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Abstract. A basic re-examination of the traditional dimensional analysis of microscopic and macro- 
scopic multiphase flow equations in porous media is presented. We introduce a 'macroscopic capillary 
number' Ca which differs from the usual microscopic capillary number Ca in that it depends on length 
scale, type of porous medium and saturation history. The macroscopic capillary number Ca is defined 
as the ratio between the macroscopic viscous pressure drop and the macroscopic capillary pressure. 
Ca can be related to the microscopic capillary number Ca and the Leverett J-function. Previous 
dimensional analyses contain a tacit assumption which amounts to setting Ca -- 1. This fact has 
impeded quantitative upscaling in the past. Our definition for Ca, however, allows for the first time a 
consistent comparison between macroscopic flow experiments on different length scales. Illustrative 
sample calculations are presented which show that the breakpoint in capillary desaturation curves for 
different porous media appears to occur at Ca ~ 1. The length scale related difference between the 
macroscopic capillary number Ca for core floods and reservoir floods provides a possible explanation 
for the systematic difference between residual oil saturations measured in field floods as compared 
to laboratory experiment. 
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1. Introduction 

Afte r  wa te r f lood ing  an oil r e se rvo i r  a s ignif icant  f rac t ion  SoT o f  oil r ema ins  mic ro -  
scop ica l ly  t r apped  ins ide  the reservoir .  T h e  f ract ion SoT is cal led the res idual  oil 

sa turat ion,  and  it r anges  typ ica l ly  be tween  25% and 50% for  wa te r  we t  reservo i r s  
[ 1-5] .  T h e  t r apped  oil can be  m o b i l i z e d  i f  the v i scous  forces  o v e r c o m e  the capi l la ry  
re tent ion  forces  [6]. 

M a n y  m o r e  or  less equ iva len t  d imens ion l e s s  ratios,  or  ' sca l ing  g r o u p s '  have  
been  p r o p o s e d  to quan t i fy  the re la t ive  impor t ance  o f  v i scous  and capi l la ry  forces  
(see, e.g., Tab le  1 in [6] or  Table  2 on page  71 in [3] for  overv iews) .  The  d i m e n -  
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sionless ratio of viscous to capillary forces is called the capillary number, and it is 
commonly expressed as 

C a -  #u _ kAp  (1) 
~ b L '  

where u denotes an average_microscopic velocity, # is the viscosity, a the surface 
tension, k the permeabilty, ~b the average porosity, and Ap the pressure drop over 
the distance L. While the first expression in Equat ion( l )  involves only fluid 
parameters, the second expression invokes Oarcy's law ~bu = - ( k A p ) / ( # L )  to 
express the flow velocity u through the macroscopic viscous pressure drop. 

Displacement experiments in a variety of porous media including micromodels 
show a strong correlation between the residual oil saturation Sot and capillary 
numbers Ca (see [1,3,4,7] and references therein). The resulting curves So~ (Ca) 
are called capillary number correlations, recovery curves or capillary desaturation 
curves. All such capillary desaturation curves exhibit a critical capillary number 
Cac below which the residual oil saturation remains constant. This critical capillary 
number Cac marks the point where the viscous forces begin to dominate the 
capillary forces. Surprisingly, all experimentally observed values for Ca~ are much 
smaller than 1. This surprise has been formulated by Dullien [1] who discusses Ca~ 
for the measurements of [8] and [9] on unconsolidated glass beads: 

It is certainly peculiar that when the viscous and capillary forces acting on a blob are equal the 
capillary number that is supposed to be equal to the ratio of viscous-to-capillary forces is equal to 
2.2 x 10 -3 (F.A.L. Dullien in [1], p. 450). 

For unconsolidated sand Ca~ is often reported to be Ca~ ~ 10 -4 while for sand- 
stone Cac ~ 3 x 10 -6 and for limestone Cac ~ 2 x 10 -7 [3]. The exceedingly small 
values of Ca~ as well as their dependence on the type of porous medium strongly 
suggest that the capillary number defined in Equation (1) cannot be an adequate 
measure of the macroscopic balance between viscous and capillary forces. 

Given this obvious failure of Equation (1), the question arises how to define a 
dimensionless ratio of viscous to capillary forces whose value will generally be 
close to unity when mobilization of residual oil sets in. The present paper attempts 
to answer this question by means of a dimensional analysis of microscopic and 
macroscopic equations of motion governing multiphase flow in porous media. 

