
International Journal o f Computer and Information Sciences, Vol. 7, No. 2, 1978

An Operation-Control Scheme for
Authorization in Computer Systems 1

Naftaly Minsky 2

Received October 1976

The access-control authorization scheme, which is being used for the protec-
tion of operating systems, is found to be inadequate in other areas, such
as in databases and information systems. A new authorization scheme,
which is a natural extension of access control, is proposed. The new scheme,
which is called "operation control," is shown to be superior to the access-
control scheme in a number of ways. In particular, it facilitates more natural
and efficient representations of policies, particularly the type of complex
policies that appear in information systems, it facilitates enforcement by
compile-time validation due to a greater stability of authority states, and it
reduces the need for revocation.

KEY WORDS: Protection; access control; operation control; authoriza-
tion; operating systems; information systems.

1. I N T R O D U C T I O N

Author iza t ion in computer systems is a discipline under which an action on
the system can be carried out by a user or by one of the modules of the system
only if the actor is authorized to perform this action. Such a discipline is
necessary for the protect ion of the security and integrity of systems.

Most current protect ion techniques are based on the so-called access-
control approach to authorizat ion. This approach has been developed by
Lampson, <7~ G r a h a m and Denning , (3) W u l f and Jones/is) and others, mostly
in the context of operat ing systems, and it enjoys a considerable degree of
success in this area. Unfor tunate ly , however, this success has no t been

1 This work was partially supported by Grant DAHCIS-73-G6 of the Advanced Research
Project Agency of the US government. This paper is a modified version of the paper
"An Activator-based protection scheme," July 1976 (SOSAP-TR-25).

2 Rutgers University, Department of Computer Science, New Brunswick, New Jersey.

157
0091-7036/78/060~-0157505.o0/0 �9 1978 Plenum Publishing Corporation

158 Minsky

matched in other areas, such as databases and information systems. It is
our contention that this failure is a result of some fundamental limitations
of access control as a scheme for representation of authority structures. These
limitations are discussed in Sec. 2. A generalization of the access-control
authorization scheme is suggested in Sec. 3, and its merits are discussed in
Sec. 4.

2. T H E A C C E S S - C O N T R O L (AC) A P P R O A C H T O
A U T H O R I Z A T I O N

The access-control approach to protection and authorization is well
documented in the literature. In particular, the reader is referred to the
excellent review articles by Saltzer and Schroeder a6~ and by Linden. (9)
Here we outline only the essential features of this approach and discuss
some of its limitations.

The system to be protected is formally viewed as a fourtuple (B, O, or, U),
where B is a set of objects; 0 is a set of operators; J is a set of subjects, which
are the actors that actually apply operators to objects, and are thus responsible
for the dynamic behavior of the system; and U is the authority state of the
system. The authority state is formally defined as a set {(S, b, o)}, where a
triple (S, b, o) is the permission for subject S, which belongs to J, to apply
operator o to object b. In other words, (S, b, o) is a permission for S to have
access o to object b. ~ Of course, the system must be supported by an enforce-
ment mechanism that guarantees that the only operations which are carried
out are those permitted by the authority state U.

There are a number of ways to represent the set of permissions {(S, b, o)}.
A method particularly relevant to this paper is called the capability-based
protection. (s,18) Under this version of the AC-scheme the authority state of
a system is represented by a distribution of special control objects which we
call tickets. A ticket is a pair (b; r), where b is an identifier of an object, and
r is a subset of a finite set of symbols, called rights (or access rights), which
identify, in some way, the operators that can be applied to object b. That
is to say, the subject S that possesses a ticket (b; r) is allowed to apply to b
the operators identified by r. The generation and transport of tickets are
tightly controlled so that the mere fact that a subject S has a ticket (b; r) is
taken as uncontestable proof that S is authorized to have the specified
access rights to object b.

Thus, under the AC-scheme (or, rather, under the capability-based a

8 The phrase capability based used for this version of the access-control protection is
appropriate, even though we are using the term "ticket" for what is usually called capabil-
ity, because the set of tickets owned by a given subject determines its capabilities with
respect to the system. (In this paper the term capability is used in its colloquial sense).

An Operation-Control Scheme for Authorization in Computer Systems |S9

version of it) the tickets are used as the elementary building blocks of authority
structures, a kind of elementary particle of authority. Unfortunately, for
a number of reasons, tickets are not suitable to serve as the only elementary
building blocks of authority.

First, every ticket represents privileges with respect to a specific object;
the one addressed by it. These privileges are independent of the value (or
state) of the object. The problem is that authority structures are frequently
based on the value of the objects involved, and are independent of their
identity. To demonstrate the difficulty here, consider the following example.
When a higway patrolman is sent to his duty, he has to be given the
authority to cite traffic violators. This authority is not given to him in the
form of tickets, one for each violator. Indeed, the patrolman's authority
cannot be defined in this form because at the time that the patrolman is sent
to his duty, the traffic violators do not exist, and the identity of the future
violators is not known, so that it is impossible to construct individual tickets
for the violators at that time. The point is that the patrolman's authority
has to do with the behavior of motorists, not their identity. Tickets are too
specific for this purpose, and at the same time they are not sensitive enough,
being independent of the properties (values) of the objects addressed by
them.

Another problem with tickets results from the unit of activity that they
are designed to authorize. Every ticket represents a permission to apply
certain operators to the object addressed by it. However, the activity of a
subject may not be expressible purely in terms of operations on individual
objects. One may have to use interactions between objects, where by "inter-
action" we mean an operation that involves several objects, and that cannot
be decomposed into a sequence of legal unary operations on the individual
objects. The problem is that privileges with respect to an interaction cannot
be expressed purely by means of tickets, which represent permissions to
perform operations on individual objects. (This difficulty is demonstrated
by an example in Sec. 4.2.2).

Our conclusion from these observations is that there is a need for a new
type of control object which can directly authorize interactions between
objects, and which would not be based exclusively on the identity of the
objects involved in operations. Such a control object, which we call an
activator, is the basis for the protection scheme proposed in this paper.

3. T H E O P E R A T I O N - C O N T R O L (O C) S C H E M E

The protection scheme to be introduced in this section is capability
based in the sense that it associates with every subject a set of control objects

t60 Minsky

that determine its capabilities. 4 However, our scheme differs from the access
control scheme by the nature of these cgntrol objects. In addition to the
tickets, which, as under the AC-scheme, represent privileges with respect
to objects, we have control objects called activators, which represent privileges
with respect to operators, in the following sense: Every activator A identifies
an n-ary operator o (for n ~> 0), specifying the conditions under which o
can be invoked by the subject that possesses A. There may be several such
activators for the same operator o, which may impose different preconditions
on the activation of o, representing different privileges with respect to o.
We are using the name operation control (OC) for this scheme because the
activators possessed by a subject determine directly the type of operations
it can perform, quite independently of the access rights that it has to various
objects.

3.1. Terminology and Conventions

To set the stage for our discussion we now introduce our interpretation
for some well-known terms such as object, subject, domain, and type.

3.1.1. Objects and Their Types

We base our approach toward types on the type concept used in Hydra,(~
which can be described briefly as follows:

The set of all objects in a system is described in terms of the three-level
tree shown in Fig. 1. The root of this tree is a primitive and unique object
called template. The objects at the second level are instances of this template,
and are called template objects, or type objects. Each of these type objects,
such as the object t, serves as a template for a set of objects in the third
level, which are said to be objects of type t, or t-objects. A template t is
supposed to contain the structural definition of all its instances.

In order to impose some behavioral discipline on objects, we introduce
the concept of protected type. This is a type t for which there is a fixed set of
operators (procedures) that have the exclusive ability to manipulate and
observe t-objects directly. We will say that such an operator is privileged
with respect to t. The set of all these operators for a given t is denoted by
privileged(t). Thus, a t-object for a protected type t can be manipulated
either directly, f rom within one of the privileged(t) operators, or indirectly
by invoking these operators. An important special case is an operator that is
privileged with respect to only one type t: such an operator is called a

4 Note, again, that the term capability is being used here in its colloquial sense.

An Operation-Control Scheme for Authorization in Computer Systems 161

/ , \ instncoof

& instnces
Fig. I. The Hydra approach to types. The object b is an instance of the object t (or
a t-object). The object t in turn, is an instance of the distinguished object template, and thus
it is a template object (or type object).

t-operator. (Note tha t the existence o f a fixed set o f t -opera tors is the basis
for the no t ion o f "abs t r ac t da t a type" as it is defined in CLU(I~

3.1.2. Shareable Objects and Their Tickets

W e dist inguish between two b r o a d classes o f objects, to be cal led
shareable objects and concrete objects. A concrete object is one tha t is physi -
cal ly conta ined in one ' s domain2 F o r example , the integer 7 and the symbol
"seven" are concrete objects. A shareable object, on the o ther hand, is no t
conta ined in any pr ivate domain , bu t it can be shared, or accessed, by several
subjects. Shareable objects are accessed by means o f a concrete object cal led
a ticket (which is essential ly identical to the t icket o f the access-control
scheme).

