A UNIQUENESS THEOREM FOR A SURFACE WITH PRINCIPAL CURVATURES CONNECTED BY THE

RELATION $(1 - k_1 d)(1 - k_2 d) = -1$

V. A. Toponogov UDC 513.013

Let F be an oriented complete regular surface in three-dimensional Euclidean space $E³$. Denote by $k_1(p)$ and $k_2(p)$ $(k_1(p) \leq k_2(p))$ the principal curvatures of F at a point p, whose signs are determined by some continuous field $n(p)$ of normals to F. Denote by $K(p)$ the Gaussian curvature of F at p . In the article we prove the following

Theorem. If the surface F is analytic and there exists a continuous field $n(p)$ of normals to F such that the principal curvatures $k_1(p)$ and $k_2(p)$ with signs determined by the field $n(p)$ obey the *condition* $(1 - k_1 d)(1 - k_2 d) = -1$, then *F* is a circular cylinder of radius $d/2$.

The proof of the theorem leans on two lemmas.

Lemma 1. *If* under *the conditions of Theorem* 1 there *exists a regular* curve *on F such that* the *Gaussian curvature* $K(p)$ of F vanishes along the curve, then $K(p) \equiv 0$.

The proof of the lemma is presented in [1, Lemma 10].

Lemma 2. If F is a convex surface whose Gaussian curvature $K(p)$ is not identical zero, then

$$
0<\sup_{p\in F}k_1(p)\geq \inf_{p\in F}k_2(p).
$$

PROOF. If F is a closed convex surface, then it is homeomorphic to a sphere and thus there exists at least one umbilical point p_0 at which $k_1(p_0) = k_2(p_0)$; in this case the claim of Lemma 2 is obvious. It remains to consider the case in which F is a complete open convex surface. In this case the surface F is homeomorphic to a plane by virtue of the assumptions of the lemma. We prove the claim of Lemma 2 by way of contradiction. Assume that

$$
0 < k_1^0 = \sup_{p \in F} k_1(p) < \inf_{p \in F} k_2(p) = k_2^0. \tag{1}
$$

From (1) it follows that there is a number d for which

$$
1/k_2^0 < d < 1/k_1^0. \tag{2}
$$

The surface F partitions E^3 into domains $D_1(F)$ and $D_2(F)$, one of which is convex. Assume that this is the domain $D_1(F)$. Assign

$$
B_2 = \{ p \in D_2(F) \mid \rho(p_1 F) > d \}
$$
\n(3)

and let $B_1 = E^3 \setminus B_2$. Denote by F_d the surface that is obtained from F by indention along the inner normal $n(p)$ of F to the distance d, and denote by φ_d the map $F \to F_d$ that results from the procedure. Then F_d satisfies the following properties:

 (α) $F_d < B_1;$

 (β) $\overline{F_d}$ is a smooth regular surface;

(γ) the Gaussian curvature $\widetilde{K}(q)$ of F_d is nonpositive; i.e., $\widetilde{K}(q) \leq 0$ for all $q \in F_d$.

The validity of (α) follows from the definitions of the surface $\overrightarrow{F_d}$ and the domain $\overrightarrow{B_1}$. Prove (β). It follows from (1) that there are no umbilical points on the surface F. Therefore, in some neighborhood

Novosibirsk. Translated from *Sibirskff Matematicheskff Zhurnal,* Vol. 34, No. 4, pp. 197-199, July-August, 1993. Original article submitted December 3, 1992.

of an arbitrary point $p \in F$ we can choose a parameterization $\bar{r} = \bar{r}(u, v)$ of F whose coordinate lines coincide with the curvature lines on F. Let $q \in F_d$, $q = \varphi_d(p)$. In a neighborhood of q the equation of the surface F_d can be written in the form $\tilde{r} = \tilde{r}(u, v) + dn(u, v)$. From the Rodriguez formula it follows that

$$
\widetilde{r_{\boldsymbol{u}}} = \overline{r_{\boldsymbol{u}}} - k_1 d \overline{r_{\boldsymbol{u}}} = (1 - k_1 d) \overline{r_{\boldsymbol{u}}}, \quad \widetilde{r_{\boldsymbol{v}}} = \overline{r_{\boldsymbol{v}}} - k_2 d \overline{r_{\boldsymbol{v}}} = (1 - k_2 d) \overline{r_{\boldsymbol{v}}}.
$$
\n(4)

Therefore, $\widetilde{r_u} \times \widetilde{r_v} = (1 - k_1 d)(1 - k_2 d)(\overline{r_u} \times \overline{r_v}) \neq 0$ by virtue of (2); and item (β) is proved.

Now, we let $R_1(p)$ and $R_2(p)$ denote the principal curvature radii of F at the point p, and we denote by $R_1^d(q)$ and $R_2^d(q)$ the principal curvature radii of F_d at the point $q = \varphi_d(p)$. Then the following relations hold

$$
R_1^d(q) = R_1(p) - d, \quad R_2^d(q) = R_2(p) - d. \tag{5}
$$

From (5) it follows that

$$
\widetilde{K}(q) = \frac{1}{R_1(p) - d} \cdot \frac{1}{R_2(p) - d} = \frac{k_1(p)k_2(p)}{[1 - k_1(p)d][1 - k_2(p)d]} \leq 0,
$$

since $k_1(p)k_2(p) \ge 0$, $(1 - dk_1) > 0$, and $(1 - dk_2) < 0$. Thus (γ) is proved.

