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Pattern Classes: A Technique for
Recovering Their Distributions

Douglas Dorrough?!
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Many statistical pattern-recognition techniques depend for their application
on the generation of one or more prototype patterns for each decision class.
In turn, the determination of prototypes is dependent on the underlying
probability distribution associated with a given class and that distribution’s
relationship to the distributions associated with the remaining classes. If
these distributions are known, the problem of classification is considerably
less complex than if they are unknown. The problem of recovering an unknown
underlying distribution is one that has received considerable attention.
The results thus far, however, are nonpractical. A practical technigue that
makes use of certain parameters related to sample size is presented and
verified.

KEY WORDS: Pattern recognition; distribution recovery; density estima-
tion; clustering algorithms; fault isolation.

1. INTRODUCTION

The majority of reported statistical pattern-recognition techniques involve
the generation of one or more prototype patterns for each decision class. In
general, the choice of a prototype pattern depends on the set of sampie
patterns in a given class and its interrelation with the sample sets in each
of the remaining classes. More specifically, the determination of prototypes
is a function of the underlying probability distribution associated with a
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given class and its interrelation with the distributions associated with the
remaining classes. If the distributions are known, the classification problem
can be greatly simplified. The problem of accurately recovering an unknown
underlying distribution (or density) associated with a collection of samples
has received considerable attention.™ Parzen® has treated a general class
of consistent estimators for the one-dimensional case. Most of his results
have been extended to the multidimensional case by Murthy®% and
Cacoullos,® with stronger consistency results obtained by Nadaraya.(®?
All of these results focus on estimators of the form

P = [ K, 3 dF(7)

L
Mi

Mk

Kulx, X;)
1

where X; ,..., X, is a sequence of independent identicaily distributed random
variables with probability density function f, F,, denotes the empirical
distribution function based on the first M observations, and K denotes the
nonnegative Borel “weighting” function made to satisfy differing conditions
for each set of results.

The indicated results are within the class of density estimator densities
(ded). All of them are asymptotic and consequently of little practical utility.
To make them usable, an adequate estimate of certain parameters must be
obtained for the sample size involved in the recovery problem. The distribu-
tion recovery techniques described below provide a method for estimating
the requisite parameters and for supplying relatively accurate estimates of
the underlying distributions associated with sample sets of patterns. Con-
sequently, the techniques have strong application to the problem of designing
pattern-recognition systems that will permit, among other things, better fault
search and fault isolation policies.

2. PATTERN-RECOGNITION PROBLEM

The significant applications of statistical pattern-recognition methodol-
ogy usually involve patterns of great complexity, where complexity implies
input patterns of high dimensionality. The enormous mass of data associated
with complex pattern-recognition tasks has prevented elegant solutions to the
problem. Implicitly involved in most of the current pattern-recognition
techniques are strong assumptions about the underiying distribution from
which the sample set of input patterns are drawn. The generalization capa-
bility of designs based on such techniques is usually tested by rating the
performance of the recognition system using a relatively small set of patterns
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that were not used in the design process. Although this method of measuring
generalization capability is currently in wide use, it is usually conceded by
investigators in the field of pattern recognition that the true generalization
capability of a design may differ considerably from the rating calculated by
such a testing procedure. It is also conceded that, if accurate estimates of the
underlying distributions associated with each pattern class were available,
designs with superior generalization capabilities could be produced. This is
particularly, though not exclusively, true of pattern-recognition systems that
classify on the basis of the principle of maximum likelihood.

In Section 3, a technique for recovering the distribution density asso-
ciated with a given class of patterns (represented by a collection of N-
dimensional vectors) is discussed.

If it is assumed that a good estimate of the distribution associated with
a given class of patterns is obtained, the next task is to represent this distri-
butional information using a finite number of “prototype” vectors. For
reasons of design economy, this number should be much less than the actual
number of sample patterns in the class being considered. In Section 4, a
“clustering” technique is discussed. A “cluster point” (or vector) is defined
as a point at which the estimate of the underlying distribution density
assumes (focally) a maximum value. These cluster points are identified with
the “prototype” vectors mentioned earlier. Finally, application of these
techniques to pattern-recognition is presented in Section 5.

