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Pattern Classes: A Technique for 
Recovering Their Distributions 

Douglas Dorrough 1 
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Many statistical pattern-recognition techniques depend for their application 
on the generation of one or more prototype patterns for each decision class. 
In turn, the determination of prototypes is dependent on the underlying 
probability distribution associated with a given class and that distribution's 
relationship to the distributions associated with the remaining classes. If 
these distributions are known, the problem of classification is considerably 
less complex than if they are unknown. The problem of recovering an unknown 
underlying distribution is one that has received considerable attention. 
The results thus far, however, are nonpractical. A practical technique that 
makes use of certain parameters related to sample size is presented and 
verified. 

KEY W O R D S :  Pattern recognition; distribution recovery; density estima- 
tion; clustering algorithms; fault isolation. 

1. I N T R O D U C T I O N  

The major i ty  of reported statistical pat tern-recogni t ion techniques involve 
the generat ion of one or more prototype pat terns for each decision class. In  
general, the choice of a prototype pa t te rn  depends on  the set of sample 
pat terns  in a given class and  its interrelat ion with the sample sets in each 
of  the remaining  classes. More  specifically, the de terminat ion  of  prototypes 
is a funct ion  of the under ly ing probabi l i ty  dis t r ibut ion associated with a 
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given class and its interrelation with the distributions associated with the 
remaining classes. If the distributions are known, the classification problem 
can be greatly simplified. The problem of accurately recovering an unknown 
underlying distribution (or density) associated with a collection of samples 
has received considerable attention. (z) Parzen (2~ has treated a general class 
of consistent estimators for the one-dimensional case. Most of his results 
have been extended to the multidimensional case by Murthy (a,4) and 
Cacoullos] 5) with stronger consistency results obtained by Nadaraya/~,v) 

All of these results focus on estimators of the form 

f 
~ 

fM(X) = KM(X, y) dFM(y) 
- - c o  

_-- __1 ~ Ku(x, Xi) 
M i=1 

where X~ ,..., X~ is a sequence of independent identically distributed random 
variables with probability density function f,  FM denotes the empirical 
distribution function based on the first M observations, and K denotes the 
nonnegative Borel "weighting" function made to satisfy differing conditions 
for each set of results. 

The indicated results are within the class of density estimator densities 
(ded). All of them are asymptotic and consequently of little practical utility. 
To make them usable, an adequate estimate of certain parameters must be 
obtained for the sample size involved in the recovery problem. The distribu- 
tion recovery techniques described below provide a method for estimating 
the requisite parameters and for supplying relatively accurate estimates of 
the underlying distributions associated with sample sets of patterns. Con- 
sequently, the techniques have strong application to the problem of designing 
pattern-recognition systems that will permit, among other things, better fault 
search and fault isolation policies. 

2. P A T T E R N - R E C O G N I T I O N  P R O B L E M  

The significant applications of statistical pattern-recognition methodol- 
ogy usually involve patterns of great complexity, where complexity implies 
input patterns of high dimensionality. The enormous mass of data associated 
with complex pattern-recognition tasks has prevented elegant solutions to the 
problem. Implicitly involved in most of the current pattern-recognition 
techniques are strong assumptions about the underlying distribution from 
which the sample set of input patterns are drawn. The generalization capa- 
bility of designs based on such techniques is usually tested by rating the 
performance of the recognition system using a relatively small set of patterns 
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that were not used in the design process. Although this method of measuring 
generalization capability is currently in wide use, it is usually conceded by 
investigators in the field of pattern recognition that the true generalization 
capability of a design may differ considerably from the rating calculated by 
such a testing procedure. It is also conceded that, if accurate estimates of the 
underlying distributions associated with each pattern class were available, 
designs with superior generalization capabilities could be produced. This is 
particularly, though not exclusively, true of pattern-recognition systems that 
classify on the basis of the principle of maximum likelihood. 

