formally viewed as a fourtuple (B, O, or, U), 
where B is a set of  objects; 0 is a set of  operators; J is a set of  subjects, which 
are the actors that actually apply operators to objects, and are thus responsible 
for the dynamic behavior of  the system; and U is the authority state of the 
system. The authority state is formally defined as a set {(S, b, o)}, where a 
triple (S, b, o) is the permission for subject S, which belongs to J, to apply 
operator o to object b. In other words, (S, b, o) is a permission for S to have 
access o to object b. ~ Of course, the system must be supported by an enforce- 
ment  mechanism that guarantees that the only operations which are carried 
out are those permitted by the authority state U. 

There are a number of  ways to represent the set of permissions {(S, b, o)}. 
A method particularly relevant to this paper is called the capability-based 
protection. (s,18) Under this version of the AC-scheme the authority state of  
a system is represented by a distribution of special control objects which we 
call tickets. A ticket is a pair (b; r), where b is an identifier of  an object, and 
r is a subset of  a finite set of  symbols, called rights (or access rights), which 
identify, in some way, the operators that can be applied to object b. That  
is to say, the subject S that possesses a ticket (b; r) is allowed to apply to b 
the operators identified by r. The generation and transport  of  tickets are 
tightly controlled so that the mere fact that a subject S has a ticket (b; r) is 
taken as uncontestable proof  that S is authorized to have the specified 
access rights to object b. 

Thus, under the AC-scheme (or, rather, under the capability-based a 

8 The phrase capability based used for this version of the access-control protection is 
appropriate, even though we are using the term "ticket" for what is usually called capabil- 
ity, because the set of tickets owned by a given subject determines its capabilities with 
respect to the system. (In this paper the term capability is used in its colloquial sense). 
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version of it) the tickets are used as the elementary building blocks of authority 
structures, a kind of elementary particle of  authority. Unfortunately, for 
a number of reasons, tickets are not suitable to serve as the only elementary 
building blocks of authority. 

First, every ticket represents privileges with respect to a specific object; 
the one addressed by it. These privileges are independent of the value (or 
state) of the object. The problem is that authority structures are frequently 
based on the value of the objects involved, and are independent of their 
identity. To demonstrate the difficulty here, consider the following example. 
When a higway patrolman is sent to his duty, he has to be given the 
authority to cite traffic violators. This authority is not given to him in the 
form of tickets, one for each violator. Indeed, the patrolman's authority 
cannot be defined in this form because at the time that the patrolman is sent 
to his duty, the traffic violators do not exist, and the identity of  the future 
violators is not known, so that it is impossible to construct individual tickets 
for the violators at that time. The point is that the patrolman's authority 
has to do with the behavior of motorists, not their identity. Tickets are too 
specific for this purpose, and at the same time they are not sensitive enough, 
being independent of the properties (values) of the objects addressed by 
them. 

Another problem with tickets results from the unit of activity that they 
are designed to authorize. Every ticket represents a permission to apply 
certain operators to the object addressed by it. However, the activity of a 
subject may not be expressible purely in terms of operations on individual 
objects. One may have to use interactions between objects, where by "inter- 
action" we mean an operation that involves several objects, and that cannot 
be decomposed into a sequence of legal unary operations on the individual 
objects. The problem is that privileges with respect to an interaction cannot 
be expressed purely by means of tickets, which represent permissions to 
perform operations on individual objects. (This difficulty is demonstrated 
by an example in Sec. 4.2.2). 

Our conclusion from these observations is that there is a need for a new 
type of control object which can directly authorize interactions between 
objects, and which would not be based exclusively on the identity of the 
objects involved in operations. Such a control object, which we call an 
activator, is the basis for the protection scheme proposed in this paper. 

3. T H E  O P E R A T I O N - C O N T R O L  ( O C )  S C H E M E  

The protection scheme to be introduced in this section is capability 
based in the sense that it associates with every subject a set of control objects 
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that determine its capabilities. 4 However, our scheme differs from the access 
control scheme by the nature of  these cgntrol objects. In addition to the 
tickets, which, as under the AC-scheme, represent privileges with respect 
to objects, we have control objects called activators, which represent privileges 
with respect to operators, in the following sense: Every activator A identifies 
an n-ary operator o (for n ~> 0), specifying the conditions under which o 
can be invoked by the subject that possesses A. There may be several such 
activators for the same operator o, which may impose different preconditions 
on the activation of o, representing different privileges with respect to o. 
We are using the name operation control (OC) for this scheme because the 
activators possessed by a subject determine directly the type of  operations 
it can perform, quite independently of  the access rights that it has to various 
objects. 

3.1. Terminology and Conventions 

To set the stage for our discussion we now introduce our interpretation 
for some well-known terms such as object, subject, domain, and type. 

3.1.1. Objects and Their Types 

We base our approach toward types on the type concept used in Hydra,(~ 
which can be described briefly as follows: 

The set of  all objects in a system is described in terms of the three-level 
tree shown in Fig. 1. The root of  this tree is a primitive and unique object 
called template. The objects at the second level are instances of this template, 
and are called template objects, or type objects. Each of these type objects, 
such as the object t, serves as a template for a set of  objects in the third 
level, which are said to be objects of type t, or t-objects. A template t is 
supposed to contain the structural definition of all its instances. 

In order to impose some behavioral discipline on objects, we introduce 
the concept of protected type. This is a type t for which there is a fixed set of  
operators (procedures) that have the exclusive ability to manipulate and 
observe t-objects directly. We will say that such an operator is privileged 
with respect to t. The set of  all these operators for a given t is denoted by 
privileged(t). Thus, a t-object for a protected type t can be manipulated 
either directly, f rom within one of the privileged(t) operators, or indirectly 
by invoking these operators. An important special case is an operator that is 
privileged with respect to only one type t: such an operator is called a 

4 Note, again, that the term capability is being used here in its colloquial sense. 



An Operation-Control Scheme for Authorization in Computer Systems 161 

/ , \   instncoof 

& instnces 
Fig. I. The Hydra approach to types. The object b is an instance of the object t (or 
a t-object). The object t in turn, is an instance of the distinguished object template, and thus 
it is a template object (or type object). 

t-operator. (Note  tha t  the existence o f  a fixed set o f  t -opera tors  is the basis  
for  the no t ion  o f  "abs t r ac t  da t a  type"  as it  is defined in CLU(I~ 

3.1.2. Shareable Objects and Their Tickets 

W e  dist inguish between two b r o a d  classes o f  objects,  to be cal led 
shareable objects and  concrete objects. A concrete object is one tha t  is physi -  
cal ly conta ined  in one ' s  domain2 F o r  example ,  the integer 7 and  the symbol  
"seven"  are concrete  objects.  A shareable object, on the o ther  hand,  is no t  
conta ined  in any pr ivate  domain ,  bu t  it  can be shared,  or  accessed, by  several  
subjects. Shareable  objects  are accessed by  means  o f  a concrete  object cal led 
a ticket (which is essential ly identical  to the t icket  o f  the access-control  
scheme). 

Wi th  every type t o f  shareable  objects  we associate  a (possibly empty)  
set o f  symbols:  

rights(t) = ( r l  .... , rn} 

Each  o f  these symbols ,  ri, is called a " r igh t "  with respect  to type t. 
A ticket c for an object  b o f  type t is defined to be a concrete  object  which 

is denoted  by  

c = (b: t; r )  

It should be pointed out that our scheme is not based on the concept of privileged opera- 
tors. It is the other way around: we see later that privileged operators can be implemented 
under our scheme. This concept is mentioned at this point to accommodate some of the 
examples given in the following sections. 