3. DISTRIBUTION RECOVERY

Let (x*¥)p_; be a set of identically distributed N-dimensional random
vectors. An empirical distribution function F,, is defined by the expression

1 (number of observations x*)

FM(xl 5 Xg 5eney xN) = M ) such that Xjk < X; s (1)

where j =1, 2,..., N.
An estimator f;, for the N-variate density fis defined as

Sulx) = J_i fo H b H{by(xy — Y1)seoos NGy — YN AF 3 (31 505 ) (2)

—® n=1

where, for the applications of interest, f'is assumed to be everywhere contin-
vous. In the definiendum, the function H satisfies the following conditions:

f J‘ H(xy , Xg gy Xn) dxy - dxy =1
H(xl > x2 seees xN) = H(ixl 3 ixz 3ty ixN) > O
lim | x||H(x) =0

[Ixil—>c0



168 Dorrough

where || x || is given by the definition

lx] = 2 DI

and where b, > Oforanyn=1,2,..., V.
It is easily demonstrable that Eq. (2) is equivalent to

Fua) = 3‘—14 [ bl 3 Hibs, — 5 balin — 29 O)

For the one-dimensional case, estimators of the type given by Egs. (2) or (3)
have been considered by Parzen.'® As indicated, his results were extended to
the multidimensional case by Murthy,® who demonstrated that, if the b, are
functions of the sample size M such that the conditions

) }}g}o b, = }}{}‘010 b (M) = © for n=1,2,.,N
MIN

(i) Jim El b, =

are satisfied, then f;, is a consistent estimate of f at every point x. More
precisely, if condtitions (i) and (ii) are satisfied, then at every point x

lim E{f(x)} = f(x)

and
Jim var{ (0} = 0

For purposes of application and where M is finite, asymptotic estimations
of the form under consideration are useless unless a technique for deter-
mining b = (b, , b, ..., by) is available for a given M. Such a technique does
exist. Its theoretical basis is summarized below.

3.1. Applicable Density Function Approximation

In order to evaluate b as a function of M, as well as those properties
intrinsic to the sample, it is here assumed that b,, and a parameter

pn=p(M, ¢, , ) >0
are related by the equation

bl_n = ml:—ﬁ z Z Aiipn exp(_p'ﬂaiin) (4)

=1 j=1
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where ¢, , ¢, = parameters associated with the sample set and ¢;;, = (x,,} —
x,%)?, such that 7 and j refer to the ith and jth sample vector.

The probiem of determining b, is thus traded for the problem of deter-
mining p,, . The parameters ¢, and ¢, are specifically associated with the set

N
{az’jn}é\,laﬁl H bn
n=1

derived from the original sample set (x7)}’, of random vectors.

It remains to state and demonstrate certain relationships between b,
and p, such that the indicated trade becomes valid. The required relation-
ships are given by the following two theorems, whose extensive proofs are
given elsewhere.®

If it is assumed that, forn = 1, 2,..., N, b,, is given by Eq. (4), then

\l}gi) pulM, e, ) = © = }}330 b(M) = oo (T-D
for each n. If

Iu’TL(M) M(M g ; awn

and
Hm g, (M) = pn < 00
then
. M/N
}}E&; ]—:[1 b, = o < p, = o(log M) (T-11)

These results as well as those of Eq. (3) indicate that an expression for p,,
of the form

8 1
. /15
pu = iy 1080 - (M)
should be investigated, with
1 M M
:u’n(M) = M(M — 1) 2:1 ]; Aijn

where u,(M) and 6, are parameters that either may be extracted from the
sample set or whose near optimum value is easily obtained.

3.2. Experimental Results

A goodness-of-fit computer program,® called SIMFIT, that checks the
accuracy of an estimate against known distributions was applied to (I) the

828/5/2-6
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one-dimensional continuous case, (II) the two-dimensional case, and (III) the
two-dimensional discrete case.

If R is used to denote the set of points on the x plane, the known distribu-
tions for case I are of the general form

flx) = ; Pi8A%) )

with g, denoting Gaussian density functions having different means and
possibly different variances. The normalizer coefficients p; denote the ratios
of the number of samples taken from the ith Gaussian distribution (or
mixture) to the total number of samples.

For case 1, the two-dimensional extension is straightforward:

f&x,») = Zl ZI Pis 8%, ¥) ©)

The known distributions for case III are given respectively by the equation

6\/7 5
(x)(y)(4 — X — y)
18
(4)
where (x, y) is a two-dimensional random variable and 0 < x + y <4, and

by the equation

f&x,y) = @)

F@, &) = Ae 1! 8

where t =0, 1,2,... and A > 0.
The actual distance D between an estimate f;, and the density function f
being estimated is given by SIMFIT according to the general metric?®

D = E{|f — ful®

Sample generation was accomplished by equally partitioning the unit interval
on the probability axis into K subintervals, where K is always equal to the
number of samples desired. The method is illustrated in Fig. 1.

