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Various characterizations of codes are given with a finite synchronization 
delay. Decidability and bounds on the delay are established in particular 
c a s e s .  
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1. I N T R O D U C T I O N  

Considering words written as cycles, (71 we consider how the notion of coding 
fits in such a setting. The circular codes that we find are precisely the very 
pure codes of Ref. 6. Clearly the the noncircular codes leading to multiple 
decompositions of circular words have nonsynchronizing properties. This 
leads to the notion of parasite subwords (that is, a subdecomposition of a 
word, distinct from the main one), and to the classification of codes into 
three families: those with bounded parasitism (shown to be equivalent to 
codes with a finite synchronization delay), those with spread parasitism, and 
those with concentrated parasitism. It is known 16/that in the finite case very 
pure (and therefore circular) is equivalent to the existence of a finite syn- 
chronization delay, and a bound on the delay is found. This equivalence is 
not true in the regular case; however, we show that it remains true if we 
eliminate the simply defined family with concentrated parasitism. This 
allows us to find a decision procedure for finite synchronization delay in the 
regular case and a bound on this delay in a particular case. 
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2. P R E L I M I N A R I E S  

Let X be a nonempty finite set and let X* be the free monoid generated 
by X. The elements of X will be called letters and those of X* will be called 
words. A subset C of X* is a code if and only if any word of C* has a unique 
factorization in terms of elements of C; C* is then a free submonoid of X*. 
We know(2): 

Proposition 1. A subset of C* of X* is a free submonoid if and only if 
Vu, v ~ X * , u v a n d v u s C *  ~ u a n d v ~ C * o r u a n d v ~ C * .  

A c o d e  C is called very pure (5) if and only if Vu, v e X * , u v  and 
vu ~ C* ~ u and v ~ C*. Let C be a code. A pair (u, v) of elements of C* is 
synchronizing if and only if Vf f '  ~ X*, fuvf '  ~ C* implies fu  and vf' ~ C*. C 
has synchronization delay q if and only if every pair of elements of C q is 
synchronizing. C has a finite synchronization delay if and only if it is syn- 
chronizing for some q.(6) We add precision to this definition: if for every u in 
C, f u f ' ~  C* implies f and f '  belong to C*, C has a synchronizing delay equal 
to 0. (Clearly such codes have stronger synchronizing properties than those 
with a delay equal to 1.) Let us recall the following basic facts from automata 
theory and regular languages. For  any subset L of X* we define the following 
equivalence relation: Vf g ~ X * , f  ~-- g(L) if and only if Vh e X*, fh  ~ L 
gh E L. Clearly this is a right congruence for which L is saturated. L is 
regular if and only if the index of this relation is finite, in which case it is 
equal to the number of states of the minimal automaton accepting L. (1,~) 

3. C I R C U L A R  C O D E S  

We consider, following Rosenfeld, (7) words of X* written in a circular 
way by bending and juxtaposition of the first and last letter of the word, as 
shown in the following example: 

1 1  
0 0 

X = {0, 1) 01101000101 --~ 1 1 
0 1 0 O0 

We shall say that a code is circular if and only if every circular word formed 
from a word of C* admits a unique decomposition in terms of words of C. 
This loose definition may be clearly understood by looking at the two 
examples in Fig. 1. We have: 

Theorem 1. A code is circular if and only if it is very pure. 

Proof. We may note that if a code C is not circular, any circular word 
built from a word of C* that has distinct decompositions in words of C is 
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" N  
0 0 0 0 ~ ~ 0  

(a), 
Fig. 1. 

) 
(a) C = (00) is not circular. (b) C = (0"1) is circular. 

such that a parsing line of one of the decompositions is never in coincidence 
with a parsing line of  another decomposition; otherwise we could break the 
circular word at this place and find a word of C* having two distinct decom- 
positions. Now by looking at the following picture, the demonstration comes 
easily: if a circular word has two distinct decompositions, let u be any word 
starting with a parsing line of one of the decompositions and ending with a 
parsing line of the other decomposition; and let v be the remaining part. I f  u 
is in C*, by Proposition 1, v is also in C*; this creates a third decomposition 
with parsing lines in coincidence with those of  the two previous decom- 
positions (see Fig. 2). Now if C is not very pure, we have two words u and v 
that do not belong to C* such that u v  and v u  belong to C*. From u v  we 
build a circular word having two distinct decompositions, one starting with 
u and the other with v. 

4. P A R A S I T E  S U B W O R D S  

I f  we break a circular word having two distinct decompositions in a way 
that respects one of the decompositions, as shown in Fig. 3, we find a word 

Fig. 2 
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Fig. 3 

a of  C* that has another word b of  C* as a subword. As we saw previously, 
no parsing line of  a is in coincidence with a parsing line of  b; however b is not 
necessarily the largest subword of a in C*, and eventually prefixes or suffixes 
of  a may be in C*. The following definition formalizes this fact: 

Definition 1. Let C be a code, p and q positive integers, a = a~aa ... a~ 

(a~ ~ C), b = bab~ ... bq(bi E C); b will be called a parasi te  subword of a if and 
only if 3h, g ~ X *  (h or g r  C*) such that a = hbg, and if a~a2 "" ai = 
hbzb2 ".. b j ,  then i = p and j = q. 