]n Section 3, a technique for recovering the distribution density asso- 
ciated with a given class of patterns (represented by a collection of N- 
dimensional vectors) is discussed. 

If it is assumed that a good estimate of the distribution associated with 
a given class of patterns is obtained, the next task is to represent this distri- 
butional information using a finite number of "prototype" vectors. For 
reasons of design economy, this number should be much less than the actual 
number of sample patterns in the class being considered. In Section 4, a 
"clustering" technique is discussed. A "cluster point" (or vector) is defined 
as a point at which the estimate of the underlying distribution density 
assumes (locally) a maximum value. These cluster points are identified with 
the "prototype" vectors mentioned earlier. Finally, application of these 
techniques to pattern-recognition is presented in Section 5. 

3. D I S T R I B U T I O N  R E C O V E R Y  

Let (x~)~ be a set of identically distributed N-dimensional random 
vectors. An empirical distribution function FM is defined by the expression 

1 . inumber of observations xl~ i 
FM(X1,  X2 ... . .  XN) =- ~ ~such that x~ -k ~< xj t (1) 

where j = 1, 2,..., N. 
An estimator fM for the N-variate dens i tyf i s  defined as 

N 

where, for the applications of interest , / is  assumed to be everywhere contin- 
uous. In the definiendum, the function H satisfies the following conditions: 

S f" "'" H ( x 1 ,  X 2 . . . . .  XN) dxl "'" dxN = 1 
- c ~  - o ~  

H ( x 1 ,  x2 .. . . .  XN) = H ( •  , =kx2 ,..., :~xN) >~ 0 

lira ]1 x [[ H(x)  = 0 
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where Jl x Ii is given by the definition 

I N 2tl/2 

and where bn > 0 for any n = 1, 2,..., N. 
It is easily demonstrable that Eq. (2) is equivalent to 

I f i ( x )  = ~ t  b,~ E H{bl (x l  - -  x l  k) ..... bN(Xu --  XNk)} 
'n=l k=l 

(3) 

For the one-dimensional case, estimators of the type given by Eqs. (2) or (3) 
have been considered by Parzen. {2) As indicated, his results were extended to 
the multidimensional case by Murthy, (4) who demonstrated that, if the b ,  are 
functions of the sample size M such that the conditions 

(i) 13~I-n ~ b n = M-~lim bn(M) = co for n = 1, 2, . . ,  N 

M / N  

(ii) 1Mira I ]  b n  = ( ~  

are satisfied, then fM is a consistent estimate of f at every point x. More 
precisely, if condtitions (i) and (ii) are satisfied, then at every point x 

and 

lim E{fM(X)} ~- f ( x )  
M~c~ 

lim var{fM(x)} =- 0 M-> oo 

For purposes of application and where Mis  finite, asymptotic estimations 
of  the form under consideration are useless unless a technique for deter- 
mining b = (bl,  b2 .... , bN) is available for a given M. Such a technique does 
exist. Its theoretical basis is summarized below. 

3.1. Applicable Density Function Approximation 

In order to evaluate b as a function of M, as well as those properties 
intrinsic to the sample, it is here assumed that b,~ and a parameter 

Pn = P( M,  cl , c2) > O 

are related by the equation 

1 1 M M 

b-~ = " M ( M -  1) ~ ~ ai~n exp(--p,~ai~) (4) 
i=1 5=1 
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where q ,  c2 --~ parameters associated with the sample set and a~j~ --= (x~ ~ -- 
x.~) 2, such that i a n d j  refer to the ith andj th  sample vector. 