" The results of executing the indicated computer programs for the one-
dimensional continuous case are shown in Figs. 2-18. Figures 2-9 illustrate
the results obtained for a known distribution density f given specifically by

[~ goe [ 55

10 = sl
on[- 5]

2 This metric is actually approximated by an average over Monte Carlo trials.

€)
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Fig. 1. Sample set generator.

Figures 2-5 give the results for 150 sample points as & decreases from 0.95 to
0.5 and where log M - u(M)'/ is replaced by log M.

Approximation of the distribution of Eq. (9) is given by Figs. 6-9 for
75 sample points. Thus, Fig.2 represents the best approximation, with
accuracy steadily decreasing until the worst case is reached in Fig. 9.

Figures 10-13 represent the results obtained for the case where

I (x + 1.873)2

o) == loxp [ —

- (x — 5.873)2

] + exp 3 ]; (10)

This case was considered to illustrate the ability of the recovery technique to
approximate bimodal distributions with sharp peaks that are strongly
separated. Once again the figures are arranged in order of decreasing ac-
curacy of approximation. The behavior as & (or the log function of 8) varies
is consistent with that shown in the block of Figs. 2-9. Experiments indicated,
of course, that better representation in the neighborhood of the modes would
have been obtained if a larger sample had been used.

To illustrate the effect of sample size more strongly, the following case was
considered and illustrated in Fig. 14-17.

+ exp [_ _(ic.giﬂz_]; an
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This says that f(x) is a randomized mixture of the form

f@=§ﬁmw

where fi(x) ~ N(u;, 0.2 and p; =%, p, =%, p; = 4. The small standard
deviation in the second term and the fact that the means of the first and third
terms are widely separated produce an f with a large narrow peak in the
neighborhood of the point x = 0.5 even with only 25 points taken from the
center distribution.

As the results shown in Figs. 12-15 indicate, the approximation was
very accurate in well-represented regions but rather poor in the neighborhood
of the point x = 0.5. However, the sharp peak was accurately located in each
case.

If these results and adequate sample sizes are used, it is clear that
extremely close approximations with accurate mode location can be obtained.
To stress the importance of the results, one need only note that an arbitrary
choice of the vector parameter b could lead to an oversmoothed approxima-
tion to the underlying (and unknown) density function or, at the other
extreme, could result in an approximation that has as many peaks (modes) as
there are sample points. Figure 18 illustrates the degraduation that can occur
when too large a value of b is used. The case illustrated in Fig. 18 is identical
to that shown in Fig. 6 except that a value of b four times that calculated to
plot Fig. 6 was used. Note that already extraneous peaks have begun to
appear. The degradation in accuracy would be much more apparent if the
sample size were decreased or if b (as used) were increased.

If [R} denotes the set of points on the x, y plane, one of the known
distributions for case II is given by a two-dimensional, normal random
variable having the joint density

Fx0) = 2700 i/l — p?
* o |y () — 20 () (2
ey w

It can be demonstrated that the density denoted by Eq. (12) is that of the
bivariate normal. Thus, the probability that a point (x,y) taken at
random will be within the set [R] of points on the x, y plane can be
obtained by integrating the density over the region denoted by the set.
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Hence,
Pri(x, ) € Rl = [[ 8Cx, y) dy dx (13)
2
Frequently, a proof that
[ ] smdyar =1 (14)

consists of showing that Eq. (12) can be rewritten as the product

o0 1 o © 1 o
—_— e—(’w /2) dV — e»(@ /2) d 15
Lo 21 ! f-w V2 v (13
where
v={(y— I”y)/(fy)
and
po=(x — p)/on
so that

w = (up— pv)/(1 — p?
dw = dp/(1 — p?)

Since Eq. (15) denotes the product of two univariate normal densities, this
relation is used by SIMFIT to empirically verify the approximation accuraties
of the set of estimators under consideration. The same procedure applies to
the bivariate extensions of Egs. (9), (10), and (11).

The density function defined by Eq. (12) and represented in Fig. 19 was
almost perfectly estimated by the subcase of estimators under investigation.
The approximation for p was respectively given by

p = o7 ToElM(M)] 16)
and
b

under conditions of 150 and 75 sample points, with & alternatively equal to
0.95 and 0.5. Under such conditions, the estimation technique discussed does
very well with an error range of 0.10 % for the density of Eq. (12) to 2 9; for
the bivariate extensions of Egs. (9), (10), and (11). These include x distributed
according to Eq. (9), y according to (10), x according to (10), y according
to (11); x according to (9), ¥ according to (11). A total of 30 cases was
examined.
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7z = £(x,y) for z>k

Fig. 19. Bivariate density function.