C has bounded parasi t ism if and only if there exists an integer d such that 
no word of C ~, n > d, is a parasite subword of another word of C*. The 
smallest such integer d will be called the degree of bounded parasitism. 

A code C with unbounded parasitism has spread parasi t ism if and only 
if words of  C cannot have parasite subwords in C q with q arbitrarily large. 

A code C has eoncentratedparas i t i sm if and only if there exist words in 
C having parasite subwords in C q with q arbitrarily large. 

Clearly any code has one of these three mutually exclusive properties. 
Now if a code has unbounded parasitism, trivially it cannot have a 

finite synchronization delay. Conversely if a code C does not have a finite 
synchronization delay, then Vq3u, v ~ Cq, f ,  f ' E X* ,  a = f u v f '  e C*, a n d f u  or 
v f '  (~ C*. Let a = al "'" a , ,  u = ul ... uq, v ----- v~ ... vq be the decompositions 
of  a, u, v into words of  C. Then for any integers i, j,  k, l, i < j, k < l we 
cannot have both equalities at the same time: al . . .a~ = f u l  " " u k  and 
a~+~ " .  a ,  = v~ ... Vqf'.  Otherwise the word a~+x -.. a~- = u~+~ ... v~_z would 
have two distinct decompositions. So u or v is a parasite subword of a. We 
have therefore the simple: 

Proposition 2. A code C has bounded parasitism if and only if it 
has a finite synchronization delay. 

This proposition is clearly related to Theorem 3.1 of Restivo, (6) which 
we will use later on, reworded in our terminology: 

T h e o r e m  2. I f  a code has bounded parasitism of degree d, then it 
has a finite synchronization delay inferior or equal to d. 

Now if a code is not very pure, ~u, v r C* such that uv and vu belong to 
C*, which implies double decompositions of  circular words and directly the 
existence of parasite subwords. Now, using Proposition 1 twice, we see that  
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for any integers n, p the following holds: ab = (vu) '~ v(u(vu) ~ v) ~ u ~ C* and 
ba = (u(vu) '~ v)V u(vu) ~ v e C* but a = (vu) ~ v and b = (u(vu) n v)~ u do not 
belong to C*. Therefore we may have double decompositions involving an 
arbitrarily large number of elements in each decomposition. It follows 
immediately that a non-very pure code has unbounded parasitism, or: 

Proposition 3. Every code with a finite synchronization delay is very 
pure. 

The converse is not true in general; for instance, C = {0, 10"2} is cir- 
cular (because if uv e C* and u r C*, then vu ~ C*) and clearly without 
finite synchronization delay. However it is true in the finite case. (G) We will 
consider the regular case for which we need the following: 

L e m m a  1. A regular code C has concentrated parasitism if and only 
if Sh, g ~ X* ,  3a E CC*  such that ha*g C C. 

Proof. The condition is sufficient because it follows clearly from the 
definition that for every n, a ~ is a parasite subword of hang. Conversely, we 
have words in C with parasite subwords in C q, q arbitrarily large. Let c, bz, 
b2 .... , bq be words of C and blb~ :.. b~ be a parasite subword of c = hbi "'" b~g. 

Regularity implies that there will be two integers i and j ( i  < j )  such that 
hbz ... bi ~ hbz ... b~ (C); then hbx ... b~ =- hbz ... b~(bi+z "" b~) ~ for any 
integer n. Therefore hbl "'" bi(bi+i "'" bj)* bi+x "'" bq g C C. 

Lemma 2. A regular code with spread parasitism is not very pure. 

Proof. Let b = bzb2 "'" bq (b~ ~ C, 1 <~ i <~ q) be a parasite subword 
o f  a = al ... a~ = hbi  ... bq g (as ~ C, 1 <~ i <~ p). Let hi be the word 
associated to bi such that hbl  "" bi admits h~ as a suffix and h~ is a prefix of a~ 
for some k, such that hbl "'" b~-~ al ... ak_zhi .  Let us say that two such 
words h~ and hj are equivalent if and only if they correspond to the same ak, 
which implies that b~+~ .-- b~ is a subword of a~. As q is arbitrarily large and 
spread parasitism implies that the difference between j and i is bounded, 
there will be an arbitrarily large number of equivalence classes. As C* is 
regular, we may find two words hi and hj (i < j )  in two different classes such 
that hi =-- hj (C*) (see Fig. 4). Let us def inefas  the word b~+~ ".. bj = f h ~ .  It 

. . . .  I - - t . . . .  

bj 
Fig. 4 
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is clear that h i f a n d f h j  both belong to C*; now we have h i f  =-- hJ(C*)  and, 
as h i f e  C*, then h j f~  C*. Therefore, using Proposition 1 and the fact that if 
ha and f were in C* then fhj  = b~+l "'" bj would have two distinct decom- 
positions, we see that C is not very pure. 