Wi th every type t o f shareable objects we associate a (possibly empty)
set o f symbols:

rights(t) = (r l , rn}

Each o f these symbols , ri, is called a " r igh t " with respect to type t.
A ticket c for an object b o f type t is defined to be a concrete object which

is denoted by

c = (b: t; r)

It should be pointed out that our scheme is not based on the concept of privileged opera-
tors. It is the other way around: we see later that privileged operators can be implemented
under our scheme. This concept is mentioned at this point to accommodate some of the
examples given in the following sections.

6 The concept of domain is defined later; for the moment it is enough to see it as the work
space of some subject.

162 Minsky

where r, or r(c), is a subset of rights(t). If a given right ri is in r(c), we say
that "the ticket c has the right ri". Since the content of a ticket depends on
its t component, we use the phrase t-ticket to identify all tickets that address
t-objects. A t-ticket that has all its possible rights is denoted by (b: t; ALL).
The symbols ri have been called rights in anticipation of their role in our
protection scheme, which is discussed later. (Note: The " t " part of c signifies
that b is the identifier of an object of type t. Whenever the type of b can be
understood from the context, we use the simplified notation (b; r) for a
ticket.)

In general, there may be several tickets pointing to the same object b.
We say that such tickets are related. Let el, c2 be two related tickets. We
say that el is weaker, or less permissive, than e2 if

r(cl) _C r(c2)

Also, we say that el is strictly weaker than e2 if

r(el) C r(c2)

As to the generation and manipulation of tickets, the following is assumed.
Tickets cannot be changed, and they can be generated only in the following
two ways:

1. When a new shareable object b of type t is created, a ticket for it
is also created, with all of rights(t) in it. This ticket, (b: t; ALL), is called
the primary ticket of object b.

2. Given a ticket c it may be possible to generate a new ticket c', which
cannot be stronger than e. Such e', which addresses the same object as e,
is called a derivative of e. (Later we see when it is actually possible to generate
derivatives of a given ticket).

3.1.3. The Facade of Objects

One of the objectives of our scheme is to enable value-dependent
authorization. However, one cannot always expect to be able to determine
the legality of an operation by using the value of all the attributes of an object,
because:

1. It may happen that an attribute of an object is not directly observable.
As an example consider the hidden components of abstract data types.

2. It may happen, in certain types of objects, that the mere act of
observation of an attribute of an object introduces a change in the object
itself. An example of this "quantum mechanical effect" is a record stored
on a tape, which cannot be observed without repositioning the tape.

An Operation-Control Scheme for Authorization in Computer Systems 163

3. One may not want to allow the use of certain attributes for pro-
tection, because such a use may itself reveal confidential information about
the object.

For these, and other reasons which include efficiency, we now introduce the
concept of the facade of an object, which is the part of an object that is' usable

for protection purposes. More formally, with every type t we associate the set

facade(t)

which is the set of attributes of t-objects which are usable for authorization
purposes. By convention, the facade of primitive scalar objects, such as real
and integer numbers, is their value.

3.1.4. Subjects and Their Domains

A computing system changes in time in response to instructions sub-
mitted to a processor for execution] where an instruction is a request to
apply a specific operator to a specific sequence of operands. We distinguish
between two types of instruction sources:

1. An external source, such as a human user sitting at the terminal.

2. An internal source, which is a procedure maintained as an object in
the system.

One important difference between these two types of instruction sources is
that an external source is totally unpredictable as far as the system is con-
cerned, while the behavior of a procedure can be at least partially predicted
ahead of time.

We define a subject to be a pair

(INS, D)

where INS is an instruction source, and D is the collection of objects that are
directly addressable by INS. D is called the domain of S. We later see that
the domain of a subject determines its capabilities and also serves as its
workspace.

Corresponding to the two types of instruction sources we distinguish
between two types of subjects. A subject (INS, D) whose INS is an external
source is called a user, and a subject whose INS is an internal source is
called an operator.

7 For simplicity we assume that there is just one processor in the system.

164 Minsky

3.1.5. Operators

Operators are the dynamic components of a system. Every sequential
process interacting with the system can be described as a sequence of
operations, each of which is the application of an operator to a sequence of
zero or more operands. An operator may have various side effects on the
system, but only one value that is called the outcome of the operator. The
outcome is a concrete object that may, in particular, be a ticket of a shareable
object. This outcome is stored in the domain of the subject that invokes the
operator.

We distinguish between two types of operators. First, there is a fixed
set of primitive operators whose internal activity would not be subject to
the control of our protection mechanism. For example, the set of machine
instructions may be considered the primitive operators of an operating system.
Secondly, an operator may be a subject (INS, D) whose source of instructions
INS is a procedure maintained by the system. Note the recursive nature of
the operator concept: A procedure, which is the INS component of some
operator, has been defined to be a source of instructions, while an instruction
is a request to invoke an operator.

3.1.6. Authorization Scheme and Policies

Following Jones and Wulf, (~s) we distinguish between the concept of
authorization scheme and that of policy. A policy is a specific discipline that
one would like to impose on a system. It is occasionally called authority
structure. An authorization (or protection) scheme is a framework that should
be general enough to accommodate a variety of policies as efficiently and
conveniently as possible. Such a scheme consists of two main components:
a language, which can be used for the specification of policies, and an
enforcement mechanism, which guarantees that no illegal operations are
carried out.

3.2. Activators and the Enforcement Mechanism

An activator is a concrete object, which we denote by

A = (o, pl , pkFG}- -+po

Here A is the name of the activator; o is an operator identifier; pi,
for i --~ 1 k is a condition on the ith operand of o, to be called operand
pattern; G is a condition defined on all operands, and possibly on other
objects in the system (it is called the global condition of A); and po is a con-
dition on the outcome (result) of the operator , to be called the outcome

An Operation-Control Scheme for Authorization in Computer Systems 165

pattern. 8 (Whenever we do not wish to distingush between operand patterns
and outcome patterns, we use the term activation pattern or just pattern.)

The existence of an o-activator A in the domain of a subject S represents
the authority for S to apply the operator o to any objects ql,..., qk in the
domain of S, such that for every i = 1,..., k the operand qi matches the
operand pattern pi of A (satisfies the condition pi), and that the global
condition G of A is satisfied. The activator A also gives S the authority to
introduce into its own domain the outcome of the operator o, thus invoked,
provided that this outcome "matches" the outcome pattern po of A (that is,
satisfies the condition po). To support this interpretation of the activators
the following enforcement mechanism is proposed.

Let us define an instruction to be the construct

A(ql qk)

where A is an o-activator for some operator o, and qi are its operands. I t
is assumed that a subject can form such an instruction only f rom concrete
objects A, ql , qk which exist in its own domain. Thus, the set of instructions
which are expressible by a subject is directly determined by the content of
his domain. Moreover, such an instruction is carried out only if the operands
match the activation patterns as described above, and if G is satisfied. I t
is the responsibility of the enforcement mechanism to perform this pattern
matching and to guarantee that no illegal operations are carried out. Once
an operation is carried out, its outcome, if any, is checked. I f it matches the
pattern po, it is added to the operating domain; otherwise, the value of the
operation is lost, and an error procedure may be invoked.

Note that an operand qi may be of two types: it may be a concrete object,
such as an integer number, which stands for itself; or it may be a ticket that
addresses a shareable object, which is the real operand. Even in the latter
case we usually refer to qi as an operand, relying on the context to determine
whether qi itself, or the object addressed by it, is meant.

