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SUBMETRIES OF SPACE-FORMS OF NEGATIVE CURVATURE 

V. N. Berestovskii UDC 513.813 

INTRODUCTION 

A map p of a metric space M into a metric space N is called a submetry if for each point 
x in M the image of every closed ball centered at x under p is a closed ball of the same 
radius centered at p(x). The introduction of this notion is justified by the fact that every 
Riemannian submersion of complete Riemannian manifolds is a submetry. 

We establish the following basic results. 

THEOREM i. Every submetry p: M + N of (possibly infinite-dimensional) complete Euclidean 
spaces M and N can be represented as a composition p = i I o Pz, where Pl is the orthogonal 
projection map onto a closed Euclidean subspace M I of M and if: M I + N is an isometry. 

THEOREM 2. Every submetry p: M + N of unit spheres in complete Euclidean spaces is an 
isometry (M and N are endowed with the induced intrinsic metric). 

We also note the connection between Riemannian submersion of a special form and the 
existence of foliations transverse to a given fiber bundle. We prove that the Hopf bundles 
have no transverse foliations. 

i. Submetries of Simply Connected Space-Forms of Nonnegative Curvature 

Let M m, N n (m > n) be connected Riemannian C~-manifolds. Following [i] we call Riemannian 
submersion any C=-map p: M + N whose differential p, has constant rank n and preserves the 
length of the horizontal vectors, i.e., vectors orthogonal to the fibers p-~(z), zEN, of the 
submersion p. The nonempty fibers p-Z(x) give a C~-foliation of M of codimension n. 

In [2] it is established that if M is a complete space, then such is N, and p: M + N is 
a locally trivial C=-bundle over N. Moreover, for arbitrary points x, y e N and ~ in p-Z(x) 
one has the equality 
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where PM and PN are the intrinsic metrics in M and N, respectively. Equality (i) obviously 
holds if and only if for every point x in M and every positive number r 

p(B~(Y, r))=B~ip(Y~), r). (2) 

Here B M and B N are closed balls in M and N, respectively. Equality (2) motivates the defini- 
tion of a submetry given in Introduction. 

We remark that if M and N are locally compact complete spaces with intrinsic metric then 
(2) is equivalent to the (general speaking, weaker) equality 

(3) 

where U M and U N are open balls in M and N, respectively. 

If ml, mf, m 3 are points of the metric space M with metric p, the notation (mlmfm 3) means 
that m 2 is different from m I and m3, and 9(m~,m~)=p(m~, mf)+p(mf, ms). We say that the space 
(M, p) satisfies the condition of nonoverlapping of shortest paths if from (mlmfm~), (mlmfm~), 
and p(mf, m 3) = p(mf, m~) it follows that m~ = m s. 

LEMMA I. Let p: M § N be a submetry, m~M, n~N, p(m~)=n~, i = I, 2, 3. Suppose p~(m~, 

mf)=pN(nl, nf); p~(mf, m~)=p~(nf, ns), and (nlnfn3). Then (mlmfm3). 

Proof_____u. 9~(n,, na)~p~(mi, ms)~p~(m~, m~)+p~(m~,m3)=pN(n~, ni)+p~(ni, ns)=pN(n,, n~) The 
first equality follows from the fact that submetries do not increase distance. 

Proposition i. Let p: M + N be a submetry. Then each of the properties of the space 
M (completeness, intrinsic character of the metric, the fact that two points can be connected 
by a shortest path, local compactness, nonoverlapping of shortest paths) is inherited by the 
space N. 

Proof. That the first three properties are inherited by N follows from the fact that 
a submetry does not increase distance and for arbitrary points nl, n 2 in N and m I in p-1(n I) 
there is a point m 2 in p-1(n 2) such that p~(m,, mz)=p~(n,, n=). Next, N inherits the local 
compactness property since p is both open and closed. Now suppose that (nlnfn3), (nlnfn~), 
and pN(nf, n3)=p~(n~,n~ ). There exist points mi, i = i, 2, 3, m~ in M such that p(m i) = n i, 

p (m~)=n~, PM (ml, mi)=PN (n~, n~), and p~ (m~, m~)= 9N (n~, n~)= p~(n 2, n~)= pM(m~, m~). By Lemma 1, (mzmims) 
and (m~mim~). Since sho r t e s t  paths in M do not over lap,  m~' = ma, whence n's =p(m~)=p' (mn) = n~. 