The problem of determining b.  is thus traded for the problem of deter- 
mining p~. The parameters e~ and e~ are specifically associated with the set 

N 
a M 

~ = 1  

derived from the original sample set (x~)~'=l of random vectors. 
It remains to state and demonstrate certain relationships between b~ 

and p~ such that the indicated trade becomes valid. The required relation- 
ships are given by the following two theorems, whose extensive proofs are 
given elsewhere. (s~ 

If  it is assumed that, for n = 1, 2,. . ,  N, b~ is given by Eq. (4), then 

for each n. If  

and 

then 

lira pn(M, cl ,  c2) = co ~ lim b,~(M) = co 
M ~ m  ~Mr--> m 

1 M M 

~,~(M) ~ M ( M -  1) Z Z aij,~ 
i = 1  J = l  

l im/*,(M) =/*~ < co 
3ar~ oo 

(T-I) 

M / N  

lim [ I  b, = co ~ p,  = o(log M) (T-II) 
M-+ m 

qq=l  

These results as well as those of Eq. (3) indicate that an expression for p~ 
of the form 

_ 3. log(M "[xn(M) 1/~) P" ~.(M) 

should be investigated, with 
1 M M 

tz"(M) - -  M ( M -  1) ~ ~ a~jn 
i = 1  J=l 

where/ ,n(M) and 3~ are parameters that either may be extracted from the 
sample set or whose near optimum value is easily obtained. 

3.2. E x p e r i m e n t a l  Results 

A goodness-of-fit computer program, (9) called SIMFIT, that checks the 
accuracy of an estimate against known distributions was applied to (I) the 

8z8/5/z-6 
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one-dimensional continuous case, (II) the two-dimensional case, and (III) the 
two-dimensional discrete case. 

I f R  is used to denote the set of points on the x plane, the known distribu- 
tions for case I are of the general form 

R 

f (x )  = Z pigi(x) (5) 
i = 1  

with gl denoting Gaussian density functions having different means and 
possibly different variances. The normalizer coefficients Pi denote the ratios 
of the number of samples taken from the ith Gaussian distribution (or 
mixture) to the total number of samples. 

For case II, the two-dimensional extension is straightforward: 

R R 

f (x ,  y) = Z ~, Pij gi~(x, y) (6) 
i = 1  5=1  

The known distributions for case III are given respectively by the equation 

-, ' ,)  
= 

where (x, y) is a two-dimensional random variable and 0 ~< x § y ~ 4, and 
by the equation 

f( t ,  )t) = A~e-~/t! (8) 

where t ---- 0, 1, 2,... and )t > 0. 
The actual distance D between an estimate fM and the density func t ionf  

being estimated is given by SIMFIT according to the general metric 2 

D = E{t l f  - f ~ ,  It ~} 
Sample generation was accomplished by equally partitioning the unit interval 
on the probability axis into K subintervals, where K is always equal to the 
number of samples desired. The method is illustrated in Fig. 1. 

The results of executing the indicated computer programs for the one- 
dimensional continuous case are shown in Figs. 2-18. Figures 2-9 illustrate 
the results obtained for a known distribution densi tyfgiven specifically by 

1 l l e x p [  (x - -2 )~  1 ( x - ?  1) 2 
f (x)  - - 3  V'2~r 8 ] + ~exp [ 8 ] 

+ e x p [  (x--5)2]I2 (9) 

This metric is actually approximated by an average over Monte Carlo trials. 
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G 

K Equally 
Spaced 

Subintervals 

. _~~ Midpoints �9 of Interval 

K-Z K 

Fig. 1. Sample set generator. 

Figures 2-5 give the results for 150 sample points as 3 decreases from 0.95 to 
0.5 and where log M .  i~(M)~/~ is replaced by log M. 

Approximation of the distribution of Eq. (9) is given by Figs. 6-9 for 
75 sample points. Thus, Fig. 2 represents the best approximation, with 
accuracy steadily decreasing until the worst case is reached in Fig. 9. 