5. M A I N  R E S U L T S  

As a consequence of Lemma 2 and Propositions 2 and 3, we have the 
following: 

Theorem 3. Let C be a regular code; then C has a finite synchroniza- 
tion delay if and only if C is very pure with no concentrated parasitism. 

Theorem 4. I t  is decidable whether or not a regular code has a 
finite synchronization delay. 

Proof. We verify first if C is very pure; if it is not, then it will not have a 
finite synchronization delay. This is decidable by considering the syntactic 
monoid M (4) associated with C*: let H be the homomorphism from X* onto 
M. As a direct consequence of the definitions, we see that C is very pure if and 
only if Vu, v ~ X*, H(u) H(v) ~ H(C*) and H(v) H(u) c C* imply that H(u) 
and H(v) both belong to H(C*). As M is finite, this verification is always 
possible. Now if C is found to be very pure, we have to examine it for con- 
centrated parasitism, that is (by Lemma 1), whether Sh, g e X* and a ~ CC* 
such that ha*g C C. This property is characteristic enough to be detected 
immediately in many cases; otherwise let s be a state of the minimal auto- 
maton accepting C, different from the dead state (sX* = s) such that 

{m c X* I sm = s} n C* 

is not reduced to the empty word; then C has concentrated parasitism. 
Conversely, if C has concentrated parasitism, it is clear that we will find such 
a state. So we have to verify whether the intersections of  a finite number of 
regular languages with a given regular language are reduced to the empty 
word, which is decidable. 

Now we give bounds on the synchronizing delay in a particular case. 
Let us recall that a prefix code is a set of  words C such that no word of C is a 
strict prefix of another word of C. 

Theorem 5. Let C be a regular prefix code. I f  C has a finite 
synchronization delay d, d is less than the number of states of  the minimal 
automaton accepting C*. 
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Proof. Proposition 2 tells us that C has bounded parasitism of degree 
n for some integer n, and Theorem 2 implies that n is an upper bound for d. 
Assume that n is equal to the number of  states of  the minimal automaton 
accepting C*. Let b --- b t  . . .  b~ (bi  ~ C,  1 ~ i <~ n)  be a parasite subword of 
a = a 1 " ' "  a~ = hobz "'" b~g ,  (ai  ~ C,  1 <~ i <~ p) .  We can assume that a is 
the shortest sequence ae "-" a~ having b as a parasite subword and therefore 
that h0 is a prefix of  a~. As C is a prefix code and b is a parasite subword, 
h0 ~ C*. As in the proof  of  Lemma 2, let hi (1 ~< i ~< n) be the suffix of  
hobl  "'" bi  which is a prefix of  ak for some k; that is, hob1 "'" bi  = a l  "'" a~_~hi .  

I f  hl were reduced to the empty word, we would have hob ~ .. .  bi  = a~ .. .  ak_~ �9 

By definition of hi ,  hi = ae_l ,  this is impossible since the empty word cannot 
be an element of a code. Now, as we have n § 1 words hi (0 ~< i ~< n), two 
of them will be such that hi  ~ h i ( C * )  with i < j. I f  1 ~ i < j ~< n, hi and hj 
must be prefixes of  the same a~ ; otherwise we saw that it would imply that C 
is non-very  pure, in contradiction with the assumption that C has a finite 
synchronization delay. Exactly the same proof  holds if we allow i = 0. So hi 
is a prefix of  hi ,  which is a prefix of a~, with 0 ~< i < j  ~< n. Let hj = 
hibi+z "'" b~ and a~ = hib i+l  "'" b j f .  For  any integer m, we have 

h i ~ h i ( b ~ + ~  ""  b~) ~ (C*) 

and, therefore, hi(b i+l  "'" b~)m f s C* .  For m larger than n, (bi+z "'" b j )  ~ will 
not be a parasite sequence of hi (b i+l  "'" bj)m f = c l  . . .  Cq (ci  ~ C,  1 <. i <~ q) .  

Therefore we will find integers l, r, t (r < q) such that 

hi (b i+l  "'" b~) t bi+z "'" b~ = c1 "'" cr E C *  

So we have 

x = hi(bi+~ "'" b~) ~ bi+~ "'" bzbt+~ "'" b~ = hi(bi+~ "")~+1 ~ C C *  

and, as x ~ h i ( C * ) ,  hi  belongs to C*. 
Therefore i v ~ 0 and, as C is a prefix code, we have hi = ak �9 This implies 

hob1 . . .  b~ = a t  "'" ak_ lh i  = a l  "'" a k .  By definition of a parasite sequence, 
we find i = n, in contradiction with 0 ~< i < j ~< n. I f  no element of  C ~ is 
a parasite subword of an element of  C * ,  a f o r t i o r i  no element of  C m ( m  >~ n)  

will be, and the proof  is concluded. 

A D D E N D U M  

After this paper was submitted, the author was informed that Theorem 3 
had been previously proved under a slightly different form by A. Restivo, 
which will appear in T h e o r e t i c a l  C o m p u t e r  S c i e n c e .  
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