Thus, experimental evidence indicates that the estimation technique
presented approximates very accurately a significant number of uni- and
bidimensional distributions of both the Gaussian and mixture types.

During the indicated experimental assessments, it was discovered that
the estimator being investigated could be used to recover accurately discrete
bivarate densities like the ones given by Egs. (7) and (8). Graphical represen-
tation of the former, together with its recovery (given by the wedges), is
supplied in Fig. 20. Recovery error is less than 2 9. Recovery representation
of the latter is given by Fig. 21, in which a recovery error of 5%, obtains.
Recovery for both was accomplished by 200 sample points.

4. DESCRIPTION OF AN ALGORITHM FOR CLUSTERING

As indicated earlier in Section 3, each of the M patterns in the sample
set of input patterns (associated with a given class of patterns) is assumed to
be represented by an N-dimensional vector; e.g., the kth input pattern is
written x* = (x,%, x5%,..., x5*). A value is assigned to each vector y of N-
dimensional input space by means of the distribution density function

Fu(y) =4 3 11 expl—bu(yn — x,"7

k=1 n=1
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Fig. 20. Graph of density function.

where b, > 0, and 4 > 0 is a normalizing constant. If the proper values of
b,, are chosen® and the sample set [x¥]37, is large enough, the local maxima
of f,,; will closely approximate the modes of the underlying distribution from
which the sample patterns are drawn. In this investigation, the algorithm for
locating the local maxima of fy, involves either an iterative gradient technique
or the use of Matyas’ random optimization theorems.? In the interests of
simplicity, where the former technique is used, it is assumed that b, = b for
n =1, 2,..., N, so that the expression for f;, is

ful(y) =4 exp[—blly — x* ]

k=1
with
N
[y — x| = Y (o — x,")?

n=1

8 J. N. Medick, in a personal communication (August 1967), has obtained an approximate
Jower bound for the choice of values for b that admits of easy numerical approximation:

b > KM?®- [fRNfdem]"’/‘l/fRN(x — X} f2dV,

where K is a positive constant that depends for its value on the kernel of the estimator
Jfw expression, and Ry denotes the set of points on the x, y plane.
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Let y° be an arbitrary starting point (with y° not a stationary point of fy,);
then the first approximation y! is given by
Y=y - apf®
where
_ [yl

2bf(yo)
(»°) = gradient vector of fyat y = )°

0
&0 = %ﬁ [i.e., £ is a unit vector in the direction of y(3°)]

In general, y™ is given by
yr — yr—l "I’ aT_lfr—l

where
a = I ("I
U 2bf (v Y
e )
|yl

It can be demonstrated™? that this choice of a,_; leads to a convergent
process that results in a local maximum (“cluster point”) of f3, . The technique
generalizes to the case of interest, i.e., b; not necessarily equal to b; for
ij=1,..,N.

5. APPLICATION TO PATTERN RECOGNITION

Figure 22 shows the conceptual design of a recognition system that decides
on the class membership of an input by calculating the probabilities of class
membership for each of the individual classes. The actual decision is based
on the maximum likelihood principle. The estimate of the underlying distribu-
tion density f associated with a given class is approximated by a function
h(x) that depends on the cluster points determined by f,, and a set of N
parameters that are determined to minimize the “distance” between f3; and
4. A brief description of the method follows.

Consider the distribution density estimate f,, (wWhere M is the number of
samples in the data base associated with a given class), and the collection of
prototypes (local maxima), z%, z2,..., z?, obtained from f3, using the clustering
algorithm. The points [z¥]{1, may be used to yield an approximation to the
underlying distribution density of the form*

21 N
h:pl(x) = A Z gr U eXP[~Wn(xn - an)Z]

r=1
4 This form is similar to that used in the distribution recovery technique to obtain fyr.
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where £, = fi(z"), w, >0, and A is a normalizing constant. The positive
constants w, are determined in order to minimize the quantity

1F (%) — By (O

If || far — by, P is large, the clustering algorithm may be used to find the
local maxima of

. 1 +p
(fM - h:ol)a 1.e., Zpl » z" FIRRES z" :

The points of set [z*]{2, ., are considered “second-order” cluster points and
the augmented set [zk],cfr ?; contains more information about the underlying
distribution in the sense that /, ., is, in general, a closer approx11nat10n of f
than A,

S1m11ar1y, third-order, fourth-order, etc., cluster points can be defined
and their efficiency in characterizing the distribution assessed using as a
criterion the metric || fyr — Ay 4p 45, 2. In this way, a set of prototypes
[2F]7i P 2L can be generated. Although in general

lim Zp; = o©

L—)DO

the effect of choosing L such that
L
q= Z LM
im1

can be effectively measured.