Let us conclude this introduction with a brief overview over the organization 
of the rest of this paper. We begin our discussion with the microscopic equations 
of motion for fluid flow at the pore scale. Subsequently the well known micro- 
scopic dimensional analysis leading to the familiar dimensionless numbers of fluid 
dynamics is repeated. We then turn to the accepted macroscopic equations of 
motion which are routinely used in reservoir simulation studies. Our macroscopic 
dimensional analysis differs fundamentally from the traditional analysis [10-13]. 
Instead of using Darcy's law to normalize the pressure field we use a representative 
pressure from the capillary pressure curve. This gives rise to macroscopic dimen- 
sionless numbers. We then relate these macroscopic dimensionless scaling groups 
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to the traditional microscopic groups. In conclusion, we present the application 
of our analysis to the problem of quantitatively predicting residual oil saturation, 
gravitational relaxation times and the width of a gravitational segregation front. 

2. Pore Scale Equations of Motion 

Microscopic equations of motion for two-phase flow in porous media are commonly 
given as Stokes (or Navier-Stokes) equations for two incompressible Newtonian 
fluids with no-slip and stress-balance boundary conditions at the interfaces. In 
the following the wetting fluid (water) will be denoted by a subscript w while 
the nonwetting fluid (oil) is indexed with o. The solid phase (rock), indexed as 
r, is assumed to be porous and rigid. It fills a closed subset Gr C R 3 of three- 
dimensional space. The pore space is filled with the two fluid phases described by 
the two closed subsets Gw(t), Go(t) C R 3 which are in general time dependent. 
The pore space boundary and the fluid-fluid interface are obtained as 

Or = (GrN Gw(t))U (Grfq Go(t)) ( r o c k -  surface), 

0ow(t) = Go(t) f3 Cw(t) ( o i l -  water interface), 
(2) 

where all time dependences have been indicated explicitly. The standard formu- 
lation of pore scale equations of motion for two incompressible and immiscible 
fluids flowing through a porous medium are the Navier-Stokes equations 

0Vw 
pw- - + pw(Vw V)vw =  w XVw + pwgVz- Vpw, 

0Vo 
po-~- + po(Vo ~. V)Vo = ~,oAVo + p o g V Z  - Vpo, 

(3) 

and the incompressibility conditions 

V T "Vw --- 0, V T �9 Vo = 0, (4) 

where Vw(X, t), Vo(X, t) are the velocity fields for water and oil, pw(X, t), po(X, t) 
are the pressure fields in the two phases, Pw, Po the densities, #w, #o the dynamic 
viscosities, and g the gravitational constant. The vector x T = (x, y, z) denotes the 
coordinate vector, t is the time, V T = (O/Ox, O/Oy, O/Oz) the gradient operator, 
A the Laplacian and the superscript T denotes the transposition. The gravitational 
force is directed along the z-axis and it represents an external body force. 

The standard formulation is completed by specifying an initial fluid distribution 
Gw(t = 0), Go(t = 0) and boundary conditions. The latter are usually no-slip 
boundary conditions at solid-fluid interfaces 

Vw = 0 at Or, Vo = 0 at Or, (5) 
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as well as for the fluid-fluid interface 

Vw = Vo, at Oow(t), (6) 

combined with stress-balance across the fluid-fluid interface 

rw. n = 70- n + 2aowan at 0ow(t). (7) 

Here Crow denotes the water-oil interfacial tension, ~ is the curvature of the oil-water 
interface and n is a unit normal to it. The stress tensor r(x,  t) for the two fluids is 
given in terms of v and p as 

r = - p l  + #S V v  T (8) 

where the symmetrization operator S acts as 

SA = �89 A T -  2 / 3 t r A  1) (9) 

on the matrix A and 1 is the identity matrix. 
The pore space boundary Or is given and fixed while the fluid-fluid interface 

0wo(t) has to be determined selfconsistently as part of the solution. For Gw = 0 
or Go = (3 the above formulation of two phase flow at the pore scale reduces to 
the standard formulation of single phase flow of water or oil at the pore scale. The 
pore scale equations of motion require an additional slipping model describing the 
slipping of contact lines. This necessity is well known [14], and it relates to the 
microscopic wetting properties of the system. As we are interested in the more 
macroscopic processes we refrain from further discussing this point. 