Figures 10-13 represent the results obtained for the case where 

1 Iexp [ (x -5 1.873) 2 ( x -  5.873) z 
f ( x ) -  3 V'2: 2 ] q- exp [ 2 -]I (10) 

This case was considered to illustrate the ability of the recovery technique to 
approximate bimodal distributions with sharp peaks that are strongly 
separated. Once again the figures are arranged in order of decreasing ac- 
curacy of approximation. The behavior as 3 (or the log function of 3) varies 
is consistent with that shown in the block of Figs. 2-9. Experiments indicated, 
of course, that better representation in the neighborhood of the modes would 
have been obtained if a larger sample had been used. 
To illustrate the effect of sample size more strongly, the following case was 
considered and illustrated in Fig. 14-17. 

lexp [ f(x) = ~ 8 ,-}- 10 exp [-- 0.02 ] 

+ exp [ (x  11) 
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This says that f ( x )  is a randomized mixture of the form 

8 

f ( x )  = ~ p~f~(x) 
i = l  

where f i (x)  ~,, N(txl, ~i 2) and Pl = ~, P~ = ~, P3 = 3. The small standard 
deviation in the second term and the fact that the means of the first and third 
terms are widely separated produce an f with a large narrow peak in the 
neighborhood of the point x = 0.5 even with only 25 points taken from the 
center distribution. 

As the results shown in Figs. 12-15 indicate, the approximation was 
very accurate in well-represented regions but rather poor in the neighborhood 
of the point x = 0.5. However, the sharp peak was accurately located in each 
case. 

If  these results and adequate sample sizes are used, it is clear that 
extremely close approximations with accurate mode location can be obtained. 
To stress the importance of the results, one need only note that an arbitrary 
choice of the vector parameter b could lead to an oversmoothed approxima- 
tion to the underlying (and unknown) density function or, at the other 
extreme, could result in an approximation that has as many peaks (modes) as 
there are sample points. Figure 18 illustrates the degraduation that can occur 
when too large a value of b is used. The case illustrated in Fig. 18 is identical 
to that shown in Fig. 6 except that a value of b four times that calculated to 
plot Fig. 6 was used. Note that already extraneous peaks have begun to 
appear. The degradation in accuracy would be much more apparent if the 
sample size were decreased or if b (as used) were increased. 

If [R] denotes the set of points on the x, y plane, one of the known 
distributions for case II is given by a two-dimensional, normal random 
variable having the joint density 

f ( x ,  y) = 
1 

1 x--t~x) 2 p (  
• exp I-- 2 ( 1 -  p 2 ) [( cr~ -- 

G~j 

G x O'y 

(12) 

It can be demonstrated that the density denoted by Eq. (12) is that of the 
bivariate normal. Thus, the probability that a point (x, y) taken at 
random will be within the set [R] of  points on the x, y plane can be 
obtained by integrating the density over the region denoted by the set. 
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Hence, 

Pr[(x, y) E R] = f f  3(x, y) dy dx (13) 
R 

Frequently, a proof that 

f~o f~  3(x,y) d y d x =  1 (14) 
- o o  - o ~  

consists of showing that Eq. (12) can be rewritten as the product 

F .i ---1~ e -'w2/~' dw dv (15) 
~/2r -~ ~/2~r 

where 

and 

so that 

w = ( t*  - p v ) / ( l  - e 2) 

d w  = d ~ / ( 1  - -  p2) 

Since Eq. (15) denotes the product of two univariate normal densities, this 
relation is used by SIMFIT to empirically verify the approximation accuraties 
of the set of estimators under consideration. The same procedure applies to 
the bivariate extensions of Eqs. (9), (10), and (11). 

