
International Journal o f Computer and Information Sciences, Vol. 5, No. 2, 1976

Circular Codes and Synchronization
J.-L. Lassez 1

Received June 1975; revised August J975

Various characterizations of codes are given with a finite synchronization
delay. Decidability and bounds on the delay are established in particular
c a s e s .

KEY WORDS: Codes; regular languages; synchronization.

1. I N T R O D U C T I O N

Considering words written as cycles, (71 we consider how the notion of coding
fits in such a setting. The circular codes that we find are precisely the very
pure codes of Ref. 6. Clearly the the noncircular codes leading to multiple
decompositions of circular words have nonsynchronizing properties. This
leads to the notion of parasite subwords (that is, a subdecomposition of a
word, distinct from the main one), and to the classification of codes into
three families: those with bounded parasitism (shown to be equivalent to
codes with a finite synchronization delay), those with spread parasitism, and
those with concentrated parasitism. It is known 16/that in the finite case very
pure (and therefore circular) is equivalent to the existence of a finite syn-
chronization delay, and a bound on the delay is found. This equivalence is
not true in the regular case; however, we show that it remains true if we
eliminate the simply defined family with concentrated parasitism. This
allows us to find a decision procedure for finite synchronization delay in the
regular case and a bound on this delay in a particular case.

Work done at Summer Research Institute of the Canadian Mathematical Congress, sup-
ported by the National Research Council of Canada.
D6partement de Physique-Mathdmatiques, Universit6 de Moncton, Moncton, Nouveau-
Brunswick, Canada.

211t
�9 1976 P lenum Publ ish ing Corporation, 227 Wes t 17th Street, N e w York, N.Y. 10011. No par t of this
publicat ion m a y be reproduced, s tored in a retr ieval system, or t ransmit ted , in any f o r m or by any means,
electronic, mechanicai , photocopying, microfi lming, recording, o r otherwise, wi thout wr i t ten permiss ion of
the publisher.

202 Lassez

2. P R E L I M I N A R I E S

Let X be a nonempty finite set and let X* be the free monoid generated
by X. The elements of X will be called letters and those of X* will be called
words. A subset C of X* is a code if and only if any word of C* has a unique
factorization in terms of elements of C; C* is then a free submonoid of X*.
We know(2):

Proposition 1. A subset of C* of X* is a free submonoid if and only if
Vu, v ~ X * , u v a n d v u s C * ~ u a n d v ~ C * o r u a n d v ~ C * .

A c o d e C is called very pure (5) if and only if Vu, v e X * , u v and
vu ~ C* ~ u and v ~ C*. Let C be a code. A pair (u, v) of elements of C* is
synchronizing if and only if Vf f ' ~ X*, fuvf ' ~ C* implies fu and vf' ~ C*. C
has synchronization delay q if and only if every pair of elements of C q is
synchronizing. C has a finite synchronization delay if and only if it is syn-
chronizing for some q.(6) We add precision to this definition: if for every u in
C, f u f ' ~ C* implies f and f ' belong to C*, C has a synchronizing delay equal
to 0. (Clearly such codes have stronger synchronizing properties than those
with a delay equal to 1.) Let us recall the following basic facts from automata
theory and regular languages. For any subset L of X* we define the following
equivalence relation: Vf g ~ X * , f ~-- g(L) if and only if Vh e X*, fh ~ L
gh E L. Clearly this is a right congruence for which L is saturated. L is
regular if and only if the index of this relation is finite, in which case it is
equal to the number of states of the minimal automaton accepting L. (1,~)

3. C I R C U L A R C O D E S

We consider, following Rosenfeld, (7) words of X* written in a circular
way by bending and juxtaposition of the first and last letter of the word, as
shown in the following example:

1 1
0 0

X = {0, 1) 01101000101 --~ 1 1
0 1 0 O0

We shall say that a code is circular if and only if every circular word formed
from a word of C* admits a unique decomposition in terms of words of C.
This loose definition may be clearly understood by looking at the two
examples in Fig. 1. We have:

Theorem 1. A code is circular if and only if it is very pure.