6 The concept of domain is defined later; for the moment it is enough to see it as the work 
space of some subject. 
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where r, or r(c), is a subset of rights(t). If  a given right ri is in r(c), we say 
that "the ticket c has the  right ri". Since the content of a ticket depends on 
its t component, we use the phrase t-ticket to identify all tickets that address 
t-objects. A t-ticket that has all its possible rights is denoted by (b: t; ALL). 
The symbols ri have been called rights in anticipation of their role in our 
protection scheme, which is discussed later. (Note: The " t "  part of c signifies 
that b is the identifier of an object of type t. Whenever the type of b can be 
understood from the context, we use the simplified notation (b; r) for a 
ticket.) 

In general, there may be several tickets pointing to the same object b. 
We say that such tickets are related. Let el, c2 be two related tickets. We 
say that el is weaker, or less permissive, than e2 if 

r(cl) _C r(c2) 

Also, we say that el is strictly weaker than e2 if 

r(el) C r(c2) 

As to the generation and manipulation of  tickets, the following is assumed. 
Tickets cannot be changed, and they can be generated only in the following 
two ways: 

1. When a new shareable object b of type t is created, a ticket for it 
is also created, with all of  rights(t) in it. This ticket, (b: t; ALL), is called 
the primary ticket of object b. 

2. Given a ticket c it may be possible to generate a new ticket c', which 
cannot be stronger than e. Such e', which addresses the same object as e, 
is called a derivative of e. (Later we see when it is actually possible to generate 
derivatives of a given ticket). 

3.1.3. The Facade of Objects 

One of the objectives of our scheme is to enable value-dependent 
authorization. However, one cannot always expect to be able to determine 
the legality of an operation by using the value of all the attributes of an object, 
because: 

1. It may happen that an attribute of an object is not directly observable. 
As an example consider the hidden components of abstract data types. 

2. It  may happen, in certain types of objects, that the mere act of 
observation of an attribute of  an object introduces a change in the object 
itself. An example of this "quantum mechanical effect" is a record stored 
on a tape, which cannot be observed without repositioning the tape. 
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3. One may not want to allow the use of  certain attributes for pro- 
tection, because such a use may itself reveal confidential information about  
the object. 

For  these, and other reasons which include efficiency, we now introduce the 
concept of  the facade of an object, which is the part of  an object that is' usable 

for protection purposes. More formally, with every type t we associate the set 

facade(t) 

which is the set of attributes of  t-objects which are usable for authorization 
purposes. By convention, the facade of primitive scalar objects, such as real 
and integer numbers, is their value. 

3.1.4. Subjects and Their Domains 

A computing system changes in time in response to instructions sub- 
mitted to a processor for execution] where an instruction is a request to 
apply a specific operator to a specific sequence of operands. We distinguish 
between two types of  instruction sources: 

1. An external source, such as a human user sitting at the terminal. 

2. An internal source, which is a procedure maintained as an object in 
the system. 

One important difference between these two types of  instruction sources is 
that  an external source is totally unpredictable as far as the system is con- 
cerned, while the behavior of  a procedure can be at least partially predicted 
ahead of time. 

We define a subject to be a pair 

(INS, D) 

where INS is an instruction source, and D is the collection of objects that are 
directly addressable by INS. D is called the domain of S. We later see that 
the domain of a subject determines its capabilities and also serves as its 
workspace. 

Corresponding to the two types of  instruction sources we distinguish 
between two types of  subjects. A subject (INS, D) whose INS is an external 
source is called a user, and a subject whose INS is an internal source is 
called an operator. 

7 For simplicity we assume that there is just one processor in the system. 
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3.1.5. Operators 

Operators are the dynamic components of  a system. Every sequential 
process interacting with the system can be described as a sequence of 
operations, each of  which is the application of an operator to a sequence of  
zero or more operands. An operator may have various side effects on the 
system, but only one value that is called the outcome of the operator. The 
outcome is a concrete object that may, in particular, be a ticket of  a shareable 
object. This outcome is stored in the domain of the subject that invokes the 
operator. 

We distinguish between two types of  operators. First, there is a fixed 
set of primitive operators whose internal activity would not be subject to 
the control of  our protection mechanism. For  example, the set of  machine 
instructions may be considered the primitive operators of  an operating system. 
Secondly, an operator may be a subject (INS, D) whose source of instructions 
INS is a procedure maintained by the system. Note the recursive nature of  
the operator concept: A procedure, which is the INS component of  some 
operator, has been defined to be a source of instructions, while an instruction 
is a request to invoke an operator. 

3.1.6. Authorization Scheme and Policies 

Following Jones and Wulf, (~s) we distinguish between the concept of  
authorization scheme and that of policy. A policy is a specific discipline that 
one would like to impose on a system. It  is occasionally called authority 
structure. An authorization (or protection) scheme is a framework that should 
be general enough to accommodate a variety of  policies as efficiently and 
conveniently as possible. Such a scheme consists of  two main components: 
a language, which can be used for the specification of policies, and an 
enforcement mechanism, which guarantees that no illegal operations are 
carried out. 

3.2. Activators and the Enforcement Mechanism 

An activator is a concrete object, which we denote by 

A = (o, pl  .... , pkFG}- -+po  

Here A is the name of the activator; o is an operator identifier; pi, 
for i --~ 1 ..... k is a condition on the ith operand of  o, to be called operand 
pattern; G is a condition defined on all operands, and possibly on other 
objects in the system (it is called the global condition of A); and po is a con- 
dition on the outcome (result) of  the operator ,  to be called the outcome 
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pattern. 8 (Whenever we do not wish to distingush between operand patterns 
and outcome patterns, we use the term activation pattern or just pattern.) 

The existence of an o-activator A in the domain of a subject S represents 
the authority for S to apply the operator o to any objects ql,..., qk in the 
domain of S, such that for every i = 1,..., k the operand qi matches the 
operand pattern pi of A (satisfies the condition pi), and that the global 
condition G of A is satisfied. The activator A also gives S the authority to 
introduce into its own domain the outcome of the operator o, thus invoked, 
provided that this outcome "matches"  the outcome pattern po of A (that is, 
satisfies the condition po). To support this interpretation of  the activators 
the following enforcement mechanism is proposed. 

Let us define an instruction to be the construct 

A(ql ..... qk) 

where A is an o-activator for some operator o, and qi are its operands. I t  
is assumed that a subject can form such an instruction only f rom concrete 
objects A, ql .... , qk which exist in its own domain. Thus, the set of  instructions 
which are expressible by a subject is directly determined by the content of  
his domain. Moreover, such an instruction is carried out only if the operands 
match the activation patterns as described above, and if G is satisfied. I t  
is the responsibility of  the enforcement mechanism to perform this pattern 
matching and to guarantee that no illegal operations are carried out. Once 
an operation is carried out, its outcome, if any, is checked. I f  it matches the 
pattern po, it is added to the operating domain; otherwise, the value of the 
operation is lost, and an error procedure may be invoked. 

Note that an operand qi may be of two types: it may be a concrete object, 
such as an integer number, which stands for itself; or it may be a ticket that 
addresses a shareable object, which is the real operand. Even in the latter 
case we usually refer to qi as an operand, relying on the context to determine 
whether qi itself, or the object addressed by it, is meant. 

Thus, it is clear that the content of  the domain D of a subject S, at a 
given moment,  determines the set of  operations that can be carried out by S 
at this moment.  We can say, therefore, that the domain of  a subject determines 
its capabilities, or its authority. 

There is an instructive analogy between the role of the activators in 
our scheme and the role of  enzymes as the control devices of  the living cell. 
The function of every enzyme is to facilitate a certain chemical reaction. 
Such a reaction takes place if there are enough substrates in the cell which 

If the operator o does not have an outcome, then the part "--~ po'" will not appear in our 
notation. Also, the condition G may be absent. Thus, an activator may be denoted simply 
by A = <o, pl ..... pk>. 
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Fig. 2. Objects are represented by circles, while the pattern attach- 
ed to a circle represents the type, facade, etc. of the object. Activa- 
tors are represented by triangles with patterns (for the activation 
patterns) attached to them. The analogy between the activity of a 
domain and the chemistry of a living cell is quite attractive, although 
it is not complete. One can think of the activators as the enzymes 
in a cell, and of the objects as the various substrates. An operation 
in a domain is analogous to a chemical reaction in the cell, which 
requires an appropriate enzyme and substrates which fit it. In the 
figure, activator A1 is depicted in the process of being attached to 
operands ql, q2, generating q0 as an outcome. 

fit the activation sites on the enzume, in some analogy to the funct ion o f  
our  activator (see Fig. 2). Al though this analogy between activators and 
enzymes should not  be carried too far, it does provide an interesting viewpoint 
o f  the proposed scheme. 