3. Pore Scale Dimensional Analysis 

Given a microscopic model for contact line slipping the next step is to evaluate the 
relative importance of the different terms in the equations of motion at the pore 
scale. This is done by casting them into dimensionless form using the definitions 

x =  l~, (10) 

V 
V = T '  (11) 

v = u~, (12) 

ff 
t = --, (13) 

u 

t~ = ~-, (14) 
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O'ow ^ 
p = - - x - p ,  (15)  

l 

where 1 is a microscopic length, u is a microscopic velocity and .4 denotes the 
dimensionless equivalent of the quantity A. 

With these definitions the dimensionless equations of motion on the pore scale 
can be written as 

0~w t-. 1 F-~ 1 ~- 
at" + (*~" V)*w = - - s  + ~ -  - - V ~ w ,  

Rew Wew 

0~o 1 1----^ 1 ~ ^  
0t" + ( v ~ 1 7 6  R e o ~ V w + ~ r 2 V Z - w e - - ~  Po, 

(16) 

A T  ^ ~ T  
~7 "Vw = 0, "~o = 0, (17) 

with dimensionless boundary conditions 

~ w = ~ o = 0  at0r, (18) 

~ w = ~ o  at0ow(t), (19) 

/Wew ~ ^  Weo AA \ 
= ( ewSVVw-  eoSVVo)""+ 

+27~n at Oow(t). (20) 

In these equations, the microscopic dimensionless ratio 

inertial forces pwul ul 
Rew = - - -  - (21) 

viscous forces #w U~v 

is the Reynolds number, and 

. /~w (22) 
/ ] W  - -  Pw 

is the kinematic viscosity which may be interpreted as a specific action or a specific 
momentum transfer. The other fluid dynamic numbers are defined as 

u u/~ / inertial forces 
Fr = Vg-1 = V gra~n~ f--~rces 

for the Froude number, and 

pwuZl inertial forces 
Wew - - -  - 

Crow capillary forces 

(23) 

(24) 
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TABLE I. Order of magnitude estimates for densities, viscosities and surface tension 
of oil and water under reservoir conditions. 

po pw Ito #w O'ow 

800 kg m -3 1000 kg m -3 0.0018 N m-2s 0.0009 N m-2s 0.035 N m -I 

for the Weber number. The corresponding dimensionless ratios for the oil phase 
are related to those for the water phase as Reo --- Rew(Po/Pw)(#w/#o) and Weo = 
Wew(Po/Pw) by viscosity and density ratios. 

Table I gives approximate values for densities, viscosities and surface tensions 
under reservoir conditions. In the following these values will be used to make 
order of  magnitude estimates. Typical pore sizes in an oil reservoir are of order 
l ~ 10 -4 m and microscopic fluid velocities for reservoir floods range around 
u ~ 3 x 10 -6 m s -1. Combining these estimates with those of Table I shows that 
the dimensionless ratios obey Reo, Rew, Fr 2, Weo, Wew << 1. Therefore, the pore 
scale equations (16) reduce to the simpler Stokes form 

A ~ a w  A 0 = s  +  rwVZ - V w, 

0 = 1 
Gro Cao 

(25) 

where 

Wew viscous forces #wU u 

C a w -  Rew - capillary forces - aow - U~v 
(26) 

is the microscopic capillary number of water defined above in Equation (1), and 

Fr 2 viscous forces #wU 
Grw . . . .  (27) 

Rew gravity forces pwgl 2 

is the microscopic 'gravity number' of water. The capillary number is a measure 
of velocity in units of 

. Cow ( 2 8 )  U w 
#w 

a characteristic velocity at which the coherence of the oil-water interface is 
destroyed by viscous forces. The capillary and gravity numbers for the oil phase 
can again be obtained from multiplication with density and viscosity ratios as 
Cao = Caw(#o/#w) and Gro = Crw(pw/po)(m/~w).  
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Many other dimensionless ratios may be defined. Of general interest are dimen- 
sionless space and time variables. Such ratios are formed as 

Caw Wew gravity forces pwgl 2 12 
G l w -  Grw - F r  2 - capillary forces - Cro----~-- l~v 2 (29) 

which we shall call the 'gravillary number' .  The gravillary number becomes the 
bond number if the density Pw is replaced with the density difference Pw - Po. The 
corresponding length 

t ;  (30) 
V Pwg 

separates capillary waves with wavelengths below 1 w from gravity waves with 
wavelengths above I w. A dimensionless time variable is formed from the gravillary 
and capillary numbers as 

Rew (capillary f. • gravity f.)1/2 

Caw - Frv/W--~w viscous f. 

tv/Pwaowg t 

#w t~v 
(31) 

where 

t w _  l~v #w (32) 
* aV/-5~pwg U w 

is a characteristic time after which the influence of capillary and gravity forces 
dominates viscous effects. 

