A UNIQUENESS THEOREM FOR A SURFACE WITH
PRINCIPAL CURVATURES CONNECTED BY THE

RELATION (1 — kyd)(1 — kod) = —1
V. A. Toponogov UDC 513.013

Let F be an oriented complete regular surface in three-dimensional Euclidean space E*. Denote
by ki(p) and ka(p) (ki(p) < ky(p)) the principal curvatures of F' at a point p, whose signs are
determined by some continuous field n(p) of normals to F. Denote by K(p) the Gaussian curvature
of F' at p. In the article we prove the following

Theorem. If the surface F' is analytic and there exists a continuous field n(p) of normals to F
such that the principal curvatures ki(p) and ky(p) with signs determined by the field n(p) obey the
condition (1 — k1d)(1 — kad) = —1, then F is a circular cylinder of radius d/2.

The proof of the theorem leans on two lemmas.

Lemma 1. If under the conditions of Theorem 1 there exists a regular curve on F' such that
the Gaussian curvature K(p) of F vanishes along the curve, then K(p) = 0.

The proof of the lemma is presented in [1, Lemma 10].

Lemma 2. If F is a convex surface whose Gaussian curvature K(p) is not identical zero, then

0 < sup ki(p) > inf ka(p).
pEF peEF

PROOF. If F is a closed convex surface, then it is homeomorphic to a sphere and thus there exists
at least one umbilical point pg at which ki(po) = k2(po); in this case the claim of Lemma 2 is obvious.
It remains to consider the case in which F is a complete open convex surface. In this case the surface
F' is homeomorphic to a plane by virtue of the assumptions of the lemma. We prove the claim of
Lemma 2 by way of contradiction. Assume that

0 < k{ = sup ki (p) < inf ka(p) = k3. (1)
-peEF peEF

From (1) it follows that there is a number d for which
1/ky <d < 1/k. (2)

The surface F partitions £? into domains D1(F) and Dy(F), one of which is convex. Assume that
this is the domain D1(F). Assign

By = {p € Da(F) | p(p1 F) > d} (3)

and let By = E3\ By. Denote by F; the surface that is obtained from F by indention along the
inner normal n(p) of F to the distance d, and denote by ¢; the map F — Fy that results from the
procedure. Then Fy satisfies the following properties:

() Fy< By;

(8) Fjyis a smooth regular surface;

(7) the Gaussian curvature K(q) of Fy is nonpositive; i.e., K(q) < 0 for all g € Fy.

The validity of () follows from the definitions of the surface Fy and the domain B,. Prove (B). It
follows from (1) that there are no umbilical points on the surface F. Therefore, in some neighborhood

Novosibirsk. Translated from Sibirskii’ Matematicheskii Zhurnal, Vol, 34, No. 4, pp. 197-199, July-August, 1993.
Original article submitted December 3, 1992.

0037-4466/93/3404-0767 $12.50 (c) 1993 Plenum Publishing Corporation 767



of an arbitrary point p € F' we can choose a parameterization 7 = 7(u, v) of F' whose coordinate lines
coincide with the curvature lines on F. Let ¢ € Fy, ¢ = @4(p). In a neighborhood of g the equation
of the surface Fy can be written in the form 7 = #(u,v) + dn(u,v). From the Rodriguez formula it
follows that

Fu =Tu — k1diy = (1 — k1d)Ty, 75 =7y — kadiy = (1 — kad)7. (4)

Therefore, 7y X 7y = (1 — k1d)(1 — k2d)(74 X 7y) # 0 by virtue of (2); and item (8) is proved.

Now, we let R;(p) and R(p) denote the principal curvature radii of F' at the point p, and we
denote by R%(q) and R3(g) the principal curvature radii of F; at the point ¢ = @4(p). Then the
following relations hold

Ri(q) = Ri(p) ~d, Rj(q) = Ralp) ~ d. (5)
From (5) it follows that

~o 11 k1(p)ka(p)
K= p—d B i~ T-hpdL - kpd ="

since k1(p)ka(p) > 0, (1 — dk1) > 0, and (1 — dk3) < 0. Thus (v) is proved.

Now, let ® be a regular surface meeting the following conditions:

(1) the Gaussian curvature Kg(p) of the surface ® is strictly positive at every point p € @;

(2) @ is homeomorphic to a plane;

(3) B1 C D1(®), where D1(®) is the convex domain bounded by .

We prove existence for such a surface. Since the Gaussian curvature of F'is not identically equal to
zero, there exists a point p € 8By at which the Gaussian curvature is strictly positive. Let ¢ € By be
a point for which ¢p is orthogonal to @Bz at p. Denote by C the cone that is generated by all rays
issuing from ¢ and tangent to dBy. If the length of the segment gp is sufficiently small, the cone C
is strictly convex at the vertex g¢; i.e., we can draw a plane through ¢ which has no common points
with C except the point q. However, then there exists a circular cone C1, with vertex ¢ and axis
gp, containing the cone C and, consequently, the whole surface dB;. Now, introduce a Cartesian
coordinate system with origin ¢ such that the positive direction of the axis 2 coincides with the ray
gp. Assume the equation of the cone to be given by z? +y2 —tg? o - 22 = 0 in this coordinate system.
g ca)

a ?

Take the upper sheet of the hyperboloid of two sheets defined by the equation —
where b/a = tg o, and denote it by ®. The surface ® possesses properties (1)-(3). Since Fy C By, we
have Fy € D1(®) and FyN® = @. Let g be a point in Fy and let py be a point in ®. Move the surface
® as a rigid body in the direction of the vector pigr until the first moment at which the intersection
of the surfaces Fj and ® becomes nonvoid. The surfaces Fy and ® are tangent to each other at any
point go of the intersection and F lies entirely in ®. But in this case the Gaussian curvature of Fy
at the point go is not less than the Gaussian curvature of ® at the same point go; i.e., it is strictly
positive. The contradiction obtained proves Lemma 2.

PROOF OF THE THEOREM. If the Gaussian curvature K (p) of the surface F' takes values of dis-
tinct signs, then by virtue of analyticity of F' there exists a regular curve y along which K(p) vanishes,
and Lemma 1 implies the equality K(p) = 0. From the preceding equality and the assumptions of
the theorem we obtain ki(p) = 0 and kz(p) = 2/d; whence the assertion of the theorem ensues. It
remains to eliminate the next two cases:

(1) K(p) > 0 for all p € F and K(p) =0;

(2) K(p) <0forallpe F and K(p) =0.

In the first case, the inequality k1(p) > 0 and the equality (1 — k1d)(1 — k2d) = —1 yield

0< ki <1/d<?2/d< k. (6)

From (6) we infer 0 < sup,¢r k1(p) < infper k2(p), which contradicts Lemma 2. Consider the second
case. Let Fy be the surface constructed from F' in the same way as in Lemma 2. Define the normal
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7(q) to Fy at the point g = p4(p) by the equality 71(q) = n(p). Denote by ki(g) and k3(q) the principal

curvatures of Fy at the point g. Then from (5) and the choice of the normal 7i(g) we infer

where ¢ = @q(p). From (7) we have

_ —kip) —ka(p)

K@)‘l.-md'1—kw

and

1
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T 1<kd 1-Fkyd

~1.

From (8) and Theorem 9 of [2, p. T42], it follows that Fj is a convex surface. At the same time
equality (9) shows that Fy satisfies the conditions of the theorem. Therefore, case (2) reduces to

case (1) that has been excluded earlier. The theorem is proved.
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