Now, let Φ be a regular surface meeting the following conditions:

(1) the Gaussian curvature $K_{\Phi}(p)$ of the surface Φ is strictly positive at every point $p \in \Phi$;

(2) Φ is homeomorphic to a plane;

(3) $B_1 \subset D_1(\Phi)$, where $D_1(\Phi)$ is the convex domain bounded by Φ .

We prove existence for such a surface. Since the Gaussian curvature of F is not identically equal to zero, there exists a point $p \in \partial B_2$ at which the Gaussian curvature is strictly positive. Let $q \in B_2$ be a point for which qp is orthogonal to ∂B_2 at p. Denote by C the cone that is generated by all rays issuing from q and tangent to ∂B_2 . If the length of the segment qp is sufficiently small, the cone C is strictly convex at the vertex q ; i.e., we can draw a plane through q which has no common points with C except the point q. However, then there exists a circular cone C_1 , with vertex q and axis qp, containing the cone C and, consequently, the whole surface ∂B_2 . Now, introduce a Cartesian coordinate system with origin q such that the positive direction of the axis z coincides with the ray *qp.* Assume the equation of the cone to be given by $x^2 + y^2 - tg^2 \alpha \cdot z^2 = 0$ in this coordinate system. Take the upper sheet of the hyperboloid of two sheets defined by the equation $-\frac{x^2+y^2}{a^2}+\frac{(z+b)^2}{b^2}=1$, where $b/a = \text{tg }\alpha$, and denote it by Φ . The surface Φ possesses properties (1)-(3). Since $F_d \subset B_1$, we have $F_d \in D_1(\Phi)$ and $F_d \cap \Phi = \emptyset$. Let q_1 be a point in F_d and let p_1 be a point in Φ . Move the surface Φ as a rigid body in the direction of the vector $\overline{p_1q_1}$ until the first moment at which the intersection of the surfaces F_d and Φ becomes nonvoid. The surfaces F_d and Φ are tangent to each other at any point q_0 of the intersection and F_d lies entirely in Φ . But in this case the Gaussian curvature of F_d at the point q_0 is not less than the Gaussian curvature of Φ at the same point q_0 ; i.e., it is strictly positive. The contradiction obtained proves Lemma 2.

PROOF OF THE THEOREM. If the Gaussian curvature $K(p)$ of the surface F takes values of distinct signs, then by virtue of analyticity of F there exists a regular curve γ along which $K(p)$ vanishes, and Lemma 1 implies the equality $K(p) \equiv 0$. From the preceding equality and the assumptions of the theorem we obtain $k_1(p) \equiv 0$ and $k_2(p) = 2/d$; whence the assertion of the theorem ensues. It remains to eliminate the next two cases:

(1) $K(p) \geq 0$ for all $p \in F$ and $K(p) \equiv 0;$

(2) $K(p) \leq 0$ for all $p \in F$ and $K(p) \equiv 0$.

In the first case, the inequality $k_1(p) \ge 0$ and the equality $(1 - k_1d)(1 - k_2d) = -1$ yield

$$
0 \le k_1 < 1/d < 2/d < k_2. \tag{6}
$$

From (6) we infer $0 < \sup_{n \in F} k_1(n) < \inf_{p \in F} k_2(p)$, which contradicts Lemma 2. Consider the second case. Let F_d be the surface constructed from F in the same way as in Lemma 2. Define the normal

 $\tilde{n}(q)$ to F_d at the point $q = \varphi_d(p)$ by the equality $\tilde{n}(q) = n(p)$. Denote by $\tilde{k}_1(q)$ and $\tilde{k}_2(q)$ the principal curvatures of F_d at the point q. Then from (5) and the choice of the normal $\tilde{n}(q)$ we infer

$$
\tilde{k}_1(q) = \frac{-k_1(p)}{1 - k_1 d}, \quad \tilde{k}_2(q) = \frac{-k_2(p)}{1 - k_2 d},\tag{7}
$$

where $q = \varphi_d(p)$. From (7) we have

$$
\widetilde{K}(q) = \frac{-k_1(p)}{1 - k_1 d} \cdot \frac{-k_2(p)}{1 - k_2 d} = -k_1(p)k_2(p) = -K(p) \ge 0
$$
\n(8)

and

$$
(1 - k_1(q)d)(1 - k_2(q)d) = \left(1 + \frac{k_1(p)d}{1 - k_1d}\right)\left(1 + \frac{k_2(p)d}{1 - k_2d}\right) = \frac{1}{1 - k_1d} \cdot \frac{1}{1 - k_2d} = -1. \tag{9}
$$

From (8) and Theorem 9 of $[2, p. 742]$, it follows that F_d is a convex surface. At the same time equality (9) shows that F_d satisfies the conditions of the theorem. Therefore, case (2) reduces to case (1) that has been excluded earlier. The theorem is proved.

References

- 1. V. A. Toponogov, "Surfaces of generalized constant width," Sibirsk. Mat. Zh., 34, No. 3, 179-189 (1993).
- 2. A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces [in Russian], Nauka, Moscow (1969).

TRANSLATED BY V. B. MARENICH