Table II collects definitions and estimates for the dimensionless groups and the 
numbers l*, u* and u* characterizing the oil-water system. For these estimates the 
values in Table I together with the above estimates of I and u have been used. 
Table II shows the familiar pore scale result that 

viscous forces << gravity forces << capillary forces, (33) 

and hence capillary forces dominate on the microscopic scale. 
From the Stokes equation (25) it follows immediately that for low capillary 

number floods (Ca << 1) the viscous term and the shear term in the boundary 
condition (20) become negligible. Therefore the velocity field drops out, and the 
problem reduces to finding the equilibrium capillary pressure field. The equilibrium 
configuration of the oil-water interface then defines timeindependent pathways for 
the flow of oil and water. This shows that for flows with microscopic capillary 
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T A B L E  II. Overv iew o f  definitions and estimates 
for characteristic microscopic numbers describing 
oil and water flow under reservoir conditions. 

Quantity Definition Estimate 

Rew pwul 3.3 x 10 -4  
/Zw 

Caw #wu 7 . 7 x  10 -8  
O'ow 

Grw #wU 2.8 x 10 -5  
pwgl 2 

Glw Pwgl2 2.8 x 10 -3  
tTOW 

, /~W u w - -  9 •  - 7  m 2 S-I  
Pw 

, O'ow 
uw 38.9 m s - I  

#w 

1~, ~ 1.9 cm 
V Pwg 

t*  ttw 4.9 x 10 -4  s 

numbers Ca << 1 an improved methodology for a quantitative description of 

immiscible dislplacement from pore scale physics involves first and foremost an 

improved methodology for calculating capillary pressures from the pore scale. 

4. Large Scale Equations of Motion 

It is impractical to specify the microstructure of the rock given by the set Gr for 
either a laboratory core or a whole reservoir. For this reason most discussions of 
multiphase flow begin with equations of motion appropriate at larger scales. The 
analogous procedure for single phase flow involves establishing Darcy's law by 
homogenization techniques [ 15] and calculating effective absolute permeabilities 
using the local generalization of effective medium theory [16-18]. For multiphase 
flow the generalization of Darcy's law is well known, while the systematic calcu- 
lation of relative permeabilities from pore scale equations of motion remains an 
unsolved problem. 

The accepted large scale equations of motions involve a generalization of 
Darcy's law to relative permeabilities including offdiagonal viscous coupling terms. 
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These equations are believed to describe multiphase flow on the reservoir scale as 
well as on the laboratory scale, and they may be written as [19-22] 

~0~w - ~0~o 
Ot - ~7 .Vw, - ~  = V--Vo, (34) 

= -  r K - -  _ + K w o K ( V p o  - P o g ~ ) ] ,  Vw [Kww~ww (V~w pwg~-#) 

Vo = - Kow w - pwgV-~) + Koo VPo - Pog , (35) 

Sw + So = 1, (36) 

fro - Pw = Pc(Sw), (37) 

where fi~ denotes the macroscopic equivalent of the pore scale quantity A. In the 
equations above K stands for the absolute (single phase flow) permeability tensor, 
K~v w is the relative permeability tensor for water, Koo the oil relative permeability 
tensor, and K~vo, Kow denote the possibly anisotropic coupling terms. The rela- 
tive permeabilities are matrix valued functions of saturation. The saturations are 
denoted as Sw, So and they depend on the macroscopic space and time variables 
(~, 7). The capillary pressure curve ffc(Sw) and the relative permeability tensors 
Ki~(Sw), i , j  = w, o must be known either from solving the pore scale equations 

of motion, or from experiment, r - Kij(Sw) and ~c(Sw) are conventionally assumed 
to be independent of V and ff and we follow this convention here, although it is 
conceivable that this is not generally correct. 

Eliminating Y and choosing ~w(~, t-) and Sw(~, t) as the principal unknowns 
one arrives at the large scale two-phase flow equations 

70~w _ v .  