Thus, it is clear that the content of the domain D of a subject S, at a
given moment, determines the set of operations that can be carried out by S
at this moment. We can say, therefore, that the domain of a subject determines
its capabilities, or its authority.

There is an instructive analogy between the role of the activators in
our scheme and the role of enzymes as the control devices of the living cell.
The function of every enzyme is to facilitate a certain chemical reaction.
Such a reaction takes place if there are enough substrates in the cell which

If the operator o does not have an outcome, then the part "--~ po'" will not appear in our
notation. Also, the condition G may be absent. Thus, an activator may be denoted simply
by A = <o, pl pk>.

166 Minsky

.'-"-

Fig. 2. Objects are represented by circles, while the pattern attach-
ed to a circle represents the type, facade, etc. of the object. Activa-
tors are represented by triangles with patterns (for the activation
patterns) attached to them. The analogy between the activity of a
domain and the chemistry of a living cell is quite attractive, although
it is not complete. One can think of the activators as the enzymes
in a cell, and of the objects as the various substrates. An operation
in a domain is analogous to a chemical reaction in the cell, which
requires an appropriate enzyme and substrates which fit it. In the
figure, activator A1 is depicted in the process of being attached to
operands ql, q2, generating q0 as an outcome.

fit the activation sites on the enzume, in some analogy to the funct ion o f
our activator (see Fig. 2). Al though this analogy between activators and
enzymes should not be carried too far, it does provide an interesting viewpoint
o f the proposed scheme.

Note the similarity between the activators and the formal parameters
specification (or FPS) o f procedures in p rogramming languages: Both
determine the legal set o f operands o f an operator. There is, however, an
impor tant difference between these two. Our activator is an independent
object, disconnected f rom the operator that it activates. Moreover , while
there is just one FPS per operator, we see below that there may be several
different o-activators for the same operator o, whieh have different strength.
The concept o f strength of activators is defined as follows.

Let A be an activator of order k (with k operand patterns). We define
range(A) to be the set o f all possible (k § 1)-tuples (ql qk, qo) of objects,
which can be matched with the corresponding activation patterns o f A,
and which satisfy the condit ion o f G of A.

Let A and A' be two o-activators for a given operator o. We say that
A ' is weaker than A (or, equivalently, A is stronger than A') iff

range(A') _ range(A)

An Operation-Control Scheme for Authorization in Computer Systems 167

We say that A' is strictly weaker than A iff

range(A) C range(A)

Such an A' is also called a reduction of A.
As to the generation and manipulation of activators, the following is

assumed: First, there is no way to change an existing activator except to
erase it. Secondly, new activators can be generated only in the following two
ways:

1. When a new operator o is created, an o-activator is generated with it.
It is called the primary o-activator.

2. Given an o-activator A, it may be possible to generate a new acti-
vator A', which is called a derivative of A. A' cannot be stronger than A.
(Later we see when it is actually possible to generate such a derivative.)

The following properties of the activators follow immediately from the above:

1. The set of all o-activators, for a given operator o, is partially ordered
with respect to the relation stronger.

2. Every activator is stronger than all its derivatives.

3. The primary o-activator is the strongest o-activator.

3.3. The Act ivat ion Patterns

To be more concrete about the activators and their use we have to suggest
a specific structure for the activation patterns. The structure described in
this section is designed to support many of the known authority structures
in computer systems. Note that the run time overhead attributable to the
enforcement mechanism that is necessary to support our scheme depends
on the complexity of the activation patterns and that of G. In this paper we
do not impose any restriction on this complexity, because such restrictions
should depend on the nature of the system to be protected.

3.3J. Operand Patterns

An operand pattern P, denoted by

[X; R; V]

is a conjunction of three predicates I, R, V, which are called components,
or subpatterns, of P. They are defined as follows.

The subpattern I (which is the only mandatory part of P) is called the
identity-based subpattern. It is either a type identifier, t, which is meant to

168 Minsky

be satisfied by any object of type t, or it is the phrase b: t which is satisfied
only by the particular object b of type t. The entire pattern P whose I
component identifies a type t is called a t-pattern. The structure of the two
other components of a t-pattern depends on t. If a subpattern R or V does
not appear in P, it is interpreted as identically TRUE, which means that it
does not impose any restrictions on the object matched to the pattern.

The subpattern R, called the privilege-based subpattern, is applicable
only when t is a shared type. R has the general form

R = r l & r 2 & . " & r k

where each ri is a symbol that belongs to rights(t). R is meant to be satisfied
by any ticket of a t-object that contains at least the rights rl,. . . , rk.

The subpattern V, called the value-based subpattern, is a predicate
defined on the facade of the object being matched with it.

Example. Let doc be a type of shareable object that carries documents
in a military information system. Let the facade of doc objects be defined by:

facade(doc) = {sleveh integer, category: text}

where slevel is an integer that specifies the security level of the document,
and category specifies its category, such as navy or a ~ y . These two attributes
are the traditional security parameters in military establishments/17~ Let

rights(doc) = { U, E}

As we see below, the symbols U and E stand for the rights to update and
erase a document, respectively.

Suppose now that there are three doc-operators: read, update, and erase,
which are the 0nly operators able to manipulate a document directly (see
Sec. 3.1.I). The primary activators of these operators are as follows:

READ = <read, [doc])

UPDATE ~ <update, [doc; U], [text])

ERASE = <erase, [doc; E]>

The activator READ can be applied to any doc-ticket displaying the content
of the document. The activator UPDATE can be applied to a doc-ticket that
contains the U right. The second operand of UPDATE, which can be any
text object, specifies the nature of the desired update. The activator ERASE
can be applied to any doc-ticket that contains the E right, erasing the content
of the document.

An Operation-Control Scheme for Authorization in Computer Systems 169

The right U can properly be considered an update-right because U is
required by the primary update activator, which means that it would be
required by all update activators. Thus, the update operator can never be
applied to a doc-ticket that does not have the U right. A similar argument
would show that E is the erase-right.

As has already been explained, the primary o-activator, for any given
operator o, allows for the most general use of o. In order to provide for a
more limited use of o, one creates weaker derivatives of the o-activator. For
example, the activator

ERASE' = (erase, [doc; E, U])

is weaker than ERASE because it can be applied only to a doc-ticket that has
both U and E rights in it. The activator

ERASE" = (erase, [d: doc; E])

is also weaker than ERASE, because it can erase only a specific document d.
Note, however, that there is no ordering relation between ERASE' and
ERASE". Neither can be a derivative of the other.

To illustrate the use of value-based subpatterns consider a subject S
whose domain D contains the following activators:

READ' = (read, [doc;; slevel ~< 2])

UPDATE' = (update, [doc; U; slevel <~ 2 & category = "navy"], [text])

which are reduced derivatives of READ and UPDATE, respectively. S has
the power to read any document whose security level is smaller than or equal
to 2 and whose ticket it can get. S can also update navy documents with
slevel ~< 2, provided that it has a ticket with the U right for such a document.
However, S cannot erase any document because it does not have any erase
activators.

3.3.2. The Outcome Pattern

The outcome pattern po of an activator

A -= (o, . . .) -+ po

is a condition on the outcome of the operator o, when invoked by means of A.
This means that only an outcome that satisfies po can be added to the
operating domain by using A. The structure of the outcome patterns is
identical to that of the operand patterns. However, the interpretation
of the R-component of the pattern is different. Let po be the pattern

170 Minsky

[I; r l & r2 & "" & rn; V]. The rights symbol rl,..., rn in this pattern are not
treated as conditions on the rights r(c) contained in the ticket c returned as
the outcome of the operation. Rather, they serve as a filter on r(c), in the
following sense: Any right in r(c) that is not represented in r 1,..., rn would be
erased from the outcoming ticket c. Thus, the component R ofpo serves as
the upper limit for the rights that might be returned as a result of applying
the activator. This means, for example, that the activator

(o, p l) --~ [I1; r l ; V1].

is weaker than

(o, p l) --~ [I1;rl, r2; V1]

Returning to our document example, consider an operator getdoc
that retrieves documents from files. Let the primary activator of getdoc be

GET = (getdoc, [file], [text]) --+ [doc; ALL]

The first operand ofgetdoc must be a file in which getdoc is supposed to locate
a document identified by the second parameter, returning the ticket for
the document as its outcome. Note that the outcome pattern [doc; ALL]
matches any document ticket. Consider now the following, weaker derivative

of GET:

GET' = (getdoc, [f l : file], [text]) -+ [doc; U; slevel = 1]

GET ' can get documents only from a specific file f 1; moreover it can produce
only tickets for documents whose security level is equal to 1, and these
tickets can have no more than the U right in them.