Note  the similarity between the activators and the formal parameters 
specification (or FPS) o f  procedures in p rogramming  languages: Both  
determine the legal set o f  operands o f  an operator.  There is, however, an 
impor tant  difference between these two. Our  activator is an independent 
object, disconnected f rom the operator  that  it activates. Moreover ,  while 
there is just one FPS per operator,  we see below that  there may  be several 
different o-activators for the same operator  o, whieh have different strength. 
The concept  o f  strength of  activators is defined as follows. 

Let A be an activator of  order k (with k operand patterns). We define 
range(A) to be the set o f  all possible (k § 1)-tuples (ql ..... qk, qo) of  objects, 
which can be matched with the corresponding activation patterns o f  A, 
and which satisfy the condit ion o f  G of  A. 

Let A and A'  be two o-activators for a given operator  o. We say that  
A '  is weaker than A (or, equivalently, A is stronger than A')  iff 

range(A') _ range(A) 
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We say that A' is strictly weaker than A iff 

range(A) C range(A) 

Such an A' is also called a reduction of A. 
As to the generation and manipulation of activators, the following is 

assumed: First, there is no way to change an existing activator except to 
erase it. Secondly, new activators can be generated only in the following two 
ways: 

1. When a new operator o is created, an o-activator is generated with it. 
It  is called the primary o-activator. 

2. Given an o-activator A, it may be possible to generate a new acti- 
vator A', which is called a derivative of A. A' cannot be stronger than A. 
(Later we see when it is actually possible to generate such a derivative.) 

The following properties of  the activators follow immediately from the above: 

1. The set of all o-activators, for a given operator o, is partially ordered 
with respect to the relation stronger. 

2. Every activator is stronger than all its derivatives. 

3. The primary o-activator is the strongest o-activator. 

3.3. The Act ivat ion Patterns 

To be more concrete about the activators and their use we have to suggest 
a specific structure for the activation patterns. The structure described in 
this section is designed to support many of the known authority structures 
in computer systems. Note that the run time overhead attributable to the 
enforcement mechanism that is necessary to support our scheme depends 
on the complexity of the activation patterns and that of G. In this paper we 
do not impose any restriction on this complexity, because such restrictions 
should depend on the nature of the system to be protected. 

3.3J. Operand Patterns 

An operand pattern P, denoted by 

[X; R; V] 

is a conjunction of three predicates I, R, V, which are called components, 
or subpatterns, of P. They are defined as follows. 

The subpattern I (which is the only mandatory part of  P) is called the 
identity-based subpattern. It  is either a type identifier, t, which is meant to 
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be satisfied by any object of type t, or it is the phrase b: t which is satisfied 
only by the particular object b of type t. The entire pattern P whose I 
component identifies a type t is called a t-pattern. The structure of the two 
other components of a t-pattern depends on t. If  a subpattern R or V does 
not appear in P, it is interpreted as identically TRUE, which means that it 
does not impose any restrictions on the object matched to the pattern. 

The subpattern R, called the privilege-based subpattern, is applicable 
only when t is a shared type. R has the general form 

R = r l  & r 2 & . " & r k  

where each ri is a symbol that belongs to rights(t). R is meant to be satisfied 
by any ticket of a t-object that contains at least the rights rl,. . . ,  rk. 

The subpattern V, called the value-based subpattern, is a predicate 
defined on the facade of the object being matched with it. 

Example. Let doc be a type of shareable object that carries documents 
in a military information system. Let the facade of  doc objects be defined by: 

facade(doc) = {sleveh integer, category: text} 

where slevel is an integer that specifies the security level of the document, 
and category specifies its category, such as navy or a ~ y .  These two attributes 
are the traditional security parameters in military establishments/17~ Let 

rights(doc) = { U, E} 

As we see below, the symbols U and E stand for the rights to update and 
erase a document, respectively. 

Suppose now that there are three doc-operators: read, update, and erase, 
which are the 0nly operators able to manipulate a document directly (see 
Sec. 3.1.I). The primary activators of these operators are as follows: 

READ = <read, [doc]) 

UPDATE ~ <update, [doc; U], [text]) 

ERASE = <erase, [doc; E]> 

The activator READ can be applied to any doc-ticket displaying the content 
of the document. The activator UPDATE can be applied to a doc-ticket that 
contains the U right. The second operand of UPDATE, which can be any 
text object, specifies the nature of the desired update. The activator ERASE 
can be applied to any doc-ticket that contains the E right, erasing the content 
of the document. 
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The right U can properly be considered an update-right because U is 
required by the primary update activator, which means that it would be 
required by all update activators. Thus, the update operator can never be 
applied to a doc-ticket that does not have the U right. A similar argument 
would show that E is the erase-right. 

As has already been explained, the primary o-activator, for any given 
operator o, allows for the most general use of o. In order to provide for a 
more limited use of o, one creates weaker derivatives of the o-activator. For  
example, the activator 

ERASE' = (erase, [doc; E, U]) 

is weaker than ERASE because it can be applied only to a doc-ticket that has 
both U and E rights in it. The activator 

ERASE" = (erase, [d: doc; E]) 

is also weaker than ERASE, because it can erase only a specific document d. 
Note, however, that there is no ordering relation between ERASE' and 
ERASE". Neither can be a derivative of the other. 

To illustrate the use of value-based subpatterns consider a subject S 
whose domain D contains the following activators: 

READ' = (read, [doc;; slevel ~< 2]) 

UPDATE'  = (update, [doc; U; slevel <~ 2 & category = "navy"],  [text]) 

which are reduced derivatives of READ and UPDATE, respectively. S has 
the power to read any document whose security level is smaller than or equal 
to 2 and whose ticket it can get. S can also update navy documents with 
slevel ~< 2, provided that it has a ticket with the U right for such a document. 
However, S cannot erase any document because it does not have any erase 
activators. 

3.3.2. The Outcome Pattern 

The outcome pattern po of an activator 

A -= (o, . . . )  -+ po 

is a condition on the outcome of the operator o, when invoked by means of  A. 
This means that only an outcome that satisfies po can be added to the 
operating domain by using A. The structure of the outcome patterns is 
identical to that of the operand patterns. However, the interpretation 
of the R-component of the pattern is different. Let po be the pattern 
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[I; r l  & r2 & "" & rn; V]. The rights symbol rl,..., rn in this pattern are not 
treated as conditions on the rights r(c) contained in the ticket c returned as 
the outcome of the operation. Rather, they serve as a filter on r(c), in the 
following sense: Any right in r(c) that is not represented in r 1,..., rn would be 
erased from the outcoming ticket c. Thus, the component R ofpo serves as 
the upper limit for the rights that might be returned as a result of applying 
the activator. This means, for example, that the activator 

(o, p l )  --~ [I1; r l ;  V1]. 

is weaker than 

(o, p l )  --~ [I1;rl, r2; V1] 

Returning to our document example, consider an operator getdoc 
that retrieves documents from files. Let the primary activator of  getdoc be 

GET = (getdoc, [file], [text]) --+ [doc; ALL] 

The first operand ofgetdoc must be a file in which getdoc is supposed to locate 
a document identified by the second parameter, returning the ticket for 
the document as its outcome. Note that the outcome pattern [doc; ALL] 
matches any document ticket. Consider now the following, weaker derivative 

of  GET:  

GET'  = (getdoc, [ f l :  file], [text]) -+ [doc; U; slevel = 1] 

GET '  can get documents only from a specific file f 1; moreover it can produce 
only tickets for documents whose security level is equal to 1, and these 
tickets can have no more than the U right in them. 