+ Kwo(~w)~[(V~w - pwgW) + 

+ v--L(S-w)+ (pw- po)gW]}, (38) 

7 0 ( 1  - 8Sw) 
V .  {Kow(-Sw) K (V~w - pwgV-5) + 

+ K~,o(Sw)K[(V~w - pwgW-2) + 

+ v--~(S-w) + (pw - po ) g ~ ]  } (39) 
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for these two unknowns. Equations (38) and (39) are coupled nonlinear partial 
differential equations for the large scale pressure and saturation field of the water 
phase. 

These equations must be complemented with large scale boundary conditions. 
For core experiments these are typically given by a surface source on one side of 
the core, a surface sink on the opposite face, and impermeable walls on the other 
faces. For a reservoir the boundary conditions depend upon the drive configuration 
and the geological modeling of the reservoir environment, so that Dirichlet as well 
as von Neumann problems arise in practice. 

5. Large-Scale Dimensional Analysis 

The large-scale equations of motion can be cast in dimensionless form using the 
definitions 

- - A  

= I ~, (40) 

A 

V 
V - -  T'  (41) 

A 

--- uV, (42) 

It 
= --, (43) 

u 

A 

-- Pb P, (44) 

where as before A denotes the dimensionless equivalent of the macroscopic quantity 
A. The length I is now a macroscopic length, and ~ a macroscopic (Seepage or 
Darcy) velocity. The pressure Pb denotes the 'breakthrough' pressure from the 
capillary pressure curve ~(Sw) .  It is defined as 

m 

Pb = ffc(Sb), (45) 

where Sb is the breakthrough saturation defined as the solution of the equation 

d2 Pc(Sw) - 0 .  
--~2 

d S w 
(46) 

Thus, the dimensionless pressure is defined in terms of the inflection point (Pb, Sb) 

on the capillary pressure curve, and it gives a measure of the macroscopic capillary 
pressure. Note that fib is process dependent, i.e. it will in general differ between 
imbibition and drainage. This dependence reflects the importance of microscopic 
wetting properties and flow mechanisms on the macroscale. Other normalizations 
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could also be employed instead of (45) provided they are based on the capillary 
pressure curve ~c(Sw) which measures the macroscopic capillary forces. 

Our definition (44) differs from the traditional analysis [10-13]. In the traditional 
analysis the normalized pressure field is defined as 

#w~l ~- 
P -  k p' (47) 

which immediately gives rise to three problems. Firstly the permeability is a tensor, 
and thus a certain nonuniqueness results in anisotropic situations [4]. Secondly 
equation (47) neglects the importance of microscopic wetting and saturation history 
dependence. The main problem however is that Equation (47) is not based on 
macroscopic capillary pressures but on Darcy's law which describes macroscopic 
viscous pressure effects. On the other hand our normalization is free from these 
problems and it includes macroscopic capillarity in the same way as the microscopic 
normalization (15) includes microscopic capillarity. 

With the normalizations introduced above the dimensionless form of the macro- 
scopic two-phase flow Equations (38), (39) becomes 

- _ ,  

0t  = �9 Kww(Sw/(Caw V ~ w - G r w I V ~ )  + 

+ K~vo(ffw)~W [(~-I  ~ w  - ~wlV2) + 
#o L \ w 

(48) 

_ {Kow( w  + 
O7 

+ Koo(Sw) #w [(C--aw I ~ w  - G--rw l v z )  + 
#o L" 

In these equations the dimensionless tensor 

#wU-1 K -  1 = macroscopic viscous pressure drop 
Caw (50) 

Pb macroscopic capillary pressure 

plays the role of a macroscopic or large scale capillary number. Similarly, the 
tensor 

Grw = #WUK-1 = macroscopic viscous pressure drop (51) 
Pw9 macroscopic gravitational pressure 
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corresponds to the macroscopic gravity number. 
If the traditional normalization (47) is used instead of our normalization (44), 

and isotropy is assumed then the same dimensionless equations are obtained with 

Caw = 1, (52) 
m 

where Caw is the macroscopic capillary number. Thus the traditional normalization 
is equivalent to the assumption that the macroscopic viscous pressure drop always 
equals the macroscopic capillary pressure. While this assumption is not generally 
valid, it sometimes is a reasonable approximation as we will illustrate below. 
First, however, we briefly discuss the consequences of assumption (52) for the 
measurement of relative permeabilities. 

6. Measurement of Relative Permeabilites 

For simplicity we consider only the isotropic case from now on, i.e. we set K = k l  
where 1 is the identity matrix. The tensors C----aw and Grw then become C----aw = C-awl 
and Grw = Grwl where Caw and Grw are the macroscopic capillary and gravity 
numbers. 