3.4. Control over the Generation of Objects

As we saw in See. 3.3, one can control the use of individual existing
shareable objects by the distribution of their tickets. We now show how the
generation of new objects can be controlled. (Only the essentials of such
control are discussed, leaving some details unspecified.) This serves as a
further illustration of activators and their patterns.

First, we assume that there is a primitive operator gen-type that is able
to generate new type objects (the objects in the second level of the tree in
Fig. 1). Let the primary activator of this operator be

GEN-TYPE = (gen-type,...) -+ [template; ALL]

An Operation-Control Scheme for Authorization in Computer Systems 171

This activator has a sequence of operand patterns, not specified here, that
determine the types of arguments required by gen-type. Invocation of
GEN-TYPE would generate a template object returning a ticket for it with
all its possible rights. Obviously, only a subject who has the GEN-TYPE
activator, or some derivative of it, can generate new types.

We now assume that, together with a new type object t, the following
"instantiation activator" is generated:

(gen-t, pl,..., pk) --+ [t; All]

where gen-t is an operator that generates instances of type t, and pl pk
determine the arguments required by gen-t. Application of this activator to
an appropriate sequence of operands returns a ticket to the newly formed
t-object, with all the rights(t) in it. For example, the primitive instantiation
activator for the type doc may be

GEN-DOC = (gen-docl content:[text], slevel: [integer],

category: [text]) -+ [doc; ALL]

(To distinguish between the various operand-patterns we use labels such as
"content: [...]".) The three operands of gen-doc determine the initial state
of the generated document: its content, security level, and category. A subject
having this activator can generate documents with arbitrary security level
and category, obtaining a ticket for the generated object with all its possible
rights. However, a subject having the following derivative of GEN-DOC:

GEN-DOC' = {gen-doc category: [text;; value = "navy"]) --~ [doc; E]

can generate only documents whose category is navy, getting for them tickets
without the U right. Note that documents generated by GEN-DOC' can
never be changed, because there can be no tickets with the U right for them.

3.5. The Two Types of Control Objects: Their Role and Behavior

Our protection scheme is based on two primitive types of objects,
activators and tickets, which we call, collectively, control objects. The distri-
bution of these control objects throughout the system serves to determine its
authority state; namely, such distribution determines who can do what in
the system. The roles of the two types of control objects are reviewed in this
section, and their transport is discussed.

There is a symmetry in the functions of activators and tickets in our
scheme. A ticket for object b residing in the domain D of a subject S represents
the privileges that S has for b, in the sense that the ticket determines the set

828/7[z-6

172 Minsky

of operators that may be applied by S to b. Analogously, an o-activator that
resides in D represents the privileges that S has for the operator o, in the sense
that it defines the set of objects to which o can be applied by S. Tickets and
activators play complementary roles in our scheme: neither one of them
alone is sufficient for the application of an operator to a shareable object.
For this, one needs both an activator and a ticket (or several tickets) that
fit the activator.

The complementarity of activators and tickets allows us to formalize
the semantics of the rights symbols. Let the symbol r l belong to rights(t)
for a given type t. We define the privileges associated with r 1 to be the set of
t-patterns of the various activators in the system that require r l . Moreover,
for a given domain D we define the localprivileges associated with r 1 to be the
set of t-patterns in D which require r 1. Note, for example, that this set may
be empty, rendering r l useless in the context of D, even if the set of global
privileges of r 1 is nonempty. For instance, the right U of Sec. 3.1 would
be useless within a domain that has no update activators.

The two types of control objects exhibit some similar structural and
behavioral characteristics, which are best seen by comparing the following two
sets: the set T(b) of all tickets for a given object b, and the set A(o) of all
o-activators. T(b) and A(o) are partially ordered sets with respect to the
relation stronger, defined for tickets and activators, respectively. Every
ticket in T(b) is a direct, or indirect, derivative of the primary ticket of b,
which is created together with the object b itself. Likewise, every activator
in A(o) is a dirivative of the primary o-activator, which is created together
with the operator o. A control object, whether it is an activator or a ticket,
is stronger than all its derivatives.

Control objects are to be distributed by means of two primitive trans-
port-operators: k-copy and k-move. (k stands for kernel, as these operators
should belong to the kernel of the system, which is discussed in Sec. 3.8).
Each of these operators, when applied to a control object co, generates a
new control object co' in some other place in the system; such a co' cannot
be stronger than co. The difference between the two transport operators is
that k-copy does not affect the original control object, whereas k-move
erases it. Thus, k-move, in effect, moves a control object from one place to
another, possibly reducing it in the process.

To get a degree of control over the transportability of individual control
objects, the following facility is introduced. The facade of a control object
of either type consists of two boolean components, "copy" and "move," to
be called the intrinsic rights of the object. The operator k-copy can be applied
to a control object eo only if "it has the copy right," namely, if the "copy"
component of co is TRUE. Likewise, k-move can be applied only to a control
object that has the "move" right. Thus, a control object with neither intrinsic

An Operatlon-Control Scheme for Authorization in Computer Systems t73

rights is untransportable. Of course, the control object co' generated from co
by one of these operators cannot have more intrinsic rights than co, but it
can have less.

I t is obviously vital to have some control over the use of the transport
operators. Such a control can be achieved by the distribution of their
activators. These activators are discussed in Sec. 3.8.

3.6. The Structure of Domains, and Their Dynamic Behavior

As has already been explained, the content of a domain D at a given
moment in time T determines the set of operations that can be carried out
at time T by the subject S associated with D. But what can we say about
the future capabilities of the subject S ? To answer this question one must be
able to predict the future content of D. This in turn requires an understanding
of the dynamic behavior of domains.

3.6.1. External and Internal Changes of Domains

We distinguish between two types of domain change, to be called external
changes and internal changes. An external change of a domain D associated
with subject S is a change caused by an operation invoked by another subject
S'. In particular, it is such a subject S' that created D in the first place. To
predict the dynamic behavior of a given domain D under external changes,
one must be able to tell which subjects have the capability of changing D,
and what they are up to.

An internal change of a domain D is one that is caused by an operation
invoked by its own subject S, as follows: Let A be the following activator

(. . .) --+ po

in D, and let A(ql , qk) be an operation invoked by S. The outcome
of this operation, if any, is added to D. This outcome is a concrete
object that satisfies po. (Note that, depending on po, the outcome that
is added to the domain may be a primitive object such as integer, a
ticket for a shareable object, or even an activator.) Thus, the nature of the
possible internal changes of a domain D is determined explicitly by the content
of D itself.

Now, it seems reasonable to assume that in a well-designed system there
would usually be only a small number of subjects S' that are able to change
an existing domain D. Moreover, even these subjects are not likely to exercise
their ability to change D very often, so that an external change of a domain is

t74 Minsky

likely to be a relatively rare event. Therefore, we continue our discussion of
the dynamic behavior of domains, taking only internal domain changes into
account.

3.6.2. The Structure of Domains

Until now, domains have been presented as monolithic structures.
We now distinguish between two parts of a domain, to be called permanent
and transient parts. The permanent part of the domain of a subject S is created
together with the subject, and is attached to it throughout its lifetime. We
sometimes refer to this part simply as the domain of the subject. The transient
part of the domain, to be also referred to as the workspace of the subject,
exists only for the duration of a single activity period of the subject. In the
case of a user an activity period is a single session of user-system interaction.
An empty work space is attached to the domain of the user at the beginning
of a session, only to disappear when the session terminates. An activity period
of an operator is the period between its invocation and its return. When an
operator is invoked, a new work space, which contains all the operands,
is attached to its domain, to be deleted when the operator returns control.

We now introduce the convention that, unless specified otherwise, an
internal change of a domain effects its transient part only. This means that
the outcome of an operation is usually stored in the work space of the subject,
leaving the permanent part of the domain invariant of the activity of its
own subject. An example can clarify all that.