Proof. We may note that if a code C is not circular, any circular word
built from a word of C* that has distinct decompositions in words of C is

Circular Codes and Synchronization 203

" N
0 0 0 0 ~ ~ 0

(a),
Fig. 1.

)
(a) C = (00) is not circular. (b) C = (0"1) is circular.

such that a parsing line of one of the decompositions is never in coincidence
with a parsing line of another decomposition; otherwise we could break the
circular word at this place and find a word of C* having two distinct decom-
positions. Now by looking at the following picture, the demonstration comes
easily: if a circular word has two distinct decompositions, let u be any word
starting with a parsing line of one of the decompositions and ending with a
parsing line of the other decomposition; and let v be the remaining part. I f u
is in C*, by Proposition 1, v is also in C*; this creates a third decomposition
with parsing lines in coincidence with those of the two previous decom-
positions (see Fig. 2). Now if C is not very pure, we have two words u and v
that do not belong to C* such that u v and v u belong to C*. From u v we
build a circular word having two distinct decompositions, one starting with
u and the other with v.

4. P A R A S I T E S U B W O R D S

I f we break a circular word having two distinct decompositions in a way
that respects one of the decompositions, as shown in Fig. 3, we find a word

Fig. 2

204 Lassez

Fig. 3

a of C* that has another word b of C* as a subword. As we saw previously,
no parsing line of a is in coincidence with a parsing line of b; however b is not
necessarily the largest subword of a in C*, and eventually prefixes or suffixes
of a may be in C*. The following definition formalizes this fact:

Definition 1. Let C be a code, p and q positive integers, a = a~aa ... a~

(a~ ~ C), b = bab~ ... bq(bi E C); b will be called a parasi te subword of a if and
only if 3h, g ~ X * (h or g r C*) such that a = hbg, and if a~a2 "" ai =
hbzb2 ".. b j , then i = p and j = q.

C has bounded parasi t ism if and only if there exists an integer d such that
no word of C ~, n > d, is a parasite subword of another word of C*. The
smallest such integer d will be called the degree of bounded parasitism.

A code C with unbounded parasitism has spread parasi t ism if and only
if words of C cannot have parasite subwords in C q with q arbitrarily large.

A code C has eoncentratedparas i t i sm if and only if there exist words in
C having parasite subwords in C q with q arbitrarily large.

Clearly any code has one of these three mutually exclusive properties.
Now if a code has unbounded parasitism, trivially it cannot have a

finite synchronization delay. Conversely if a code C does not have a finite
synchronization delay, then Vq3u, v ~ Cq, f , f ' E X* , a = f u v f ' e C*, a n d f u or
v f ' (~ C*. Let a = al "'" a , , u = ul ... uq, v ----- v~ ... vq be the decompositions
of a, u, v into words of C. Then for any integers i, j, k, l, i < j, k < l we
cannot have both equalities at the same time: al . . .a~ = f u l " " u k and
a~+~ " . a , = v~ ... Vqf'. Otherwise the word a~+x -.. a~- = u~+~ ... v~_z would
have two distinct decompositions. So u or v is a parasite subword of a. We
have therefore the simple:

Proposition 2. A code C has bounded parasitism if and only if it
has a finite synchronization delay.

This proposition is clearly related to Theorem 3.1 of Restivo, (6) which
we will use later on, reworded in our terminology:

T h e o r e m 2. I f a code has bounded parasitism of degree d, then it
has a finite synchronization delay inferior or equal to d.

Now if a code is not very pure, ~u, v r C* such that uv and vu belong to
C*, which implies double decompositions of circular words and directly the
existence of parasite subwords. Now, using Proposition 1 twice, we see that

Circular Codes and Synchronization 205

for any integers n, p the following holds: ab = (vu) '~ v(u(vu) ~ v) ~ u ~ C* and
ba = (u(vu) '~ v)V u(vu) ~ v e C* but a = (vu) ~ v and b = (u(vu) n v)~ u do not
belong to C*. Therefore we may have double decompositions involving an
arbitrarily large number of elements in each decomposition. It follows
immediately that a non-very pure code has unbounded parasitism, or:

Proposition 3. Every code with a finite synchronization delay is very
pure.