The density function defined by Eq. (12) and represented in Fig. 19 was 
almost perfectly estimated by the subcase of estimators under investigation. 
The approximation for p was respectively given by 

8 
p = ~ log[Mt~(M)l/q (16) 

and 
8 

p = ~ log M (17) 
/*klvl ] 

under conditions of 150 and 75 sample points, with 8 alternatively equal to 
0.95 and 0.5. Under such conditions, the estimation technique discussed does 
very well with an error range of 0.10 ~ for the density of Eq. (12) to 2 ~ for 
the bivariate extensions of Eqs. (9), (10), and (11). These include x distributed 
according to Eq. (9), y according to (10), x according to (10), y according 
to (11); x according to (9), y according to (11). A total of 30 cases was 
examined. 
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z = f ( x , y )  ~o r  z>K 

t91 

Fig. 19. Bivariate density function, 

Thus, experimental evidence indicates that the estimation technique 
presented approximates very accurately a significant number of uni- and 
bidimensional distributions of both the Gaussian and mixture types. 

During the indicated experimental assessments, it was discovered that 
the estimator being investigated could be used to recover accurately discrete 
bivarate densities like the ones given by Eqs. (7) and (8). Graphical represen- 
tation of the former, together with its recovery (given by the wedges), is 
supplied in Fig. 20. Recovery error is less than 2 ~.  Recovery representation 
of the latter is given by Fig. 21, in which a recovery error of 5 ~ obtains. 
Recovery for both was accomplished by 200 sample points. 

4. D E S C R I P T I O N  OF A N  A L G O R I T H H  FOR C L U S T E R I N G  

As indicated earlier in Section 3, each of the M patterns in the sample 
set of input patterns (associated with a given class of patterns) is assumed to 
be represented by an N-dimensional vector; e.g., the kth input pattern is 
written x k = (xl ~, x2k,..., XNk). A value is assigned to each vector y of N- 
dimensional input space by means of the distribution density function 

M N 

UM(Y) = A Z I1 exp[--b.(y. -- x .9  
k=l ~=1 
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f ix,  y} 

0.50 

0 . I0  

, / / /  
X 

Fig. 20. Graph of density function. 

where b,~ > 0, and  A > 0 is a normal iz ing  constant .  I f  the p rope r  values o f  
b,~ are chosen  ~ and  the sample  set [x~]~=l is large enough,  the local  max ima  
offM will closely app rox ima te  the modes  of  the under ly ing  d i s t r ibu t ion  f rom 
which  the sample  pa t te rns  are drawn.  In  this  invest igat ion,  the a lgor i thm for  
locat ing the local  m a x i m a  offM involves ei ther an i terat ive gradient  technique 
or  the use o f  M a t y a s '  r a n d o m  op t imiza t ion  theorems/1~ In  the interests  o f  
simplicity,  where the former  technique is used, it  is assumed tha t  b~ = b for  
n - -  1, 2,..., N, so tha t  the expression fo r fM is 

with 

M 

fM(Y) = A ~ e x p [ - - b  [[ y - -  x 7~ 1] 2] 
k = l  

N 

/I y - x 1~ I12 = Z ( y n  - Xn~) 2 
n = l  

8 j. N. Medick, in a personal communication (August 1967), has obtained an approximate 
lower bound for the choice of values for b that admits of easy numerical approximation: 

b ~ K M  ~ .  [ f R N f ~ d V ~ . ] ~ / 4 / f R N ( X  - -  2)2f ~ dV~ 

where K is a positive constant that depends for its value on the kernel of the estimator 
fw expression, and RN denotes the set of points on the x, y plane. 



c~ 

c~ 

C~ 

c~ 

'I 

~6~ suo!~,nq!~,s!(3 J!atI.L ~u!,~aAo~a~ Joj anb!utl~a/ V :sasse|~) u~a~,~ d 
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Let yO be an arbitrary starting point (with y0 not a stationary point offM); 
then the first approximation y~ is given by 

y~ = y0 § a0~0 
where 

II ~'(y~ 
ao = 2b f  M( Yo) 

~(y0) = gradient vector offM at y = y0 

~o _ ~(y0) [i.e., ~0 is a unit vector in the direction of ~(y0)] 
II ~,(y~ 

In general, y~ is given by 

where 

y~ = y~-X -l- a,,-l~ ~-I 

II y(Yr-911 
av-1 -- 2bfM(y,._z) 
~_~ 7(y ~-~) 

IL ?(y~-~)EI 

It can be demonstrated m~ that this choice of a~_l leads to a convergent 
process that results in a local maximum ("cluster point") offM. The technique 
generalizes to the case of interest, i.e., b~ not necessarily equal to b~. for 
i , j = l , . . . , N .  