The unsteady state or displacement method of measuring relative permeabil- 
ities consists of monitoring the production history and pressure drop across the 
sample during a laboratory displacement process [1,23]. The relative permeability 
is obtained as the solution of an inverse problem. The inverse problem consists in 
matching the measured production history and pressure drop to the solutions of the 
multiphase flow Equations (48) and (49) using the Buckley-Leverett approxima- 
tion. 

In the present formulation the Buckley-Leverett approximation comprises sev- 
eral independent assumptions. Firstly it is assumed that gravity effects are absent, 
which amounts to the assumption 

Caw << Grw. (53) 

Secondly, the viscous coupling terms are neglected, i.e. 

k r ~ w  ~ 
wo #o << C--aw and kow << Caw. 

Finally the resulting equations 

{ Caw }' 

8-~- - " Caw J 
+ } 

(54) 

(55) 

(56) 
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are further simplified by assuming that the term involving ~c(Sw) in Equation (56) 
may be neglected. 

Combining (53) with the traditional normalization (52) yields the consistency 
condition 

Grw >> 1 (57) 

for the application of Buckley-Leverett theory in the determination of relative 
permeabilities. It is now clear from the definition of the macroscopic gravity 
number, see Equation (51), that the consistent use of Buckley-Leverett theory for 
the unsteady state measurement of relative permeabilities depends strongly on the 
flow regime. This is valid whether or not the capillary pressure term ~c(Sw) in (56) 
is neglected. 

7. Pore Scale to Large Scale Comparison 

The comparison between the macroscopic and the microscopic dimensional analy- 
sis is carried out by relating the microscopic and macroscopic velocities and length 
scales. The macroscopic velocity is taken to be a Darcy velocity defined as 

= Cu, (58) 

where r is the bulk porosity and u denotes the average microscopic flow velocity 
introduced in the microscopic analysis (Equation (12)). The length scales 1 and 
are, of course, identical (i = l). 

Using these relations between microscopic and macroscopic length and time 
scales together with the assumption of isotropy, we obtain 

C----aw - #w-r ul aowr (59) 
k~b p*W k~b 

as the relationship between microscopic and macroscopic capillary numbers. 
Similarly, one obtains 

G-~w = #wCU _ u _ r Grw (60) 
pwgk U*w k 

for the gravity numbers. Taking the quotient gives 

G--iw Caw pwgl _ 1 _ aow Glw (61) 
Grw Pb l*w lPb 

for the macroscopic gravillary number. Note that the ratio Crow/(l~b ) is the ratio 
of the microscopic to the macroscopic capillary pressure. The characteristic 
numbers 

- -  kPb (62) 
lJ*w - -  ~ w  ~ 
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- -  = pwgk 
U*w awe' (63) 

1--Zw = fib (64) 
Pwg 

are the macroscopic counterparts of the microscopic numbers defined in Equations 
(22), (28) and (30). 

An interesting way of rewriting these relationships arises from interpreting the 
permeability as an effective microscopic cross-sectional area of flow, combined 
with the Leverett J-function. More precisely, let 

(65) 

denote a microscopic length which is characteristic for the pore space transport 
properties. Then Equations (59), (60) and (61) may be rewritten as 

Caw 
Caw - A J(ffb) cos 0'  (66) 

~2 

Grw = ~-~ Grw, (67) 

- -  A Glw 
Glw - -- (68) 

1 J(Sb) cos0' 

where J(Sb) = ( f f b ~ / ( a o w  COS0) is the value of the Leverett-J-function 
[3,1 ] at the saturation corresponding to breakthrough, and 0 is the wetting angle. 

Note that the capillary number scales as j / A )  while the gravity number scales 
as ( l /A)  2. Inserting (67) and (68) into (53) this implies that the Buckley-Leverett 
approximation (53) becomes invalid whenever i > A Glw/(J(Sb) cos 0). 

The significance of some of the dimensionless ratios as absolute measures of 
length, specific action or velocity is reversed in the transition from the microscale 
to the macroscale. The macroscopic capillary number in this sense is analogous 
to the Reynolds number. The macroscopic gravity number corresponds to the 
microscopic capillary number. On the other hand the gravillary number remains 
unchanged and it gives an absolute measure of length microscopically as well as 
macroscopically. 