3.4. Control over the Generation of Objects 

As we saw in See. 3.3, one can control the use of  individual existing 
shareable objects by the distribution of their tickets. We now show how the 
generation of new objects can be controlled. (Only the essentials of  such 
control are discussed, leaving some details unspecified.) This serves as a 
further illustration of activators and their patterns. 

First, we assume that there is a primitive operator gen-type that is able 
to generate new type objects (the objects in the second level of  the tree in 
Fig. 1). Let the primary activator of this operator be 

GEN-TYPE = (gen-type,...) -+ [template; ALL] 
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This activator has a sequence of operand patterns, not specified here, that 
determine the types of arguments required by gen-type. Invocation of 
GEN-TYPE would generate a template object returning a ticket for it with 
all its possible rights. Obviously, only a subject who has the GEN-TYPE 
activator, or some derivative of it, can generate new types. 

We now assume that, together with a new type object t, the following 
"instantiation activator" is generated: 

(gen-t, pl,..., pk) --+ [t; All] 

where gen-t is an operator that generates instances of type t, and pl  ..... pk 
determine the arguments required by gen-t. Application of this activator to 
an appropriate sequence of operands returns a ticket to the newly formed 
t-object, with all the rights(t) in it. For example, the primitive instantiation 
activator for the type doc may be 

GEN-DOC = (gen-docl content:[text], slevel: [integer], 

category: [text]) -+ [doc; ALL] 

(To distinguish between the various operand-patterns we use labels such as 
"content: [...]".) The three operands of gen-doc determine the initial state 
of the generated document: its content, security level, and category. A subject 
having this activator can generate documents with arbitrary security level 
and category, obtaining a ticket for the generated object with all its possible 
rights. However, a subject having the following derivative of GEN-DOC: 

GEN-DOC' = {gen-doc ..... category: [text;; value = "navy"])  --~ [doc; E] 

can generate only documents whose category is navy, getting for them tickets 
without the U right. Note that documents generated by GEN-DOC' can 
never be changed, because there can be no tickets with the U right for them. 

3.5. The Two Types of Control Objects: Their  Role and Behavior 

Our protection scheme is based on two primitive types of objects, 
activators and tickets, which we call, collectively, control objects. The distri- 
bution of these control objects throughout the system serves to determine its 
authority state; namely, such distribution determines who can do what in 
the system. The roles of the two types of control objects are reviewed in this 
section, and their transport is discussed. 

There is a symmetry in the functions of activators and tickets in our 
scheme. A ticket for object b residing in the domain D of a subject S represents 
the privileges that S has for b, in the sense that the ticket determines the set 

828/7[z-6 
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of operators that may be applied by S to b. Analogously, an o-activator that 
resides in D represents the privileges that S has for the operator o, in the sense 
that it defines the set of objects to which o can be applied by S. Tickets and 
activators play complementary roles in our scheme: neither one of them 
alone is sufficient for the application of an operator to a shareable object. 
For  this, one needs both an activator and a ticket (or several tickets) that 
fit the activator. 

The complementarity of activators and tickets allows us to formalize 
the semantics of the rights symbols. Let the symbol r l  belong to rights(t) 
for a given type t. We define the privileges associated with r 1 to be the set of  
t-patterns of the various activators in the system that require r l .  Moreover, 
for a given domain D we define the localprivileges associated with r 1 to be the 
set of t-patterns in D which require r 1. Note, for example, that this set may 
be empty, rendering r l  useless in the context of  D, even if the set of  global 
privileges of r 1 is nonempty. For instance, the right U of Sec. 3.1 would 
be useless within a domain that has no update activators. 

The two types of control objects exhibit some similar structural and 
behavioral characteristics, which are best seen by comparing the following two 
sets: the set T(b) of all tickets for a given object b, and the set A(o) of all 
o-activators. T(b) and A(o) are partially ordered sets with respect to the 
relation stronger, defined for tickets and activators, respectively. Every 
ticket in T(b) is a direct, or indirect, derivative of the primary ticket of  b, 
which is created together with the object b itself. Likewise, every activator 
in A(o) is a dirivative of the primary o-activator, which is created together 
with the operator o. A control object, whether it is an activator or a ticket, 
is stronger than all its derivatives. 

Control objects are to be distributed by means of two primitive trans- 
port-operators: k-copy and k-move. (k stands for kernel, as these operators 
should belong to the kernel of the system, which is discussed in Sec. 3.8). 
Each of these operators, when applied to a control object co, generates a 
new control object co' in some other place in the system; such a co' cannot 
be stronger than co. The difference between the two transport operators is 
that k-copy does not affect the original control object, whereas k-move 
erases it. Thus, k-move, in effect, moves a control object from one place to 
another, possibly reducing it in the process. 

To get a degree of control over the transportability of  individual control 
objects, the following facility is introduced. The facade of a control object 
of either type consists of  two boolean components, "copy" and "move," to 
be called the intrinsic rights of the object. The operator k-copy can be applied 
to a control object eo only if "it has the copy right," namely, if the "copy"  
component of co is TRUE. Likewise, k-move can be applied only to a control 
object that has the "move" right. Thus, a control object with neither intrinsic 
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rights is untransportable. Of course, the control object co' generated from co 
by one of these operators cannot have more intrinsic rights than co, but it 
can have less. 

I t  is obviously vital to have some control over the use of  the transport  
operators. Such a control can be achieved by the distribution of their 
activators. These activators are discussed in Sec. 3.8. 

3.6. The Structure of Domains, and Their Dynamic Behavior 

As has already been explained, the content of  a domain D at a given 
moment  in time T determines the set of  operations that can be carried out 
at time T by the subject S associated with D. But what can we say about 
the future capabilities of  the subject S ? To answer this question one must be 
able to predict the future content of  D. This in turn requires an understanding 
of  the dynamic behavior of  domains. 

3.6.1. External and Internal Changes of Domains 

We distinguish between two types of  domain change, to be called external 
changes and internal changes. An external change of a domain D associated 
with subject S is a change caused by an operation invoked by another subject 
S'. In particular, it is such a subject S'  that created D in the first place. To 
predict the dynamic behavior of  a given domain D under external changes, 
one must be able to tell which subjects have the capability of  changing D, 
and what they are up to. 

An internal change of a domain D is one that is caused by an operation 
invoked by its own subject S, as follows: Let A be the following activator 

(. . .)  --+ po 

in D, and let A(ql .... , qk) be an operation invoked by S. The outcome 
of this operation, if any, is added to D. This outcome is a concrete 
object that satisfies po. (Note that, depending on po, the outcome that 
is added to the domain may be a primitive object such as integer, a 
ticket for a shareable object, or even an activator.) Thus, the nature of  the 
possible internal changes of  a domain D is determined explicitly by the content 
of D itself. 

Now, it seems reasonable to assume that in a well-designed system there 
would usually be only a small number of subjects S' that are able to change 
an existing domain D. Moreover,  even these subjects are not likely to exercise 
their ability to change D very often, so that an external change of a domain is 
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likely to be a relatively rare event. Therefore, we continue our discussion of 
the dynamic behavior of domains, taking only internal domain changes into 
account. 

3.6.2. The Structure of Domains 

Until now, domains have been presented as monolithic structures. 
We now distinguish between two parts of a domain, to be called permanent 
and transient parts. The permanent part of the domain of a subject S is created 
together with the subject, and is attached to it throughout its lifetime. We 
sometimes refer to this part simply as the domain of  the subject. The transient 
part of the domain, to be also referred to as the workspace of the subject, 
exists only for the duration of a single activity period of the subject. In the 
case of a user an activity period is a single session of  user-system interaction. 
An empty work space is attached to the domain of the user at the beginning 
of  a session, only to disappear when the session terminates. An activity period 
of  an operator is the period between its invocation and its return. When an 
operator is invoked, a new work space, which contains all the operands, 
is attached to its domain, to be deleted when the operator returns control. 