The converse is not true in general; for instance, C = {0, 10"2} is cir-
cular (because if uv e C* and u r C*, then vu ~ C*) and clearly without
finite synchronization delay. However it is true in the finite case. (G) We will
consider the regular case for which we need the following:

L e m m a 1. A regular code C has concentrated parasitism if and only
if Sh, g ~ X* , 3a E CC* such that ha*g C C.

Proof. The condition is sufficient because it follows clearly from the
definition that for every n, a ~ is a parasite subword of hang. Conversely, we
have words in C with parasite subwords in C q, q arbitrarily large. Let c, bz,
b2 , bq be words of C and blb~ :.. b~ be a parasite subword of c = hbi "'" b~g.

Regularity implies that there will be two integers i and j (i < j) such that
hbz ... bi ~ hbz ... b~ (C); then hbx ... b~ =- hbz ... b~(bi+z "" b~) ~ for any
integer n. Therefore hbl "'" bi(bi+i "'" bj)* bi+x "'" bq g C C.

Lemma 2. A regular code with spread parasitism is not very pure.

Proof. Let b = bzb2 "'" bq (b~ ~ C, 1 <~ i <~ q) be a parasite subword
o f a = al ... a~ = hbi ... bq g (as ~ C, 1 <~ i <~ p). Let hi be the word
associated to bi such that hbl "" bi admits h~ as a suffix and h~ is a prefix of a~
for some k, such that hbl "'" b~-~ al ... ak_zhi . Let us say that two such
words h~ and hj are equivalent if and only if they correspond to the same ak,
which implies that b~+~ .-- b~ is a subword of a~. As q is arbitrarily large and
spread parasitism implies that the difference between j and i is bounded,
there will be an arbitrarily large number of equivalence classes. As C* is
regular, we may find two words hi and hj (i < j) in two different classes such
that hi =-- hj (C*) (see Fig. 4). Let us def inefas the word b~+~ ".. bj = f h ~ . It

. . . . I - - t

bj
Fig. 4

206 Lassez

is clear that h i f a n d f h j both belong to C*; now we have h i f =-- hJ(C*) and,
as h i f e C*, then h j f~ C*. Therefore, using Proposition 1 and the fact that if
ha and f were in C* then fhj = b~+l "'" bj would have two distinct decom-
positions, we see that C is not very pure.

5. M A I N R E S U L T S

As a consequence of Lemma 2 and Propositions 2 and 3, we have the
following:

Theorem 3. Let C be a regular code; then C has a finite synchroniza-
tion delay if and only if C is very pure with no concentrated parasitism.

Theorem 4. I t is decidable whether or not a regular code has a
finite synchronization delay.

Proof. We verify first if C is very pure; if it is not, then it will not have a
finite synchronization delay. This is decidable by considering the syntactic
monoid M (4) associated with C*: let H be the homomorphism from X* onto
M. As a direct consequence of the definitions, we see that C is very pure if and
only if Vu, v ~ X*, H(u) H(v) ~ H(C*) and H(v) H(u) c C* imply that H(u)
and H(v) both belong to H(C*). As M is finite, this verification is always
possible. Now if C is found to be very pure, we have to examine it for con-
centrated parasitism, that is (by Lemma 1), whether Sh, g e X* and a ~ CC*
such that ha*g C C. This property is characteristic enough to be detected
immediately in many cases; otherwise let s be a state of the minimal auto-
maton accepting C, different from the dead state (sX* = s) such that

{m c X* I sm = s} n C*

is not reduced to the empty word; then C has concentrated parasitism.
Conversely, if C has concentrated parasitism, it is clear that we will find such
a state. So we have to verify whether the intersections of a finite number of
regular languages with a given regular language are reduced to the empty
word, which is decidable.

Now we give bounds on the synchronizing delay in a particular case.
Let us recall that a prefix code is a set of words C such that no word of C is a
strict prefix of another word of C.

Theorem 5. Let C be a regular prefix code. I f C has a finite
synchronization delay d, d is less than the number of states of the minimal
automaton accepting C*.

