
A U N I Q U E N E S S  T H E O R E M  F O R  A S U R F A C E  W I T H  

P R I N C I P A L  C U R V A T U R E S  C O N N E C T E D  B Y  T H E  

R E L A T I O N  (1 - k id)(1  - k2d)= -1 
V. A. T o p o n o g o v  UDC 513.013 

Let F be an oriented complete regular surface in three-dimensional Euclidean space E a. Denote 
by kl(p) and ks(p) (kl(p) <_ k2(p)) the principal curvatures of F at a point p, whose signs are 
determined by some continuous field n(p) of normals to F. Denote by K(p) the Gaussian curvature 
of F at p. In the article we prove the following 

T h e o r e m .  If the surface F is analytic and there exists a continuous tietd n(p) of normals to F 
such t.5at the principal curvatures kl (p) and ks(p) with signs determined by the field n(p) obey ~he 
condition (1 - kid)(1 - k2d) = -1 ,  then F is a circular cylinder of radius d/2. 

The proof of the theorem leans on two lemmas. 

L e m m a  1. If under the conditions of Theorem 1 there exists a regular curve on F such that 
the Gaussian curvature K(p) of F vanishes along the curve, then K(p) _~ O. 

The proof of the lemma is presented in [1, Lemma 10]. 

L e m m a  2. ff F is a convex surface whose Gaussian curvature K(p) is not identical zero, then 

0 < sup kl(p) > inf k2(p). 
pEF -- pEF 

P R O O F .  If F is a closed convex surface, then it is homeomorphic to a sphere and thus there exists 
at least one umbilical point p0 at which kl(P0) = k2(P0); in this case the claim of Lemma 2 is obvious. 
It remains to consider the case in which F is a complete open convex surface. In this case the surface 
F is homeomorphic to a plane by virtue of the assumptions of the 1emma. We prove the claim of 
Lemma 2 by way of contradiction. Assume that 

0 < /g0 = s u p / g l ( p )  <: ]n f /g2 (p )  --~ ]g~. 
pEF pEF 

(1) 

From (1) it follows that  there is a number d for which 

1/k ~ < d < l / k  ~ (2) 

The surface F partitions E a into domains DI(F) and Ds(F),  one of which is convex. Assume that 
this is the domain DI(F).  Assign 

Bs = {p e Ds(F) I p(ptF ) > d} (a) 

and let B1 -- E s \ B2. Denote by Fd the surface that is obtained from F by indention along the 
inner normal n(p) of F to the distance d, and denote by ~d the map F -~ Fd that results from the 
procedure. Then Fd satisfies the following properties: 

(a) Fd < B1; 
(/3) vd is a smooth regular surface; 
('),) the Gaussian curvature K(q) of Fd is nonpositive; i.e., K(q) _< 0 for all q C Fd. 
The validity of (a) follows from the definitions of the surface Fd and the domain B1. Prove (/3). It 

follows from (1) that there are no umbilical points on the surface F. Therefore, in some neighborhood 
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of an arbi t rary  point  p E F we can choose a parameter izat ion ~ = ~(u, v) of F whose coordinate lines 
coincide with  the  curvature lines on F .  Let q C Fd, q = ~od(p). In a neighborhood of q the equation 
of the surface Fd can be wri t ten in the form ~ = ~(u, v) + tin(u, v). From the Rodriguez formula it 
follows tha t  

~u : r-u-u-- k l  rd-~-u = (1 - kld)g-~-u, ~v = ~-gv - k2 rd~v = (1 - k2d)~-gv. (4) 

Therefore, ~ x ~ = (1 - kid)(1 - k2d)(~--gu x ~4v) 5r 0 by virtue of (2); and i tem (/~) is proved. 
Now, we let RI(p) and R2(p) denote the principal curvature radii of F at the  point p, and we 

denote by Rdl(q) and Rd(q) the principal  curvature radii of Fd at the point q = ~od(p). Then the 
following relations hold 

Rdl(q) = RI(p) - d, Rd2(q) = R2(p) -- d. (5) 