8. L a r g e - S c a l e  E s t i m a t e s  

In the present section we present order of magnitude estimates for the relative 
importance of capillary, viscous and gravity effects at different scales in represen- 
tative categories of porous media. These estimates illustrate the usefulness of the 
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TABLE III. Representative values for porosity, permeability and 
breakthrough capillary pressure in unconsolidated sand, sand- 
stone and low permeability limestone. 

Quantity Sand Sandstone Limestone 

0.36 0.22 0.20 
k 10 000 mD 400 mD 3 mD 
Pb 2000 Pa 10 4 Pa 105 Pa 

newly introduced macroscopic dimensionless ratios for obtaining rough quantita- 
tive estimates from simple calculations. 

Three types of porous media are considered: high permeability unconsolidated 
sand, intermediate permeability sandstone and low permeability limestone. Repre- 
sentative value for r k and fib are shown in Table III. 

To estimate the dimensionless numbers the same microscopic velocity u 
3 • 10 -6 ms -1 as for the microscopic estimates will be used. The length scale l, 
however, differs between a laboratory displacement and a reservoir process. We 
use/lab ~ 0.1 m and/res ~ 100 m as representative values. Combining these values 
with those in Table I and II yields the results shown in Table IV. 

The first row in Table IV can be used to check the consistency of the Buckley- 
Leverett approximation with the traditional normalization. We see that the consis- 
tency condition (Equation (57)) is violated for unconsolidated sand and sandstones. 
Such a conclusion, of course, assumes that the values given in Table III are indeed 
representative for these media. 

The fifth row in Table IV gives the ratio between macroscopic and microscopic 
capillary numbers which according to Equation (59) is length scale dependent. The 
last row in Table IV compares this ratio to the typical critical capillary number 
Cac reported for laboratory desaturation curves in the different porous media. 
Using the representative Cac values cited in the introduction we find that the 
corresponding critical macroscopic capillary number is close to 1. This indicates 
that the macroscopic capillary number is indeed an appropriate measure of the 
relative strength of viscous and capillary forces. 

As a consequence, we expect differences between residual oil saturation SoT in 
laboratory and reservoir floods. Given a laboratory measured capillary desaturation 
curve SoT (Caw) as a function of the microscopic capillary number Caw the fore- 
going analysis predicts that the residual oil saturation in a reservoir flood can be 
estimated from the laboratory curve as SoT (Cac• Caw), For Caw > 1 the SoT value 
based on macroscopic capillary numbers will in general be lower than the value 
Sot(Caw) expected from using microscopic capillary numbers. Such differences 
have been frequently observed, and Morrow [24] has recently raised the question 
why field recoveries are sometimes so much higher than those observed in the 
laboratory. Our present analysis suggests a possible answer to this question. 
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TABLE V. Relative importance of viscous (V), gravity (G) and capillary (C) forces in 
unconsolidated sand, sandstone and limestone. The notation A << B (with A, B E {V, G, C}) 
indicates that A/B < 10 -2 while A < B means 10 -2 < A/B < 0.5 and A ~ B stands for 
0 . 5 < A / B < 2 .  

Sand Sandstone Limestone 
Pore scale V << G << C 

Large scale 
Traditional analysis 

This Laboratory scale 
work Field scale 

V=C<<G V = C < G  G < V = C  
V.<<G,..~C V < G < C  G < V < C  
C<V<<G C < V < G  C < G < V  

The values of the dimensionless numbers in Table IV allow an assessment of 
the relative importance of the different forces for a displacement. To illustrate this 
consider the values Grw = 0.01,Caw = 0.005 and Glw = 0.5 for unconsolidated 
sand on the laboratory scale. A moments reflection shows that this implies V << 
G ~ C where V stands for macroscopic viscous forces, C for macroscopic capillary 
forces, and G for gravity forces. The notation A << B indicates that A / B  < 10 -2 
while A < B means 10 .2 < A / B  < 0.5 and A ~ B stands for 0.5 < A / B  < 2. 
Repeating this for all cases in Table IV yields the results shown in Table V. In 
Table V we have also included the results from the microscopic dimensional 
analysis, as well as the results one would obtain from a traditional macroscopic 
dimensional analysis which assumes Ca = 1 (see Equation (52)). 

Obviously, the relative importance of the different forces may change depending 
on the type of medium, the characteristic fluid velocities and the length scale. 
Perhaps this explains part of the general difficulty of scaling up from the laboratory 
to the reservoir scale. 