We now introduce the convention that, unless specified otherwise, an 
internal change of a domain effects its transient part only. This means that 
the outcome of an operation is usually stored in the work space of the subject, 
leaving the permanent part of the domain invariant of the activity of  its 
own subject. An example can clarify all that. 

Exam pie. Consider a subject S whose domain, or rather, the permanent 
part of whose domain, is given in Fig. 3. This domain contains two file 
tickets, for files f l and f 2  which are assumed to contain documents. The 
domain also contains five activators: the activators GET'  and GET" for 
operator getdoc, which are reductions of  the activator GET (cf. Sec. 3.3.1). 
Operator getdoc gets a docticket identified by its second operand, from the 
file identified by its first operand. GET'  can be applied only to a ticket of  
one file, f l .  Namely, GET'  can be used to generate tickets with the U right, 
for documents stored in f l .  We denote the set of  all such tickets by F1. The 
activator GET", which can be applied to the ticket c2 of  the file f2 ,  can 
generate a set F2 of tickets of  documents stored in f 2  whose slevel = 1. 
These tickets would have only the E right in them. 

The activators READ',  UPDATE',  and ERASE, already introduced in 
Sec. 3.3, can be applied to the doc-tickets generated by GET'  and GET". 
READ' can be applied to any document whose slevel<2. Note, therefore, 
that some of the documents whose tickets may be generated by GET'  cannot 
be read by S. UPDATE'  can be used to update any navy document, provided 
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cl = (fl:file) 

c2 = (f2:file) 

GET' = ~ e t d o c ,  I l l ] ,  [ t e x t j ~  § [doc ;U]  

GET" = ~ e t d o c , [ f 2 ] , [ t e x t ] >  + [ d o c ; E ; s l e v e l = l ]  

READ' = d e a d ,  [ d o c ; ; s t e v e l < 2 ] 2 >  

UPDATE' = ~ p d a t e , [ d o c ; U ; c a t e g o r y = " n a v y ' ] , [ t e x t J ~  

ERASE = < e r a s e ,  [ d o c ; E ] >  

Fig. 3. The permanent part of a domain. It contains two file tickets 
and five activators. GET' and GET" can operate on the file tickets, 
generating doc-tickets into the transient part of the domain. The last 
three activators operate on these doc-tickets. 

that its ticket has the U right. This means that none of the documents on 
f 2  can be updated by S, and only some of  the documents on f l ,  the navy 
documents, can be updated. Finally, using ERASE, S can erase all the docu- 
ments obtained from f2 ,  but none from f l .  (Note that our subject cannot 
generate new documents, because he does not have a gen-doc activator.) 

Note that all the doc-tickets generated by our subject would be inserted 
into its workspace, which is the transient part of the domain that disappears 
at the end of the session. That  is to say, the subject S cannot have any doc- 
tickets for extended periods of time. This property of our scheme is very 
important, as it reduces the need for revocation. 

A Comment.  The domain in Fig. 3 is incomplete in the sense that it 
contains no activators for basic operations such as integer addition or mani- 
pulations of text variables. Such activators are necessary because, by our  
definitions, no operation can be carried out by a subject without having the 
proper activator in his domain. However, following Minsky, ml we assume 
that all control objects that are necessary to authorize the use of operators 
and objects we do not wish to restrict are included, by default, in all domains. 

3.7. T h e  Global  C o n d i t i o n  of A c t i v a t o r s  

We define the condition G of activators by the following two properties: 

1. G is a conjunction of predicates: gl & g2 & ... & g/c 

2. The reduction of a global condition can be performed by adding 
a conjunct to it, not by a change of existing predicates. 

At this point no restrictions are imposed on the individual predicates gi. 
In particular, gi can be defined on all the operands of the activators, as welt 
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as on other objects in the system that are not otherwise involved in the 
operation. Moreover, we will allow gi to have side effects. Here are some 
applications of the global condition. 

3.7.1. Correlation Between Operands 

The operand pattern pi has been defined to be a condition on the ith 
operand. Since G can be defined on all operands, it can correlate them. For 
example, let copyd be an operator that copies the content of  one document 
(doc-object) into another. Consider the following copyd activator: 

(copyd, dl :  [doc], d2: [doc; U] L dl.category = d2.category 
& dl.slevel ~< d2.slevel) 

The only restriction imposed by this activator on the individual operands is 
that d2 must have the U right (without which the update of  d2 would not be 
possible). However, the G part of this activator requires that the two operands 
be of the same category, and that the second operand should not have a 
lower security level then the first. (This is a very common type of restriction 
in military information systems.) 

3.7.2. Conditions on Global Status Variables 

Suppose, for example that there is a global variable T in the system which 
represents the real time. An activator 

( . . .  ] t l  <~T<~t2) 

can be used only in the time period (t l ,  t2) because its G part would return 
FALSE at any other time. In a similar way one can construct activators that 
are conditioned on other global variables in the system. 

3.7.3. Self-destructive Activators 

Consider a predicate countdown of the form 

BEGIN 

END 

OWN N; 
N ~ - N - -  1; 
IF N ~< 0 R E T U R N  FALSE; 

If  this predicate is used as a component of  the G part of an activator A, it 
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limits the number of  times that A can be used. If, for example, the own 
variable N of such a countdown predicate is initialized to 2 when the activator 
is created, then after two applications of  A it will return false, preventing 
further use of  A. 

3.7.4. Revocation of Activators 9 

One of the classical problems in capability-based protection is how to 
revoke a privilege already granted. Revocation of tickets has been studied 
extensively by Redell, ~15~ Cohen, m and others. Here we see how activators 
can be revoked. 

Consider a subject S1 having an activator 

Ai = <--. [g> 

in its domain D1. Let a l  be a boolean variable local to D1. Suppose that S1 
generates a derivative A2 of  AI:  

A2 = < - . . l g & a t >  

storing it in the domain D2 of subject $2 (see Fig. 4). I t  is quite obvious that 
A2 can be used only as long as the boolean variable al  is TRUE.  Thus, 
although A2 belongs physically to $2, it is still controlled by S1, which can 
prevent the activation of  A2 simply by turning off the variable al .  Moreover, 
every derivative of  A2 would be controlled by S1 in the same way because it is 
impossible to remove a conjunct from G. Furthermore,  one can add additional 
controls in a similar way. For example, let a2 be a boolean variable in D2; 
suppose that $2 generates a derivative 

A3 = < . . - I g & a l & a 2 >  

of  A2, storing it in the domain D3 of $3 (see Fig. 4). Now, S1 can deactivate 
and reactivate both A2 and A3 by turning al  off and on, while $2 can control 
A3 in a similar way by means of its own variable a2. 

Note that in a similar way one can construct a variety of  revocation 
patterns. In particular, the variables a l  and a2 above may be stored inside 
some shared object whose tickets are distributed in a certain way. 

3.7.5. Monitoring the Use of Activators 

Using the ability of  G to produce side effects, one can monitor the use 
of  activators, as follows. Suppose that a subject S1 has the activator 

A1 = <... [ g> 

9 1 am indebted to Dorothy Denning for suggesting this important application of the global 
condition of activators. 
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Fig. 4. Revocation of activators. The solid 
arrows represent the sequence of derivation of 
activators. The dashed arrows represent the 
dependency of the activator on the boolean 
variables al, a2. 

in its domain D1. Let 

_.t2 = <... [ g & m) 

be a derivative of A1 where m is a predicate that always returns TRUE, and 
is programmed to write a record into a file accessible to S1, reporting about 
each invocation in which it participates. Thus, S1 would have an audit trail 
of all activations of A2 and of any derivative of it, because rn cannot be 
removed from an activator. The users of A2, or of its derivatives, may not be 
aware of such audit trail being formed, and they certainly cannot do anything 
about it, because no part of G can be removed from an activator. 