5. A P P L I C A T I O N  T O  P A T T E R N  R E C O G N I T I O N  

Figure 22 shows the conceptual design of a recognition system that decides 
on the class membership of an input by calculating the probabilities of class 
membership for each of the individual classes. The actual decision is based 
on the maximum likelihood principle. The estimate of the underlying distribu- 
tion density f associated with a given class is approximated by a function 
h(x) that depends on the cluster points determined by fM and a set of N 
parameters that are determined to minimize the '"distance" between fM and 
h. A brief description of the method follows. 

Consider the distribution density estimatefM (where M is the number of 
samples in the data base associated with a given class), and the collection of 
prototypes (local maxima), z 1, z 2 ..... z ~1, obtained fromfM using the clustering 
algorithm. The points [z~]~L1 may be used to yield an approximation to the 
underlying distribution density of the form ~ 

h~(x) ~- ~t ~ C~ ~I exp[--w~(x~ -- z~) ~] 
~=I n=l 

4 This form is similar to that used in the distribution recovery technique to obtain fM �9 
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where ~:~o = fM(zO, w~ > 0, and ;~ is a normalizing constant. The positive 
constants w~ are determined in order to minimize the quantity 

I I f M ( x )  - h~(x)ll  ~ 

If  I l f M -  h~ 1 !12 is large, the clustering algorithm may be used to find the 
local maxima of 

(fM -- h~l), i.e., z ~1+1, z ~+2 ..... z ~+~2 

The points of set [zk]~s are considered "second-order" cluster points and 
the augmented set ~rz kl~+~j~=~ contains more information about the underlying 
distribution in the sense that h~+~ is, in general, a closer approximation o f f  
than h ~ .  

Similarly, third-order, fourth-order, etc., cluster points can be defined 
and their efficiency in characterizing the distribution assessed using as a 
criterion the metric ] l f M -  h~+~+...~ L l] 2- In this way, a set of prototypes 
[zk]~L+~ +'''+~L can be generated. Although in general 

L 
lira ~ p~ ----- oo 
L-*r176 j = l  

the effect of choosing L such that 

L 

i=1  

can be effectively measured. 
As indicated, Fig. 22 actually represents a pattern-recognition scheme 

based on the maximum likelihood principle. For each class, the system 
develops the function 

qj N 

h~(x) = )b ~ ~:,,~ ~ exp{--w,j(x, -- z~J) "~} 
~'=1 n = l  

where j denotes the class and 

q~. ~ number of cluster points used in j th  class 

A~. ~ normalizing constant fo r j th  class 

~j  = f j ( z  ~j) 
�9 5 r j  ~t z ~j ~ rth cluster point o f j t h  class = (z i ,  z~ ..... z~) 

w ~ ~ (wz ~, w2~,..., who = vector that minimizes lPf~ -- h~j []2 
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A system such as that shown in Fig. 22 can be useful in determining 
"dominant"  regions in pattern space. For  class j a "strong" cluster point z ~j 
may be defined as a cluster point that is highly successful in separating the 
j th  class from the remaining classes, where the degree of success can be 
evaluated by examining the output of the ith subblock of the j th  block in 
Fig. 22 for each of the input patterns. Thus, if z i~ is a strong cluster point, one 
may associate z ~j with a "pure signal" representing a dominant feature of 
class j while neighboring values are z i~" degraded by "noise." "Dominant  
features" (where "features" are normally associated with the individual 
components of a pattern vector) may be acquired by entering a pattern 
vector with a subset of its components made equal to zero while measuring 
the effect on the ability of the ith subblock of the j th  block to separate the 
j th  class from the remaining classes. 