Exam pie. Consider a subject S whose domain, or rather, the permanent
part of whose domain, is given in Fig. 3. This domain contains two file
tickets, for files f l and f 2 which are assumed to contain documents. The
domain also contains five activators: the activators GET' and GET" for
operator getdoc, which are reductions of the activator GET (cf. Sec. 3.3.1).
Operator getdoc gets a docticket identified by its second operand, from the
file identified by its first operand. GET' can be applied only to a ticket of
one file, f l . Namely, GET' can be used to generate tickets with the U right,
for documents stored in f l . We denote the set of all such tickets by F1. The
activator GET", which can be applied to the ticket c2 of the file f2 , can
generate a set F2 of tickets of documents stored in f 2 whose slevel = 1.
These tickets would have only the E right in them.

The activators READ', UPDATE', and ERASE, already introduced in
Sec. 3.3, can be applied to the doc-tickets generated by GET' and GET".
READ' can be applied to any document whose slevel<2. Note, therefore,
that some of the documents whose tickets may be generated by GET' cannot
be read by S. UPDATE' can be used to update any navy document, provided

An Operation-Control Scheme for Authorization in Computer Systems 175

cl = (fl:file)

c2 = (f2:file)

GET' = ~ e t d o c , I l l] , [t e x t j ~ § [doc ;U]

GET" = ~ e t d o c , [f 2] , [t e x t] > + [d o c ; E ; s l e v e l = l]

READ' = d e a d , [d o c ; ; s t e v e l < 2] 2 >

UPDATE' = ~ p d a t e , [d o c ; U ; c a t e g o r y = " n a v y '] , [t e x t J ~

ERASE = < e r a s e , [d o c ; E] >

Fig. 3. The permanent part of a domain. It contains two file tickets
and five activators. GET' and GET" can operate on the file tickets,
generating doc-tickets into the transient part of the domain. The last
three activators operate on these doc-tickets.

that its ticket has the U right. This means that none of the documents on
f 2 can be updated by S, and only some of the documents on f l , the navy
documents, can be updated. Finally, using ERASE, S can erase all the docu-
ments obtained from f2 , but none from f l . (Note that our subject cannot
generate new documents, because he does not have a gen-doc activator.)

Note that all the doc-tickets generated by our subject would be inserted
into its workspace, which is the transient part of the domain that disappears
at the end of the session. That is to say, the subject S cannot have any doc-
tickets for extended periods of time. This property of our scheme is very
important, as it reduces the need for revocation.

A Comment. The domain in Fig. 3 is incomplete in the sense that it
contains no activators for basic operations such as integer addition or mani-
pulations of text variables. Such activators are necessary because, by our
definitions, no operation can be carried out by a subject without having the
proper activator in his domain. However, following Minsky, ml we assume
that all control objects that are necessary to authorize the use of operators
and objects we do not wish to restrict are included, by default, in all domains.

3.7. T h e Global C o n d i t i o n of A c t i v a t o r s

We define the condition G of activators by the following two properties:

1. G is a conjunction of predicates: gl & g2 & ... & g/c

2. The reduction of a global condition can be performed by adding
a conjunct to it, not by a change of existing predicates.

At this point no restrictions are imposed on the individual predicates gi.
In particular, gi can be defined on all the operands of the activators, as welt

176 Minsky

as on other objects in the system that are not otherwise involved in the
operation. Moreover, we will allow gi to have side effects. Here are some
applications of the global condition.

3.7.1. Correlation Between Operands

The operand pattern pi has been defined to be a condition on the ith
operand. Since G can be defined on all operands, it can correlate them. For
example, let copyd be an operator that copies the content of one document
(doc-object) into another. Consider the following copyd activator:

(copyd, dl : [doc], d2: [doc; U] L dl.category = d2.category
& dl.slevel ~< d2.slevel)

The only restriction imposed by this activator on the individual operands is
that d2 must have the U right (without which the update of d2 would not be
possible). However, the G part of this activator requires that the two operands
be of the same category, and that the second operand should not have a
lower security level then the first. (This is a very common type of restriction
in military information systems.)

3.7.2. Conditions on Global Status Variables

Suppose, for example that there is a global variable T in the system which
represents the real time. An activator

(. . .] t l <~T<~t2)

can be used only in the time period (t l , t2) because its G part would return
FALSE at any other time. In a similar way one can construct activators that
are conditioned on other global variables in the system.

3.7.3. Self-destructive Activators

Consider a predicate countdown of the form

BEGIN

END

OWN N;
N ~ - N - - 1;
IF N ~< 0 R E T U R N FALSE;

If this predicate is used as a component of the G part of an activator A, it

An Operation-Control Scheme for Authorization in Computer Systems 177

limits the number of times that A can be used. If, for example, the own
variable N of such a countdown predicate is initialized to 2 when the activator
is created, then after two applications of A it will return false, preventing
further use of A.

3.7.4. Revocation of Activators 9

One of the classical problems in capability-based protection is how to
revoke a privilege already granted. Revocation of tickets has been studied
extensively by Redell, ~15~ Cohen, m and others. Here we see how activators
can be revoked.

Consider a subject S1 having an activator

Ai = <--. [g>

in its domain D1. Let a l be a boolean variable local to D1. Suppose that S1
generates a derivative A2 of AI:

A2 = < - . . l g & a t >

storing it in the domain D2 of subject $2 (see Fig. 4). I t is quite obvious that
A2 can be used only as long as the boolean variable al is TRUE. Thus,
although A2 belongs physically to $2, it is still controlled by S1, which can
prevent the activation of A2 simply by turning off the variable al . Moreover,
every derivative of A2 would be controlled by S1 in the same way because it is
impossible to remove a conjunct from G. Furthermore, one can add additional
controls in a similar way. For example, let a2 be a boolean variable in D2;
suppose that $2 generates a derivative

A3 = < . . - I g & a l & a 2 >

of A2, storing it in the domain D3 of $3 (see Fig. 4). Now, S1 can deactivate
and reactivate both A2 and A3 by turning al off and on, while $2 can control
A3 in a similar way by means of its own variable a2.

Note that in a similar way one can construct a variety of revocation
patterns. In particular, the variables a l and a2 above may be stored inside
some shared object whose tickets are distributed in a certain way.

3.7.5. Monitoring the Use of Activators

Using the ability of G to produce side effects, one can monitor the use
of activators, as follows. Suppose that a subject S1 has the activator

A1 = <... [g>

9 1 am indebted to Dorothy Denning for suggesting this important application of the global
condition of activators.

t78 rqinsky

// I

/ /
' /

oz]

Ifo ,
/'1 / l /

I /
ii / /

<o,...l> 1
Fig. 4. Revocation of activators. The solid
arrows represent the sequence of derivation of
activators. The dashed arrows represent the
dependency of the activator on the boolean
variables al, a2.

in its domain D1. Let

_.t2 = <... [g & m)

be a derivative of A1 where m is a predicate that always returns TRUE, and
is programmed to write a record into a file accessible to S1, reporting about
each invocation in which it participates. Thus, S1 would have an audit trail
of all activations of A2 and of any derivative of it, because rn cannot be
removed from an activator. The users of A2, or of its derivatives, may not be
aware of such audit trail being formed, and they certainly cannot do anything
about it, because no part of G can be removed from an activator.

3.8. The Kernel of the Protection Mechanism 1~

The purpose of this section is to clarify and support some of the assump-
tions made in preceding sections. In particular, it has been assumed that
for every type t there is a set of privileged operators with respect to t, which
have the exclusive ability to modify and observe t-objects directly. Here
we show how this exclusiveness can be imposed by means of the basic

lo This section can be skipped on first reading.

An Operation-Control Scheme for Authorization in Computer Systems t79

protection mechanism. This discussion brings us to the foundations of the
protection mechanism, which is frequently called its kernel. However, only
some aspects of such a kernel are discussed here. Its complete study is beyond
the scope of this paper, because the kernel is likely to be strongly dependent
on its context. For example, the kernel would surely be very different in
the case of operating systems, databases, and programming languages.
Therefore, the following discussion should not be viewed as a proposal for
a specific implementation.

3.8.1. Segments and Their Operators

In an attempt to find a uniform implementation for all types of shareable
objects, we first define a primitive type called segment, which is to serve
as a host for shareable objects of all types.