3.8. The Kernel of the Protection Mechanism 1~ 

The purpose of this section is to clarify and support some of the assump- 
tions made in preceding sections. In particular, it has been assumed that 
for every type t there is a set of privileged operators with respect to t, which 
have the exclusive ability to modify and observe t-objects directly. Here 
we show how this exclusiveness can be imposed by means of the basic 

lo  This section can be skipped on first reading. 
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protection mechanism. This discussion brings us to the foundations of  the 
protection mechanism, which is frequently called its kernel. However, only 
some aspects of  such a kernel are discussed here. Its complete study is beyond 
the scope of this paper, because the kernel is likely to be strongly dependent 
on its context. For  example, the kernel would surely be very different in 
the case of  operating systems, databases, and programming languages. 
Therefore, the following discussion should not be viewed as a proposal for 
a specific implementation. 

3.8.1. Segments and Their Operators 

In an attempt to find a uniform implementation for all types of  shareable 
objects, we first define a primitive type called segment, which is to serve 
as a host for shareable objects of all types. 

A segment is essentially a chunk of storage divided into a sequence of  
slots, each of which can host one concrete object of  a given primitive type. 
For example, there may be integer slots, text slots, ticket slots, and activator 
slots. The various slots in a segment are addressed by their relative position 
with respect to its origin. This division of a segment into slots is called the 
structure of the segment. A segment is allocated, to host an object of  a given 
type t, by the gen-t operator (defined in Sec. 3.4). The structure of  this 
segment is determined by t, and is fixed for the lifetime of the object. 

We treat the set of  all segments as a type. I t  is a special kind of type, 
as it includes 11 all other types of  shareable objects, since, by our definition, 
an object of  any type is also a segment. Like any other type of  shareable 
object, the type "segment" has its own rights, which, following Hydra,  
are called kernel rights. We assume that 

rights(segments) = {k-read, k-write} 

A ticket (b: t; r) of a shareable object b can be viewed also as a ticket for the 
segment hosting an object b, provided that we generalize the r-component 
of  a t-ticket as follows: 

r C rights(t) vo rights(segment). 

That  is to say, the kernel rights are common to all types, and may appear 
in any ticket. 

zz The concept of type inclusion could have been introduced formally in Sect. 3.1.1. We 
avoided this for the sake of simplicity, and we are using type inclusion, in an ad-hoc 
manner, only in this case. 
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We now introduce two operators that operate on segments: the already 
mentioned transport operators, k-copy and k-move. The primary activator of 
k-copy is 

K-COPY = @-copy, sl: [segment; k-read], loci: [integer], 

s2: [segment; k-write], loc2: [integer], reduction: [text]) 

The operator k-copy copies a concrete object from slot loci of segment sl 
into slot loc2 of s2. The fifth parameter, reduction, specifies the reduction to be 
applied to the copied object, if it happens to be a ticket or an activator. 
Namely, it specifies in what way the new object is weaker than the original. 
(The syntax of the reduction specification is not discussed here.) The 
conditions for the copy operation to be carried out are of two types: 
explicit and implicit. The conditions explicit in the activator are that the 
ticket for sl must have the "k-read" right, and the ticket for s2 must have 
the "k-write" right. In addition to these explicit conditions we assume that 
the following restrictions are built into the operator itself. 

1. The concrete object in slot loci of sl must fit the type of slot loc2 
of  s2. This simply means that the k-copy operator does not violate the type 
specification of the structure of segments. Thus, only a ticket can be 
stored in a ticket slot, only an activator can be stored in an activator slot, 
etc. Moreover, a ticket slot may be earmarked for ticket of a certain type 
of objects only, and there may be a limit imposed on the rights that may be 
contained in the slot. All such specifications must be honored by k-copy. 

2. I f  the content of the loci-slot of sl is a ticket or an activator, it 
must have the intrinsic right "copy".  That  is, it must be a copyable control 
object. 

The second transport operator, k-move, has a similar activator, K-MOVE. 
The only differences between these two operators are: 

1. k-move erases the content of slot loci ofs l .  

2. In the equivalent of restriction 2 above, the intrinsic right "move" 
(rather than "copy")  is required. 

Note that, because of restriction 1, a slot behaves like a variable in a typed 
language; namely, it has a specified range of objects that may be stored in it. 
A particularly important case is that of a ticket variable, which can contain 
tickets only for a given type of objects, and with a specified maximal set of 
rights. Such a facility, which is similar to the ticket variables introduced by 
Jones and Liskov, ~ can contribute greatly to proving correctness of policies. 

As we will see next, the activators K-COPY and K-MOVE are too powerful 
to be contained in any domain. We have to use restricted derivatives of them. 
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3.8.2. The Implementation of Privileged Operators 

For a given type t consider the following derivative of K-COPY: 

READ-t = @-copy, sl:  It; k--read],  locl: [integer], 
s2: [myself], loc2: [integer], reduction: [text]) 

This is a reduction of K-COPY in two ways. First, the sl pattern can be 
matched only to tickets of t-objects (which is a smaller set than all segments, 
which are allowed by the pattern sl in k-copy). Secondly, the phrase myself, 
in the s2 pattern, is a context-dependent pattern that matches only the 
operating-domain. This allows a subject having this activator in its domain, 
together with a t-ticket: 

c = (b: t; k-read,...), 

to copy information from object b addressed by c, into its own domain. 
Or, in other words, READ-t allows reading oft-objects. In a similar way the 
activator 

WRITE-t  = @-copy, sl : [myself],..., s2: It; k-write],...) 

allows one to copy information from the operating domain into t-objects, 
that is, to write into t-objects. One can also construct a pair of similar deri- 
vatives of K-MOVE, which move data into and from t-objects. 

We thus have four activators for a given type t which can be used for 
reading from and writing into t-objects. Assuming that the primary activators 
o f  k-copy and k-move are not themselves available, only a subject that has 
in its domain one of these four activators is able to manipulate or observe 
t-objects directly. Thus, an operator is privileged with respect to t if and only 
if it has at least one of the above four activators in its own domain. Note 
that an operator can be privileged with respect to a number of different types. 
This is not possible under the implementation of "abstract-types" in CLU, 
for example. 

4. D I S C U S S I O N  

The purpose of this section is to evaluate the proposed operation- 
control (OC) scheme along a number of  dimensions, such as conceptual 
adequacy and simplicitly, efficiency, and expressive power. To keep the 
discussion in perspective, we compare our scheme with the capability-based 
access-control (AC) scheme, specifically the Hydra version of it. (1,5,18) Such 
comparison is appropriate because, as we see next, the OC scheme can be 
viewed as a natural extension of  the capability-based version of the AC 
scheme. 



182 Minsky 

4.1. Conceptual Simplicity 

In comparing our scheme to the access-control one it may seem that we 
are sacrificing a great deal of conceptual parsimony by adding another type 
of control object. This, however, is not the case. We show next that the 
proposed scheme can be viewed as a natural extension of the AC-seheme, 
which results from the removal of an unwarranted restriction in it. 

Note that the enforcement mechanism that is necessary to support the 
OC-scheme is essentially identical to that of the AC-scheme. Under the 
AC-scheme an operation o(ql .... , qn) is considered legal if the tickets of  the 
operands ql,..., qn satisfy the requirements imposed by the formal-parameter 
specification (FPS) part of the operator o (this part is called template in 
Hydra). Thus, the FPS of an operator is functionally equivalent to our 
primary activator. Moreover, having the right to call an operator o under the 
AC-scheme is equivalent to having the primary o-activator under the OC- 
scheme. Thus, the OC-scheme can be viewed essentially as an AC-scheme 
with the additional degree of freedom which allows the formation of a whole 
set of o-activators of different strength. These activators represent varying 
degrees of authority with respect to the operator o, just as the set of tickets 
of a given object b represents varying degrees of authority with respect to b. 
This symmetry in the treatment of objects and operators, which does not 
exist under the AC-scheme, is important because it reflects a common feature 
of authority structures. The capabilities of an actor (subject) in computer 
systems, as well as in the real world, frequently results from the type of  
operations that it can perform, not only to the privileges he has with respect 
to specific objects. Thus, our scheme is conceptually cleaner and more com- 
plete than the AC-scheme. 