The FORTRAN program, together with approximate number of state- 
ments, for implementing the scheme of Fig. 12 is briefly described below. 
Computational burden for both the cluster decomposition and discriminant 
functions appears to be minimal. 

Let F ( x )  = e -~ 

Determine x, where 
N 

Y W . ( x .  - z . )  2 
i = 1  

x = 0 - 0  
-+DO1 i =  1, N 

X ~ -  X n - -  Z n 

x = x +  Wn*Xl*Xi 
--1 continue 

I = 2 ,  W = -  

I = 4 ,  W =2 } ~-~2 5 N  
I =  15, W =  
1 =  3, W - -  

Determine e �9 

y = l . 0  I = 3 ,  W 
F ( x ) , - 1 . 0  I = 3 ,  W 

- - + D O 2 i =  1,10 I - - 2 ,  W 

F ( x )  = F ( x )  + y  x I = 11, W 

y = y , y +  1 1 =  9, W 
I x = x * x  1 = 6 ,  W 
- - 2  continue 1 = 2, W 

1 
F ( x )  = F(s)  1 = 6, W 

8 N 

Let h(x)  = Z Al ( ie  - -  ~ W j ( x j  - -  z J )  2 
~=1 5=1 

- - 2 /  

-- 4 ,~-~280 

-=3  

8z8/5/2-8 
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Determine x 

x = 0 "0 
--~Do 3 n = 1, N 

X 3 ~ -  X n - -  Z ~  

X ~ x q -  W n * x a * x  a 

--3 continue 

q 

Determine ~ Afje -~ 
# = 1  

y = I  .0  
F ( x )  = 1 �9 0 

--+DO 4 i -- I, 10 

I F(x) = F(x) + x~ 
Y 

X 3  ~ X 3 * X 3 

y = - y , y + l  

--4 continue 

1 
Determine F(x )  - -  F(s )  

;t(x) = o �9 o 
F+DO 5 j = 1, q 

~" | A ( x )  = )t(x) ~- Z 1 * ~ * F ( x )  

L--5 continue 

\ 

I - -  3, W = ill 
I - - 2 ,  W = ~  
I== 5, W =  ~25N 
I =  15, W =  
I = 3 ,  W =  

I = 3 ,  W = 2  
1 = 3 ,  W = 2  
I = 2 ,  W = I  

I = 11, W = 1 

I ~ 6 ,  W = 3  
1 = 8 ,  W = 4  
I = 2 ,  W = I  

~300 

I = 2 ,  W =  
I = 15, W = 20q 

I = 3 ,  W =  

6. C O N C L U S I O N S  

When these techniques are applied (as with any that employ a distribu- 
tion estimate), it is important to start with a large data base. The degree of 
generalization that a final design is capable of providing is clearly dependent 
on how accurately the actual distribution of input patterns is represented by 
the sample set of input data. A large data base leads to high generalization 
capability. However, even with a relatively small data base, it appears that 
the described techniques provide very good generalization for classificatory 
systems based on maximum likelihood decisions. 

Further, the techniques described have the advantage that the design 
time varies linearly with the number of sample patterns employed. This 
constrasts markedly with many error-correcting design techniques, in which 
the sample patterns are introduced cyclically until a satisfactory recognition 
network is obtained. Under such conditions, design time (i.e., computing 
time) usually varies as the square or cube of the number of sample patterns. 

Finally, there remain several problems to be resolved. Thus, the perfor- 
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mance of  the distribution-recovering technique articulated in Section 3 should 
be checked against known N-dimensional  distributions, where N > 2. It  is 
also desirable that some explicit method for determining the values of  w~ that  
minimize Nfvt - -  h~ Ij 2 be developed. I f  this latter cannot  be done in closed 
form, an algori thm for iteratively determining w,~ should be generated. But 
these are problems requiring further investigation. 
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