A segment is essentially a chunk of storage divided into a sequence of
slots, each of which can host one concrete object of a given primitive type.
For example, there may be integer slots, text slots, ticket slots, and activator
slots. The various slots in a segment are addressed by their relative position
with respect to its origin. This division of a segment into slots is called the
structure of the segment. A segment is allocated, to host an object of a given
type t, by the gen-t operator (defined in Sec. 3.4). The structure of this
segment is determined by t, and is fixed for the lifetime of the object.

We treat the set of all segments as a type. I t is a special kind of type,
as it includes 11 all other types of shareable objects, since, by our definition,
an object of any type is also a segment. Like any other type of shareable
object, the type "segment" has its own rights, which, following Hydra,
are called kernel rights. We assume that

rights(segments) = {k-read, k-write}

A ticket (b: t; r) of a shareable object b can be viewed also as a ticket for the
segment hosting an object b, provided that we generalize the r-component
of a t-ticket as follows:

r C rights(t) vo rights(segment).

That is to say, the kernel rights are common to all types, and may appear
in any ticket.

zz The concept of type inclusion could have been introduced formally in Sect. 3.1.1. We
avoided this for the sake of simplicity, and we are using type inclusion, in an ad-hoc
manner, only in this case.

180 Minsky

We now introduce two operators that operate on segments: the already
mentioned transport operators, k-copy and k-move. The primary activator of
k-copy is

K-COPY = @-copy, sl: [segment; k-read], loci: [integer],

s2: [segment; k-write], loc2: [integer], reduction: [text])

The operator k-copy copies a concrete object from slot loci of segment sl
into slot loc2 of s2. The fifth parameter, reduction, specifies the reduction to be
applied to the copied object, if it happens to be a ticket or an activator.
Namely, it specifies in what way the new object is weaker than the original.
(The syntax of the reduction specification is not discussed here.) The
conditions for the copy operation to be carried out are of two types:
explicit and implicit. The conditions explicit in the activator are that the
ticket for sl must have the "k-read" right, and the ticket for s2 must have
the "k-write" right. In addition to these explicit conditions we assume that
the following restrictions are built into the operator itself.

1. The concrete object in slot loci of sl must fit the type of slot loc2
of s2. This simply means that the k-copy operator does not violate the type
specification of the structure of segments. Thus, only a ticket can be
stored in a ticket slot, only an activator can be stored in an activator slot,
etc. Moreover, a ticket slot may be earmarked for ticket of a certain type
of objects only, and there may be a limit imposed on the rights that may be
contained in the slot. All such specifications must be honored by k-copy.

2. I f the content of the loci-slot of sl is a ticket or an activator, it
must have the intrinsic right "copy". That is, it must be a copyable control
object.

The second transport operator, k-move, has a similar activator, K-MOVE.
The only differences between these two operators are:

1. k-move erases the content of slot loci ofs l .

2. In the equivalent of restriction 2 above, the intrinsic right "move"
(rather than "copy") is required.

Note that, because of restriction 1, a slot behaves like a variable in a typed
language; namely, it has a specified range of objects that may be stored in it.
A particularly important case is that of a ticket variable, which can contain
tickets only for a given type of objects, and with a specified maximal set of
rights. Such a facility, which is similar to the ticket variables introduced by
Jones and Liskov, ~ can contribute greatly to proving correctness of policies.

As we will see next, the activators K-COPY and K-MOVE are too powerful
to be contained in any domain. We have to use restricted derivatives of them.

An Operation-Control Scheme for Authorization in Computer Systems 181

3.8.2. The Implementation of Privileged Operators

For a given type t consider the following derivative of K-COPY:

READ-t = @-copy, sl: It; k--read], locl: [integer],
s2: [myself], loc2: [integer], reduction: [text])

This is a reduction of K-COPY in two ways. First, the sl pattern can be
matched only to tickets of t-objects (which is a smaller set than all segments,
which are allowed by the pattern sl in k-copy). Secondly, the phrase myself,
in the s2 pattern, is a context-dependent pattern that matches only the
operating-domain. This allows a subject having this activator in its domain,
together with a t-ticket:

c = (b: t; k-read,...),

to copy information from object b addressed by c, into its own domain.
Or, in other words, READ-t allows reading oft-objects. In a similar way the
activator

WRITE-t = @-copy, sl : [myself],..., s2: It; k-write],...)

allows one to copy information from the operating domain into t-objects,
that is, to write into t-objects. One can also construct a pair of similar deri-
vatives of K-MOVE, which move data into and from t-objects.

We thus have four activators for a given type t which can be used for
reading from and writing into t-objects. Assuming that the primary activators
o f k-copy and k-move are not themselves available, only a subject that has
in its domain one of these four activators is able to manipulate or observe
t-objects directly. Thus, an operator is privileged with respect to t if and only
if it has at least one of the above four activators in its own domain. Note
that an operator can be privileged with respect to a number of different types.
This is not possible under the implementation of "abstract-types" in CLU,
for example.

4. D I S C U S S I O N

The purpose of this section is to evaluate the proposed operation-
control (OC) scheme along a number of dimensions, such as conceptual
adequacy and simplicitly, efficiency, and expressive power. To keep the
discussion in perspective, we compare our scheme with the capability-based
access-control (AC) scheme, specifically the Hydra version of it. (1,5,18) Such
comparison is appropriate because, as we see next, the OC scheme can be
viewed as a natural extension of the capability-based version of the AC
scheme.

182 Minsky

4.1. Conceptual Simplicity

In comparing our scheme to the access-control one it may seem that we
are sacrificing a great deal of conceptual parsimony by adding another type
of control object. This, however, is not the case. We show next that the
proposed scheme can be viewed as a natural extension of the AC-seheme,
which results from the removal of an unwarranted restriction in it.

Note that the enforcement mechanism that is necessary to support the
OC-scheme is essentially identical to that of the AC-scheme. Under the
AC-scheme an operation o(ql , qn) is considered legal if the tickets of the
operands ql,..., qn satisfy the requirements imposed by the formal-parameter
specification (FPS) part of the operator o (this part is called template in
Hydra). Thus, the FPS of an operator is functionally equivalent to our
primary activator. Moreover, having the right to call an operator o under the
AC-scheme is equivalent to having the primary o-activator under the OC-
scheme. Thus, the OC-scheme can be viewed essentially as an AC-scheme
with the additional degree of freedom which allows the formation of a whole
set of o-activators of different strength. These activators represent varying
degrees of authority with respect to the operator o, just as the set of tickets
of a given object b represents varying degrees of authority with respect to b.
This symmetry in the treatment of objects and operators, which does not
exist under the AC-scheme, is important because it reflects a common feature
of authority structures. The capabilities of an actor (subject) in computer
systems, as well as in the real world, frequently results from the type of
operations that it can perform, not only to the privileges he has with respect
to specific objects. Thus, our scheme is conceptually cleaner and more com-
plete than the AC-scheme.

4.2. Expressive Power

We say that a policy is expressible in a given scheme if it can be specified
and enforced by means of the formal devices provided by the scheme. (Note
that expressibility, so defined, is a stronger concept than implementability.
Indeed, any policy can be implemented on any kind of system, simply by
programming it into an interpreter that carries out every operation on the
system.) The difference in expressive power between the AC- and the OC-
schemes is primarily along two dimensions: value dependency and the ability
to handle interactions. It is not that value-dependent policies and policies
with respect to interactions cannot be expressed in the AC-scheme (although
this is true for some such policies). The main problem is that the implemen-
tation of such policies tends to be cumbersome and inefficient to the point
of being impractical.

An Operation-Control Scheme for Authorization in Computer Systems 183

4.2.1. Value-Dependent Policies

We define a value-dependent policy to be one under which the legality
of an operation depends on the value (or state) of the operands. In particular,
we are interested in the case in which the value dependency itself depends
on the subject that invokes the operation. Such policies can be represented
in our scheme by the distribution of activators with appropriate value-based
patterns. On the other hand, the only way to represent such a policy under
the AC-scheme is by a suitable value-dependent distribution of tickets. That
is to say, the placement of tickets depends on the values of the objects
addressed by them. As we demonstrate later by an example, such a represen-
tation may be so costly and arror prone that it becoms completely impractical.

4.2.2. Handling of Interactions

The concept of interaction, mentioned in Sec. 2, is defined more
rigorously as follows:

For a given subject S, an interaction is an n-ary operator, for n > 1,
which cannot be expressed by S as a sequence of legal unary operations
on its individual operands.