4.2. Expressive Power 

We say that a policy is expressible in a given scheme if it can be specified 
and enforced by means of the formal devices provided by the scheme. (Note 
that expressibility, so defined, is a stronger concept than implementability. 
Indeed, any policy can be implemented on any kind of system, simply by 
programming it into an interpreter that carries out every operation on the 
system.) The difference in expressive power between the AC- and the OC- 
schemes is primarily along two dimensions: value dependency and the ability 
to handle interactions. It is not that value-dependent policies and policies 
with respect to interactions cannot be expressed in the AC-scheme (although 
this is true for some such policies). The main problem is that the implemen- 
tation of such policies tends to be cumbersome and inefficient to the point 
of being impractical. 
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4.2.1. Value-Dependent Policies 

We define a value-dependent policy to be one under which the legality 
of  an operation depends on the value (or state) of the operands. In particular, 
we are interested in the case in which the value dependency itself depends 
on the subject that invokes the operation. Such policies can be represented 
in our scheme by the distribution of activators with appropriate value-based 
patterns. On the other hand, the only way to represent such a policy under 
the AC-scheme is by a suitable value-dependent distribution of tickets. That 
is to say, the placement of tickets depends on the values of the objects 
addressed by them. As we demonstrate later by an example, such a represen- 
tation may be so costly and arror prone that it becoms completely impractical. 

4.2.2. Handling of Interactions 

The concept of interaction, mentioned in Sec. 2, is defined more 
rigorously as follows: 

For a given subject S, an interaction is an n-ary operator, for n > 1, 
which cannot be expressed by S as a sequence of legal unary operations 
on its individual operands. 

Note that by this definition an operator that is an interaction for one subject 
may not be an interaction for another. Consider, for example, a procedure 
appoint(e,j) which appoints employee e to job j in a corporate information 
system. Suppose that this appointment is actually done by planting a pointer 
to j in the record which represents e, and vice-versa. Suppose also that such 
tinkering with pointers is not allowed outside of the procedure appoint, for 
obvious reasons. Thus, for any subject other than the procedure appoint 
itself, the operator appoint(e,j) is an interaction, because there is no way to 
decompose it into a sequence of (more primitive) operations on e and j 
separately. 

Now, consider the following policy with respect to the interaction 
appoint. Let E1 and E2 be two sets of employees and let J1,J2 be sets of jobs. 
Let S be a subject that is to be allowed to appoint employees in E1 to jobs 
in J1 and those in E2 to jobs in .12, but is not allowed to appoint employees 
in E1 to jobs in J2, or those in E2 to jobs in J1. 

Under our OC-scheme, let pel, pe2, pjl, pj2 be patterns that match 
members of the sets El ,  E2, J1, J2, respectively. The desired policy is realized 
by giving S the activators (appoint, pel, pjl), and (appoint, pe2, pj2). 

To see the difficulty under the AC-scheme we now consider several 
attempts to represent this policy. First, suppose that the operator appoint 
requires the right r l  from its first argument and r2 from the second. Now, 
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S can be given a ticket with r l  for every member of El ,  E2; and a ticket with 
r2 for every member of J1 and J2. The problem is that this would allow S 
to make cross-appointments, of members of E1 to jobs in J2, etc. 

The desired policy can be implemented in a system such as Hydra as 
follows: one may maintain a table inside the operator appoint, which iden- 
tifies the set of triples (S, e,j) such that S is allowed to appoint e to job j. 
The operator appoint may be programmed to obey such specifications. How- 
ever, this is not a representation in terms of the AC-scheme, and it is quite 
contrary to its underlying philosophy of the capability-based approach to 
authorization. 

A correct but unnatural and very inefficient representation of our policy 
in terms of the AC-scheme is the following: For every ~ pair 
(e,j) we create an object ej that represents the pair. The operator appoint 
can be considered as a unary operator on such pair objects. The authority 
of our subject can be defined by giving him a ticket for every pair-object 
ej that S is allowed to appoint. Such representation of  authority, apart o f  
being highly artificial and inconvenient, may be extremely inefficient. F o r  
example, if the cardinality of each of the sets El ,  E2, J1, J2 is N, then S will 
have to maintain 2N* '2  tickets, as opposed to two activators, which are 
necessary under our scheme. Moreover, if the membership of an employee e 
in one of the sets El ,  E2, is determined by the value of e, then the maintenance 
of the authority structure is very difficult. Whenever e stops to be a member 
of El ,  say, one has to revoke all existing tickets for appointable pairs ej. 

4.3. Efficiency 

The efficiency of a protection scheme should be measured along two 
dimensions: efficiency of the representation of policies, and the efficiency of 
their enforcement. To explain what we mean by efficiency of representation, 
we now introduce a number of concepts: 

We use the term control material for the overall distribution of control 
objects throughout a system. For a given policy P, we are interested in the 
following properties of the control material which is necessary for the repre- 
sentation of P. 

1. The volume of the control material, which is the number of control 
objects in it. 

2. The complexity of the distribution of the control material. We say 
that the distribution of the control material is more complex i f  there 
are more rigorous requirements as to the placement of the various control 
objects. 

3 .  The volatility of the control material. By the term volatility we 
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mean, loosely speaking, the amount  of change in the control material 
necessary to maintain a given policy during normal operation of the system, 
or to support incremental changes in the policy itself. (The term stability 
is also used, as the opposite of  volatility.) 

These aspects of  a protection scheme and their relevance to the efficiency 
of the representation of policies are discussed in the succeeding two sections. 
Efficiency of enforcement is discussed in Sec. 4.3.3. 

4.3.1. The Volume and the Complexity of the Control Material 

In this section we argue that the volume of the control material necessary 
for the implementation of a given policy under the OC-scheme tends to be 
smaller and tess complexly distributed than that under the AC-scheme. 
An important  reason for this is that activators can have various degrees o f  
generality (or, specificity), which can be adapted to the nature of the policy 
at hand. For  example, the activator (read, [doc]) can be used to read any 
document, while the activator (read, [d: doc]} can be used only to read the 
specific document d. Tickets, on the other hand, have fixed degree of speci- 
ficity: every ticket represents privileges with respect to one specific object. 
Thus, one may need many tickets to represent a capability which, under the 
OC-scheme, can be represented by a single activator. We now demonstrate 
this tendency by an example, which is a generalization of an example used 
by Jones and Wulf. (5) 

Example: Let memo be a type of object that carries memoranda.  
Suppose that in addition to the text itself, which can be retrieved by the 
operator read, every memo object has a set of boolean attributes 

I" = (xl .... , xn} 

associated with it. We say that a memo m satisfies a certain attribute xi  if 
xi(m) = TRUE.  12 Suppose also that for every subject S there is a set 
Y(S) = { y l  .... , yk} C X of boolean attributes, representing his privileges 
with respect to memoranda,  as follows: S should be allowed to read alImemos,  
and only such, which satisfy all yi in Y(S). 

An OC-representation of this policy is the following. Let 

facade(memo) = {xl,..., xn} 

and let the primary read activator be 

READ = (read, [memo]) 

t2 A possible interpretation of this is the following: There are n nondisjoint categories of 
memo objects. An object n belongs to the ith category if xi = TRUE. 
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Suppose that a subject S is given only the following reduction of READ: 

READ1 = (read, [memo;; yl  &,..., & yk]) 

Suppose also that the set of tickets {(m: memo)}, one for each memo object 
in the system, is stored on a file dir from which all subjects can copy tickets. 
It  is obvious that the desired policy is satisfied under these conditions. 