Circular Codes and Synchronization 207

Proof. Proposition 2 tells us that C has bounded parasitism of degree
n for some integer n, and Theorem 2 implies that n is an upper bound for d.
Assume that n is equal to the number of states of the minimal automaton
accepting C*. Let b --- b t . . . b~ (bi ~ C, 1 ~ i <~ n) be a parasite subword of
a = a 1 " ' " a~ = hobz "'" b~g , (ai ~ C, 1 <~ i <~ p) . We can assume that a is
the shortest sequence ae "-" a~ having b as a parasite subword and therefore
that h0 is a prefix of a~. As C is a prefix code and b is a parasite subword,
h0 ~ C*. As in the proof of Lemma 2, let hi (1 ~< i ~< n) be the suffix of
hobl "'" bi which is a prefix of ak for some k; that is, hob1 "'" bi = a l "'" a~_~hi .

I f hl were reduced to the empty word, we would have hob ~ .. . bi = a~ .. . ak_~ �9

By definition of hi , hi = ae_l , this is impossible since the empty word cannot
be an element of a code. Now, as we have n § 1 words hi (0 ~< i ~< n), two
of them will be such that hi ~ h i (C *) with i < j. I f 1 ~ i < j ~< n, hi and hj
must be prefixes of the same a~ ; otherwise we saw that it would imply that C
is non-very pure, in contradiction with the assumption that C has a finite
synchronization delay. Exactly the same proof holds if we allow i = 0. So hi
is a prefix of hi , which is a prefix of a~, with 0 ~< i < j ~< n. Let hj =
hibi+z "'" b~ and a~ = hib i+l "'" b j f . For any integer m, we have

h i ~ h i (b ~ + ~ "" b~) ~ (C*)

and, therefore, hi(b i+l "'" b~)m f s C* . For m larger than n, (bi+z "'" b j) ~ will
not be a parasite sequence of hi (b i+l "'" bj)m f = c l . . . Cq (ci ~ C, 1 <. i <~ q) .

Therefore we will find integers l, r, t (r < q) such that

hi (b i+l "'" b~) t bi+z "'" b~ = c1 "'" cr E C *

So we have

x = hi(bi+~ "'" b~) ~ bi+~ "'" bzbt+~ "'" b~ = hi(bi+~ "")~+1 ~ C C *

and, as x ~ h i (C *) , hi belongs to C*.
Therefore i v ~ 0 and, as C is a prefix code, we have hi = ak �9 This implies

hob1 . . . b~ = a t "'" ak_ lh i = a l "'" a k . By definition of a parasite sequence,
we find i = n, in contradiction with 0 ~< i < j ~< n. I f no element of C ~ is
a parasite subword of an element of C * , a f o r t i o r i no element of C m (m >~ n)

will be, and the proof is concluded.

A D D E N D U M

After this paper was submitted, the author was informed that Theorem 3
had been previously proved under a slightly different form by A. Restivo,
which will appear in T h e o r e t i c a l C o m p u t e r S c i e n c e .

208 Lassez

A C K N O W L E D G M E N T

I wish to thank the referees for their many and valuable comments.

REFERENCES

1. A. Ginzgurg, Algebraic Theory of Automata (Academic Press, New York, 1968).
2. J.-L. Lassez, On the structure of systematic prefix codes, Int. d. Comput. Math., Section

A 3, 177-188 (September 1972).
3. R. McNaughton and S. Papert, Counter Free Automata (MIT Press, Cambridge,

Massachusetts, 1971).
4. R. McNaughton and S. Papert, "The Syntactic Monoid of a Regular Event," in Algebraic

Theory of Machines, Languages and Semigroups, M. A. Arbib, ed. (Academic Press,
New York, 1968), pp. 29%312.

5. A. Restivo, "Codes and Aperiodic Languages," in Conference on Automata Theory
and Formal Languages, Bonn University, July 9-12, 1973.

6. A. Restivo, On a question of McNaughton and Papert, Inf. Control 25(1), 93-101
(May 1974).

7. A. Rosenfeld, A note on cycle grammars, Inf. Control 27(4), 374-377 (April 1975).

Printed in Belgium