Note that by this definition an operator that is an interaction for one subject
may not be an interaction for another. Consider, for example, a procedure
appoint(e,j) which appoints employee e to job j in a corporate information
system. Suppose that this appointment is actually done by planting a pointer
to j in the record which represents e, and vice-versa. Suppose also that such
tinkering with pointers is not allowed outside of the procedure appoint, for
obvious reasons. Thus, for any subject other than the procedure appoint
itself, the operator appoint(e,j) is an interaction, because there is no way to
decompose it into a sequence of (more primitive) operations on e and j
separately.

Now, consider the following policy with respect to the interaction
appoint. Let E1 and E2 be two sets of employees and let J1,J2 be sets of jobs.
Let S be a subject that is to be allowed to appoint employees in E1 to jobs
in J1 and those in E2 to jobs in .12, but is not allowed to appoint employees
in E1 to jobs in J2, or those in E2 to jobs in J1.

Under our OC-scheme, let pel, pe2, pjl, pj2 be patterns that match
members of the sets El , E2, J1, J2, respectively. The desired policy is realized
by giving S the activators (appoint, pel, pjl), and (appoint, pe2, pj2).

To see the difficulty under the AC-scheme we now consider several
attempts to represent this policy. First, suppose that the operator appoint
requires the right r l from its first argument and r2 from the second. Now,

184 Minsky

S can be given a ticket with r l for every member of El , E2; and a ticket with
r2 for every member of J1 and J2. The problem is that this would allow S
to make cross-appointments, of members of E1 to jobs in J2, etc.

The desired policy can be implemented in a system such as Hydra as
follows: one may maintain a table inside the operator appoint, which iden-
tifies the set of triples (S, e,j) such that S is allowed to appoint e to job j.
The operator appoint may be programmed to obey such specifications. How-
ever, this is not a representation in terms of the AC-scheme, and it is quite
contrary to its underlying philosophy of the capability-based approach to
authorization.

A correct but unnatural and very inefficient representation of our policy
in terms of the AC-scheme is the following: For every ~ pair
(e,j) we create an object ej that represents the pair. The operator appoint
can be considered as a unary operator on such pair objects. The authority
of our subject can be defined by giving him a ticket for every pair-object
ej that S is allowed to appoint. Such representation of authority, apart o f
being highly artificial and inconvenient, may be extremely inefficient. F o r
example, if the cardinality of each of the sets El , E2, J1, J2 is N, then S will
have to maintain 2N* '2 tickets, as opposed to two activators, which are
necessary under our scheme. Moreover, if the membership of an employee e
in one of the sets El , E2, is determined by the value of e, then the maintenance
of the authority structure is very difficult. Whenever e stops to be a member
of El , say, one has to revoke all existing tickets for appointable pairs ej.

4.3. Efficiency

The efficiency of a protection scheme should be measured along two
dimensions: efficiency of the representation of policies, and the efficiency of
their enforcement. To explain what we mean by efficiency of representation,
we now introduce a number of concepts:

We use the term control material for the overall distribution of control
objects throughout a system. For a given policy P, we are interested in the
following properties of the control material which is necessary for the repre-
sentation of P.

1. The volume of the control material, which is the number of control
objects in it.

2. The complexity of the distribution of the control material. We say
that the distribution of the control material is more complex i f there
are more rigorous requirements as to the placement of the various control
objects.

3 . The volatility of the control material. By the term volatility we

An Operation-Control Scheme for Authorization in Computer Systems 185

mean, loosely speaking, the amount of change in the control material
necessary to maintain a given policy during normal operation of the system,
or to support incremental changes in the policy itself. (The term stability
is also used, as the opposite of volatility.)

These aspects of a protection scheme and their relevance to the efficiency
of the representation of policies are discussed in the succeeding two sections.
Efficiency of enforcement is discussed in Sec. 4.3.3.

4.3.1. The Volume and the Complexity of the Control Material

In this section we argue that the volume of the control material necessary
for the implementation of a given policy under the OC-scheme tends to be
smaller and tess complexly distributed than that under the AC-scheme.
An important reason for this is that activators can have various degrees o f
generality (or, specificity), which can be adapted to the nature of the policy
at hand. For example, the activator (read, [doc]) can be used to read any
document, while the activator (read, [d: doc]} can be used only to read the
specific document d. Tickets, on the other hand, have fixed degree of speci-
ficity: every ticket represents privileges with respect to one specific object.
Thus, one may need many tickets to represent a capability which, under the
OC-scheme, can be represented by a single activator. We now demonstrate
this tendency by an example, which is a generalization of an example used
by Jones and Wulf. (5)

Example: Let memo be a type of object that carries memoranda.
Suppose that in addition to the text itself, which can be retrieved by the
operator read, every memo object has a set of boolean attributes

I" = (xl , xn}

associated with it. We say that a memo m satisfies a certain attribute xi if
xi(m) = TRUE. 12 Suppose also that for every subject S there is a set
Y(S) = { y l , yk} C X of boolean attributes, representing his privileges
with respect to memoranda, as follows: S should be allowed to read alImemos,
and only such, which satisfy all yi in Y(S).

An OC-representation of this policy is the following. Let

facade(memo) = {xl,..., xn}

and let the primary read activator be

READ = (read, [memo])

t2 A possible interpretation of this is the following: There are n nondisjoint categories of
memo objects. An object n belongs to the ith category if xi = TRUE.

186 Minsky

Suppose that a subject S is given only the following reduction of READ:

READ1 = (read, [memo;; yl &,..., & yk])

Suppose also that the set of tickets {(m: memo)}, one for each memo object
in the system, is stored on a file dir from which all subjects can copy tickets.
It is obvious that the desired policy is satisfied under these conditions.

The salient feature of this implementation is that the various subjects
have effectively different "power" with respect to memo objects, due to the
different read activators in their domains. That is why they can safely share
the same set of tickets, contained in file dir, and still have different privileges.
As we see next, the situation is quite different in the AC-case.

Under the AC-scheme we assume that the operator read demands that
the right "read" is in the operand ticket. Since all subjects involved must have
the right to invoke read, the difference between the subjects can only be in
terms of the memo tickets, each with the "read" right, which are available
to them. Thus, the desired policy can be established as follows:

For a given memo object m, let

Z(m) = { z l , zj} c x

be the set of boolean attributes satisfied by m. Let target(m) be the set of
subjects S such that for each of them

Y(s) ~ z (m)

Y(S) is exactly the set of subjects that, by our policy, should be allowed to
read m. Therefore, the ticket (m: memo; read) should be available to these
subjects and to none other. To establish such a distribution of tickets, we
suppose that every subject S in our system has a file, memos(S), that is
readable only by it. Whenever a new memo object m is created, a noncopyable
ticket (m; memo; read) should be stored in memos(S) for every S in target(m),
and nowhere else. This is essentially the solution given by Jones and Wolf
to a similar problem, c5)

Let us now compare the control material that is necessary for these two
implementations of our policy:

As to the volume of the control material, suppose that there are NS
subjects in a system, and M memo objects. Let K be the average number of
subjects that are allowed to read a memo object. The AC-implementation
requires K*M memo tickets to be stored in the system, while under the
OC-representation only M tickets are required. (Also, the AC-implementation
needs NS tickets for the operator read, which is comparable to the NS-
activators needed under our scheme.)

An Operation-Control Scheme for Authorization in Computer Systems 187

Even more important than the volume of the control material is the
complexity of its distribution. The AC-implementation requires a very specific
distribution of the memo tickets among the NS files memos(S). This distri-
bution of tickets is itself a formidable task. Moreover, every file memos(S)
must be well protected and readable by the specified subject S only.

The situation under the OC-implementation is much simpler. Once the
NS different read activators are correctly distributed among the various
domains, we can store all the M tickets in one file, which is readable by every-
body and does not have to be especially protected. This is obviously much
less complex than the case under the AC-implementation.

4.3.2. Stability of the Control Material

Stability is a very desirable property of the control material for a
number of reasons:

1. The maintenance of highly volatile control material may take much
effort, particularly when it is involved with revocation.