As indicated, Fig. 22 actually represents a pattern-recognition scheme
based on the maximum likelihood principle. For each class, the system
develops the function

(X) = A Z fw H eXp{ wny(xn — Zy )}

where j denotes the class and

g; = number of cluster points used in jth class

A; = normalizing constant for jth class

€& = (@)

27 = rth cluster point of jth class = (z7, z’,..., 2%

Wi = (Wyl, Woi,..., w,J) = vector that minimizes || /o7 — /2, I
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A system such as that shown in Fig. 22 can be useful in determining
“dominant™ regions in pattern space. For class j a “strong” cluster point z¥
may be defined as a cluster point that is highly successful in separating the
jth class from the remaining classes, where the degree of success can be
evaluated by examining the output of the ith subblock of the jth block in
Fig. 22 for each of the input patterns. Thus, if z¥ is a strong cluster point, one
may associate z¥ with a “pure signal” representing a dominant feature of
class j while neighboring values are z¥ degraded by “noise.” “Dominant
features” (where ““features™ are normally associated with the individual
components of a pattern vector) may be acquired by entering a pattern
vector with a subset of its components made equal to zero while measuring
the effect on the ability of the ith subblock of the jth block to separate the
Jth class from the remaining classes.

The FORTRAN program, together with approximate number of state-
ments, for implementing the scheme of Fig. 12 is briefly described below.
Computational burden for both the cluster decomposition and discriminant
functions appears to be minimal.

Let F(x) = ¢™®

Determine x, where

i Wn(xn - Z'n)z

i=1
x=0-0 I=3 W=2
—~>DO1i=1N IT=2 W=1
> X == Xy — Zp I=4, W=2Y~25N
x=x-+ W, *xx3*%xx I=15 W =28
—1 continue I=3 W=1
Determine e*
y=1-0 =3 W=2
F(x)=1-0 I=3 W=2
~D02i=1,10 I—-2 W=1
F(x) = F(x) +%’ T= 11, W = 45~280
[en}
X =X%X I=6, W=23
2 continue I=2, W=1]
: 1
F(X)—;:(s—) I=6 W=23

Let h(x) = i Ade — i Wilx; — z//)*

=1 j=1

828/5/2-8
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Determine x

x=0-0 I=3 W=2
—Do3n=1,N I=2 W=1
> Xg = Xy — Zp, I=5 W=2)~25N
X = X+ W, % X3 * Xq I=15W=38§
—3 continue I=3 W=1
q
Determine ), A;€e®
ij=1
y=1-0 I=3 W=2
Fx)=1-0 I=3 W=2
—D04i=1,10 I=2, W=1
F(x) = F(x) + 22 I=11, W = 1 5~300
o Y
T Xy = Xg ok Xy I=6 W=23
y=yxy+1 I=8 W=4
—4 continue I=2 W=1
Determine F(x) = F—és)_
Ax) =10-0 I=3 W=1
DO5j=1,¢4 I=2 W=1 0.
@[)\(x)zk(x)—k)\l*‘fj*F(x) I=15 W =28 K
5 continue I=3 W=1

6. CONCLUSIONS

When these techniques are applied (as with any that employ a distribu-
tion estimate), it is important to start with a large data base. The degree of
generalization that a final design is capable of providing is clearly dependent
on how accurately the actual distribution of input patterns is represented by
the sample set of input data. A large data base leads to high generalization
capability. However, even with a relatively small data base, it appears that
the described techniques provide very good generalization for classificatory
systems based on maximum likelihood decisions.

Further, the techniques described have the advantage that the design
time varies linearly with the number of sample patterns employed. This
constrasts markedly with many error-correcting design techniques, in which
the sample patterns are introduced cyclically until a satisfactory recognition
network is obtained. Under such conditions, design time (i.e., computing
time) usually varies as the square or cube of the number of sample patterns.

Finally, there remain several problems to be resolved. Thus, the perfor-
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mance of the distribution-recovering technique articulated in Section 3 should
be checked against known N-dimensional distributions, where N > 2. Tt is
also desirable that some explicit method for determining the values of w, that
minimize !| fo; — k, |2 be developed. If this latter cannot be done in closed
form, an algorithm for iteratively determining w, should be generated. But
these are problems requiring further investigation.
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