The salient feature of this implementation is that the various subjects 
have effectively different "power" with respect to memo objects, due to the 
different read activators in their domains. That is why they can safely share 
the same set of tickets, contained in file dir, and still have different privileges. 
As we see next, the situation is quite different in the AC-case. 

Under the AC-scheme we assume that the operator read demands that 
the right "read" is in the operand ticket. Since all subjects involved must have 
the right to invoke read, the difference between the subjects can only be in 
terms of the memo tickets, each with the "read"  right, which are available 
to them. Thus, the desired policy can be established as follows: 

For  a given memo object m, let 

Z(m)  = { z l  .... , zj} c x 

be the set of boolean attributes satisfied by m. Let target(m) be the set of 
subjects S such that for each of them 

Y(s)  ~ z ( m )  

Y(S) is exactly the set of subjects that, by our policy, should be allowed to 
read m. Therefore, the ticket (m: memo; read) should be available to these 
subjects and to none other. To establish such a distribution of tickets, we 
suppose that every subject S in our system has a file, memos(S), that is 
readable only by it. Whenever a new memo object m is created, a noncopyable 
ticket (m; memo; read) should be stored in memos(S) for every S in target(m), 
and nowhere else. This is essentially the solution given by Jones and Wolf  
to a similar problem, c5) 

Let us now compare the control material that is necessary for these two 
implementations of our policy: 

As to the volume of the control material, suppose that there are NS 
subjects in a system, and M memo objects. Let K be the average number of  
subjects that are allowed to read a memo object. The AC-implementation 
requires K*M memo tickets to be stored in the system, while under the 
OC-representation only M tickets are required. (Also, the AC-implementation 
needs NS tickets for the operator read, which is comparable to the NS- 
activators needed under our scheme.) 
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Even more important than the volume of the control material is the 
complexity of  its distribution. The AC-implementation requires a very specific 
distribution of the memo tickets among the NS files memos(S). This distri- 
bution of tickets is itself a formidable task. Moreover, every file memos(S) 
must be well protected and readable by the specified subject S only. 

The situation under the OC-implementation is much simpler. Once the 
NS different read activators are correctly distributed among the various 
domains, we can store all the M tickets in one file, which is readable by every- 
body and does not have to be especially protected. This is obviously much 
less complex than the case under the AC-implementation. 

4.3.2. Stability of the Control Material 

Stability is a very desirable property of the control material for a 
number of reasons: 

1. The maintenance of highly volatile control material may take much 
effort, particularly when it is involved with revocation. 

2. The probability for making mistakes in the distribution of control 
objects increases with their volatility. 

3. Stability of the control material facilitates compile-time checking. 
We argue that the control material tends to be more stable (less volatile) 
under our OC-scheme, mainly because of the following reasons: 

l. Volatility clearly increases with the complexity and the volume of 
the control material, which tends to be higher under the AC-scheme. 

2. There is a difference between the lifetime of tickets and activators. 
A ticket (b; r) cannot exist prior to the creation of object b, or after its destruc- 
tion. An activator (o, [t]), on the other hand, can live as long as the operator 
o and the type t exist; the meaning of this activator does not depend on the 
existence of any particular t-objects. Thus, an implementation of a policy 
under an AC-scheme, which is based entirely on tickets, has an a priori 
temporary nature, and is therefore likely to be relatively volatile. 

Moreover, the variations in control material that do exist under the OC- 
scheme tend to concentrate in the transient part of domains, while their 
permanent part, which contains mostly activators, is relatively stable. This 
is important because it is mostly the permanent part of the domain of a subject 
that determines his authority (cf. Sec. 3.6). We now illustrate some of  these 
observations in the context of our memo example. We start by examining 
volatility under a f ixed policy, the one presented in Sec. 4.3.1, when the 
population of  memoranda is changing. 

8z8/7/z-7 
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Under our OC-scheme each subject S has an activator that determines 
the type of memo object that can be read by it. This gives S a general authority 
with respect to memoranda, which is independent of the particular memo 
objects in the system. Indeed, no change is necessary in the domain of  S 
when new memo objects are generated or when existing ones are deleted 
or changed. The authority makeup of S is stable under such changes. On 
the other hand, under the AC-implementation of this system, whenever a 
new memo object is created, its tickets must be given to all subjects allowed 
to read it. Even worse, when some of the attributes xi of m are changed, the 
tickets of m may have to be revoked from those subjects that are not to be 
aUowed to read it any longer. Thus the control material must be constantly 
changed to maintain the given policy. 

Next, let us consider volatility under an incremental policy change. 
Using again the memo system, suppose that in addition to read there is 
another operator, update, whose primary activator under the OC-mechanism 
is 

(update, [memo], [text]) 

Suppose, also, that the set of memoranda that a subject is allowed to read 
may be different from the set he is allowed to update. Imitially, S may have 
the following two activators: 

(read, [memo;; x l ] )  
(update, [memo;; xl] ,  [text]) 

This means that S can read and update memos that satisfies xl .  
Now, suppose that we wish to change this policy allowing S to update 

only memos satisfying both xl  and x2. All we have to do is to replace his 
update activator with 

(update, [memo;; xl  & x2], [text]) 

For  the AC case suppose that all the subjects have tickets that allow 
them to call both read and update, and that the operator update requires the 
right "update" from its argument just as read requires the right "read." 
Initially S must have access to the set of tickets 

{(m; read, update) I where m-satisfies-xl} 

for all memos satisfying xl .  To change the privileges of S as above, we must 
replace all its memo tickets with the two sets 

C1 = {(m; update) [ where m-satisfies-xl-and-x2} 
C2 = {(m; read) I where m-satisfies-x1} 
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Thus, the same" policy change that requires the replacement of a single 
activator under an OC-scheme requires the replacement of many tickets 
under the AC-scheme. 

4.3.3. Efficiency of Enforcement 

Two factors affect the enforcement efficiency: 

1. The complexity of the computation necessary for the validation 
of a given operation. 

2. The degree to which validation can be performed at compile time. 
We already saw that the enforcement mechanism that is necessary to support 
the OC-scheme is essentially identical to that of the AC-scheme. In both 
cases the operands must be checked against the operand patterns of the given 
activator, which is the "template" in the case of Hydra. Of course, the com- 
plexity of such parameter checking depends on the complexity of the acti- 
vation patterns. Our scheme allows for essentially arbitrarily complex 
patterns, but it does not require such complexity. If the OC-scheme were 
used for the protection of operating systems, one would probably impose 
severe restrictions on the syntax and semantics of activation patterns and 
of G. Much more general patterns can be used in the context of information 
systems, without a significant relative increase in the overhead due to pro- 
tection. 

As to the second factor which affects efficiency of enforcement, we claim 
that our scheme facilitates compile-time validation, due to the greater 
stability of its control material. In particular, it appears that the compiler 
can do much of the necessary checking by analyzing the relatively static 
"permanent-part" of the domain of a subject. However, more study is 
necessary to substantiate this claim. 

5. C O N C L U S I O N  

The operation-control (OC) scheme introduced in this paper is a natural 
generalization of the capability-based version of the access-control (AC) 
scheme developed for operating systems. This generalization is achieved 
by the introduction of the activators, which play an analogous role to that 
of the tickets under the AC-scheme, and which do not require any new 
enforcement effort. The use of activators together with tickets has a profound 
effect on the authorization scheme: The representation of complex policies 
becomes easier and more natural. The control material necessary for the 
representation of policies tends to be less voluminous, less complex, and more 
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stable. The stabil i ty o f  the cont ro l  mater ia l  reduces the need for  revoca t ion  
and  facil i tates compi le- t ime enforcement .  I t  is also believed tha t  this s tabil i ty 
and  simplicity o f  the cont ro l  mater ia l  would  facil i tate the p r o o f  o f  policies. 
I t  should  be po in ted  out, however,  tha t  the p roposed  scheme has yet to 
p rove  itself  in the context  o f  a real  system. There  is work  in progress  tha t  
a t tempts  to base the pro tec t ion  o f  in format ion  systems on this scheme. 
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