From (5) it follows tha t  

N 1 1 k,(p)k2(p) < O, 
K(q) - - -  R I ( p ) - d  R 2 ( p ) - d  - [1 - kl(p)d][1 - k 2 ( p ) d ]  - 

since Ir ~__ O, (1 - dkl) > 0, and (1 - dk2) < 0. Thus (3') is proved. 
Now, let ~ be a regular surface meeting the following conditions: 
(1) the  Gaussian curvature Kr of the surface q) is str ict ly positive at every point p C ~; 
(2) �9 is homeomorphic  to a plane; 
(3) B1 C D I (~ ) ,  where D I ( # )  is the convex domain bounded by q~. 
We prove existence for such a surface. Since the Gaussian curvature of F is not identical ly equal to 

zero, there exists a point  p E OB2 at which the Gaussian curvature is s tr ict ly positive. Let q E B2 be 
a point for which qp is orthogonal  to OB2 at p. Denote by C the cone tha t  is generated by all rays 
issuing from q and tangent  to OB2. If the length of the segment qp is sufficiently small,  the cone U 
is s tr ict ly convex at the vertex q; i.e., we can draw a plane through q which has no common points 
with C except the point q. However, then there exists a circular cone C1, with vertex q and axis 
qp, containing the cone C and, consequently, the whole surface OB2. Now, introduce a Cartesian 
coordinate sys tem wi th  origin q such tha t  the positive direction of the axis z coincides with the ray 
qp. Assume the equat ion of the cone to be given by x 2 + g2 _ tg2 a .  z 2 = 0 in this coordinate system. 

2 2 

Take the upper  sheet of the hyperboloid of two sheets defined by the equation - * ~=-++v- ~ b ~  = 1, 
where b/a = tg a ,  and denote it by r The surface ~ possesses properties (1)-(3). Since F~ C B1, we 
have Fa E D I ( ~ )  and Fd A �9 = O. Let ql  be a point in Fd and let pl be a point in ~. Move the surface 
~5 as a rigid body in the  direction of the vector plql unti l  the first moment  at which the intersection 
of the surfaces Fez and �9 becomes nonvoid. The surfaces Fd and (I) are tangent  to each other at any 
point q0 of the  intersection and Fd lies entirely in ~. But  in this case the Gaussian curvature of Fd 
at the  point  qo is not less than  the Gaussian curvature of �9 at the same point q0; i.e., it is strictly 
positive. The  contradict ion obtained proves Lemma 2. 

PROOF OF TIlE THEOREM. If the Gaussian curvature K(p) of the surface F takes values of dis- 
t inct  signs, then  by vir tue of analyt ic i ty  of F there exists a regular curve 7 along which K(p) vanishes, 
and Lemma 1 implies the equali ty K(p) = O. From the preceding equali ty and the assumptions of 
the theorem we obtain kl(p) = 0 and k2(p) = 2/d; whence the assertion of the theorem ensues. It 
remains to e l iminate  the  next  two cases: 

(1) K(p) >_ 0 for all p e F and K(p) - 0; 
(2) K(p) <_ 0 for all p e F and K(p) = O. 

In the first case, the inequal i ty  k~(p) >_ 0 and the equality (1 - kid)(1 - k2d) = - 1  yield 

0<_ kl < 1/d < 2/d < k2. (6) 

From (6) we infer 0 < supp6 F kl(p) < infpeF k2(p), which contradicts Lemma 2. Consider the second 
case. Let Fa be the surface constructed from F in the same way as in Lemma 2. Define the normal 
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h(q) to Fd at the point q = Td(P) by the equality h(q) = n(p). Denote by ~l(q) and-]c2(q)' the principal 
curvatures of Fd at the point q. Then from (5) and the choice of the normal g(q) we infer 

t 

-k l (p)  ,~2(q)- -- ;(p) (7) 
kl(q) - 1 - kid'  1 - k2d' 

where q = ~d(P). From (7) we have 

--kl(p) 
ffi(q) = 1 -  kld 

- k ~ ( p )  
- -  - k l ( p ) k 2 ( p ) =  - K ( p )  >__ 0 (8) 

1 - k2d 

and 

(1 - ]q(q)d)(1 - k2(q)d) = (1 + _kl(p)d h ( ~ p ) d  h 1 1 
1 -  k ldJ  1+ 1 -  k2dj  = 1 - k i d "  1 -  k2d - - l "  (9) 

From (8) and Theorem 9 of [2, p. 742], it follows that Fd is a convex surface. At the same time 
equality (9) shows that Fe satisfies the conditions of the theorem. Therefore, case (2) reduces to 
case (1) that has been excluded earlier. The theorem is proved. 
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