2. The probability for making mistakes in the distribution of control
objects increases with their volatility.

3. Stability of the control material facilitates compile-time checking.
We argue that the control material tends to be more stable (less volatile)
under our OC-scheme, mainly because of the following reasons:

l. Volatility clearly increases with the complexity and the volume of
the control material, which tends to be higher under the AC-scheme.

2. There is a difference between the lifetime of tickets and activators.
A ticket (b; r) cannot exist prior to the creation of object b, or after its destruc-
tion. An activator (o, [t]), on the other hand, can live as long as the operator
o and the type t exist; the meaning of this activator does not depend on the
existence of any particular t-objects. Thus, an implementation of a policy
under an AC-scheme, which is based entirely on tickets, has an a priori
temporary nature, and is therefore likely to be relatively volatile.

Moreover, the variations in control material that do exist under the OC-
scheme tend to concentrate in the transient part of domains, while their
permanent part, which contains mostly activators, is relatively stable. This
is important because it is mostly the permanent part of the domain of a subject
that determines his authority (cf. Sec. 3.6). We now illustrate some of these
observations in the context of our memo example. We start by examining
volatility under a f ixed policy, the one presented in Sec. 4.3.1, when the
population of memoranda is changing.

8z8/7/z-7

188 Minsky

Under our OC-scheme each subject S has an activator that determines
the type of memo object that can be read by it. This gives S a general authority
with respect to memoranda, which is independent of the particular memo
objects in the system. Indeed, no change is necessary in the domain of S
when new memo objects are generated or when existing ones are deleted
or changed. The authority makeup of S is stable under such changes. On
the other hand, under the AC-implementation of this system, whenever a
new memo object is created, its tickets must be given to all subjects allowed
to read it. Even worse, when some of the attributes xi of m are changed, the
tickets of m may have to be revoked from those subjects that are not to be
aUowed to read it any longer. Thus the control material must be constantly
changed to maintain the given policy.

Next, let us consider volatility under an incremental policy change.
Using again the memo system, suppose that in addition to read there is
another operator, update, whose primary activator under the OC-mechanism
is

(update, [memo], [text])

Suppose, also, that the set of memoranda that a subject is allowed to read
may be different from the set he is allowed to update. Imitially, S may have
the following two activators:

(read, [memo;; x l])
(update, [memo;; xl] , [text])

This means that S can read and update memos that satisfies xl .
Now, suppose that we wish to change this policy allowing S to update

only memos satisfying both xl and x2. All we have to do is to replace his
update activator with

(update, [memo;; xl & x2], [text])

For the AC case suppose that all the subjects have tickets that allow
them to call both read and update, and that the operator update requires the
right "update" from its argument just as read requires the right "read."
Initially S must have access to the set of tickets

{(m; read, update) I where m-satisfies-xl}

for all memos satisfying xl . To change the privileges of S as above, we must
replace all its memo tickets with the two sets

C1 = {(m; update) [where m-satisfies-xl-and-x2}
C2 = {(m; read) I where m-satisfies-x1}

An Operation-Control Scheme for Authorization in Computer Systems 189

Thus, the same" policy change that requires the replacement of a single
activator under an OC-scheme requires the replacement of many tickets
under the AC-scheme.

4.3.3. Efficiency of Enforcement

Two factors affect the enforcement efficiency:

1. The complexity of the computation necessary for the validation
of a given operation.

2. The degree to which validation can be performed at compile time.
We already saw that the enforcement mechanism that is necessary to support
the OC-scheme is essentially identical to that of the AC-scheme. In both
cases the operands must be checked against the operand patterns of the given
activator, which is the "template" in the case of Hydra. Of course, the com-
plexity of such parameter checking depends on the complexity of the acti-
vation patterns. Our scheme allows for essentially arbitrarily complex
patterns, but it does not require such complexity. If the OC-scheme were
used for the protection of operating systems, one would probably impose
severe restrictions on the syntax and semantics of activation patterns and
of G. Much more general patterns can be used in the context of information
systems, without a significant relative increase in the overhead due to pro-
tection.

As to the second factor which affects efficiency of enforcement, we claim
that our scheme facilitates compile-time validation, due to the greater
stability of its control material. In particular, it appears that the compiler
can do much of the necessary checking by analyzing the relatively static
"permanent-part" of the domain of a subject. However, more study is
necessary to substantiate this claim.

5. C O N C L U S I O N

The operation-control (OC) scheme introduced in this paper is a natural
generalization of the capability-based version of the access-control (AC)
scheme developed for operating systems. This generalization is achieved
by the introduction of the activators, which play an analogous role to that
of the tickets under the AC-scheme, and which do not require any new
enforcement effort. The use of activators together with tickets has a profound
effect on the authorization scheme: The representation of complex policies
becomes easier and more natural. The control material necessary for the
representation of policies tends to be less voluminous, less complex, and more

190 Minsky

stable. The stabil i ty o f the cont ro l mater ia l reduces the need for revoca t ion
and facil i tates compi le- t ime enforcement . I t is also believed tha t this s tabil i ty
and simplicity o f the cont ro l mater ia l would facil i tate the p r o o f o f policies.
I t should be po in ted out, however, tha t the p roposed scheme has yet to
p rove itself in the context o f a real system. There is work in progress tha t
a t tempts to base the pro tec t ion o f in format ion systems on this scheme.

A C K N O W L E D G M E N T S

I wish to thank Joseph Stein f rom the Hebrew Univers i ty of Jerusalem,
D a v i d Levine and Mat thew Morgens te rn f rom Rutgers, D o r o t h y Denning
f rom Purdue, and an anonymous reviewer for reviewing this paper , and for
V6ry useful comments .

REFERENCES

1. E. Cohen and D. Jefferson, "Protection in theHydra Operating System," in Proceedings
of the Fifth Symposium on Operational System Principles (November, 1975).

2. O. J. Dahl and C. A. R. Hoare, "Hierarchical Program Structures," in Structured
Programming, Dahl, Dijkstra, and Hoare, eds. (New York, Academic Press, 1972).

3. G. S. Graham and P. J. Denning, "Protection-Principle and Practice," in Proceedings
of the 1972 SJCC (AFIPS Press, 1972).

4. M. H. Harrison, et al., "On Protection in Operating Systems," Proceedings of the
Fifth Annual SIGOPS Conference (1975).

5. A. K. Jones and W. A. Wulf, "Towards the design of secure systems," Software Pract.
Exper. 321-336 (1975).

6. A. K. Jones and B. Liskov, "An Access Control Facility for Programming Languages,"
Technical Report, Carnegie Mellon University (1976).

7. B. Lampson, "Protection," in Proceedings of the Fifth Princeton Symposium on In-
formation Science and Systems (March 1971), pp. 437-443.

8. B. Lampson and S. Sturgis, "Reflections on an operating-system ~design," Commun.
ACM (May, 1976).

9. T. A. Linden, "Operating system structures to support security and reliable software,"
Surv. ACM, to be published.

10. B. Liskov and S. Zilles, "Programming with abstract data types," SIGPLAN Not.
(April, 1974).

11. N. Minsky, "Intentional resolution of privacy protection in database systems," Com-
mun. ACM (March, 1976).

12. N. Minsky, "An Activator-Based Protection Scheme," Rutgers Technical Report
(July, 1976).

13. M. Rosenblit and N. Minsky, "On the Decidability Problem of the Safety of Protection
Systems," Rutgers University Technical Report (February, 1976).

14. G. Popek and C. S. Kline, "Verifiable Secure Operating System Software" [AFIPS
(1974 NCC), 145-151], Proceedingsofthe1974NCC(AFIPSPress, 1972), pp. 145-151.

15. D. Redell, "Naming and Protection in Extendible Operating Systems," Ph.D. thesis,
University of California, Berkeley (1974).

An Operation-Control Scheme for Authorization in Computer Systems 19t

16. J. H. Saltzer and M. D. Schroeder, "The protection of information in computer
systems," Proe. IEEE 63(9) (September, 1975).

17. C. Weissman, "Security controls in the ADEPT-50 time-sharing system," in 1969
AFIPS Conference Proceedings, Vol. 35, pp. 119-133.

18. W. Wulf, "HYDRA: The kernel of a multiprocessor operating system," Comrnun.
ACM 17:337-345 (June, 1974).

19. W. A. Wulf, "ALPHARD: Towards a Language to Support Structured Programs,"
CMU Technical Report (April, 1974).