9. Applications 

The characteristic macroscopic velocities, length scales and kinematic viscosi- 
ties defined respectively in Equations (62), (63) and (64) are intrinsic physical 
characteristic of the porous media and the fluid displacement processes. These 
characteristics can be useful in applications such as estimating the width of a grav- 
itational segregation front, the energy input required to mobilize residual oil or 
gravitational relaxation times. 

The microscopic gravillary number Glw defines an intrinsic length scale/*w 
(see Equation (61)). Because Glw gives the ratio of the gravity to the capillary 
forces the length/*w directly gives the width of a gravitational segregation front 
when the fluids are at rest and in gravitational equilibrium, i.e. when viscous forces 
are negligible or absent. Using the same estimates for r k and Pb as those used for 
Table IV we obtain a characteristic front width of 20 cm for unconsolidated sand, 
1 m for sandstone, and roughly 10 m for a low permeability limestone. 
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TABLE VI. Characteristic mascroscopic energies, velocities, length scales, time scales 
and volumetric flow rates for oil-water flow under reservoir conditions in unconsolidated 
sand, sandstone and low permeability limestone. 

Quantity Sand Sandstone Limestone 

u---~w 6.1 x 10 -5 m2s - l  2.0• 10 -5 mZs - l  1.6x 10 -6 m2s - I  

u*----~ 2.99x 10 -4 ms -1 2.17• 10 -5 ms -1 1.61 • 10 -7 ms -1 

/*w 0.2 m 1.02 m 10.2 m 

t--;-w 669s 4.7x 104 s 6.36• 107 s 

Q---7 1.22• 10 -6 m3s -1 2.04• 10 -5 m3s -1 1.63 • 10 -5 m3s -1 

Similarly, the macroscopic capillary number defines an intrinsic specific action 
(or energy input) u--Zw via Equation (59) which is the energy input required to 
mobilize residual oil if gravity forces may be considered negligible or absent. 
Representatives estimates are given in Table VI. 

The gravitational relaxation time is the time needed to return to gravitational 
equilibrium after its disturbance. This may be defined from the balance of gravi- 
tational forces versus the combined effect of viscous and capillary forces. Analo- 
gously to Equation (31) for the microscopic case we now have the dimensionless 
ratio 

G1--w (macr. gravitational pressure) z 

Grw (macr. capillary pressure) • (macr. viscous pressure drop) 

Caw p2 g2kl t (69) 
-~--2 Gr w #w~b~bu t*w 

which defines the gravitational relaxation time t*w as 

- -  t-~-w #w~Pb (70) 
t* w U*w p2wg2k" 

Estimated values are given in Table VI. They correspond to gravitational relaxation 
times of roughly 11 min for unconsolidated sand, 13 h for a sandstone and 736 
days for a low permeability limestone. 

Another interesting intrinsic number arises from comparing the strength of 
macroscopic capillary forces versus the combined effect of viscous and gravity 
forces 

(macr. capillary pressure) 2 
(GlwCaw)-I = (macr. grav. pressure) • (macr. viscous pressure drop) 

_ G---~w k ~  Q*w (71) 
- - 2  Ca w ~#wPwg ul2 Q 
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where Q denotes the volumetric flow rate. Thus Q*'w defined as 

Q~-w = V2 ~ kp2 (72) 
~ w ~  w -  O-~wpwg 

is an intrinsic system specific characteristic flow rate. 
The estimates for U'w, U'w,/*w, t*w and Q*w are summarized in Table VI. 

10. Conclusions 

We have revisited the traditional dimensional analysis of multiphase flow equa- 
tions in porous media appropriate both on the microscale and the macroscale. We 
propose to normalize the pressure field in a way which differs from the tradtional 
normalization. This gives rise to novel macroscopic dimensionless numbers. The 
most important of these numbers is the macroscopic capillary number Ca which 
differs from the traditional microscopic capillary number Ca in that it depends on 
length scale and the breakthrough capillary pressure fib. 

The traditional normalization is found to correspond to the tacit assumption that 
viscous and capillary forces are of equal magnitude. 

With the new macroscopic capillary number Ca the breakpoint Cac in capillary 
desaturation curves seems to occur at Ca ~ 1 for all types of porous media. 

Representatives estimates of Ca for unconsolidated sand, sandstones and lime- 
stones suggest that the residual oil saturation after a field flood will in general differ 
from that after a laboratory flood performed under the same conditions. 

Order of a magnitude estimates of gravitational relaxation times and segregation 
front widths for different media appear to be consistent with experiment. 
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