LEMMA 2. Let M, N be spaces with intrinsic metric, and let p: M + N be a locally iso- 
metric covering. If N is locally compact and complete, then such is M, and p is a submetry. 

Proof. Since p is locally isometric, the local compactness of N implies the local 
compactness of M; moreover, every rectifiable curve?=?(t), 0~t~i, in M, has length equal 
to the length of p ~ ~. Thus, p does not increase distance, because M and N are spaces with 
intrinsic metric. Consequently, the completeness of N implies that of M. Now since N is 
locally compact and complete, any two points n~, n 2 in N can be joined by a shortest path 

= ~(t), O ~ t ~ .  Let p(m~) = n~. Then there exists a unique lift~=7(t),.0~t~l , of 
with origin at the point m~. If m2 = 7(i), then p(mf) = n= and, since p does noE increase 
distance, 7 is a shortest path joining the points m~ and mf. Therefore, p~(~, m~)=p~(n~,�9 
and p is a submetry, as claimed. 

Propositio n 2. Let M, N, M~, N~ be spaces with intrinsic metric (where M is locally 
compact and complete) related by a commutative diagram of continuous maps 

M~--~ M 

N~--~ N 

where p is a submetry and s, q are locally isometric covering maps. Then N, M~, N~ are lo- 
cally compact complete spaces and s, q, p~ are submetries. 

Proof. By Proposition i and Lemma 2, N, M~, and N~ are locally compact complete spaces 
and s and q are submetries. 

Let ~(t), O~t~ I,. be a rectifiable curve in M~. Then the length (l(p,~ of the parametrized 
curve p,o? is equal to l(qop, o]) (indeed, q is a covering submetry), i.e., to ~((pos)o~), and 
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hence it does not exceed /(I) because p ~ is a submetry. Consequently, Pl does not increase 
distance. 

Now let ~----~(t), O<~t<-a, be a shortest path in N I parametrized by arc-length and joining 
l 

the points n I and n I. There exists a positive number r such that q maps the ball B(~(t), r) 
isometrically onto B(q~(t), r) for every t, O<-t~a. Further, suppose given a partition to 
=O<t1<...<t,=a of the segment [0, a], such thatt~--t~_~<~r and p1(m0) = n I. We claim that 

there exist points m0, ml,...,m n in M I such that pj(m~)=~(t~) and PM1(mi, rai+1) = PN1(~(t~), ~(t~+0), 
i = 0, I .... ,n - i. 

In fact, since p~ is an isometry, there is a point m I in M l such that (pos)(m,)=q(~(tl)), 
p~1(ra6, ml)=pN{q(y(O)), q(~(t~)))=t~. Then (p on)(ml)= q(p~(m~))= q(~(t~)) . Next, since ~i(ni, p1(ml))~ 
pM,(m o, ral)----tl<r and q maps B(n I, r) isometrically onto B(q(nl), r), we have ~(tl)=p1(ml). 
Moreover, pM1(ra0, ml)= t I = pN I (~(0), ~{tl) ). In a similar manner we find the points m2, ms,... ,m n. 

From the fact that Pl does not increase distance it follows, using the proof of Lemma i, that 

' r , ,  - -  1 n--i . 

p~,, (m 0, m=) = E P~ (m,, mi+l) ----- E (t,+l -- ti) = a = pN 1 (nl, n ; ) .  
~ 0  i=0  

Moreover ,  p l (m0)  = n z and pz(mn) = nl ' .  Hence,  Pl i s  a s u b m e r s i o n ,  as  c l a i m e d .  

P r o p o s i t i o n  3. L e t  p: M-~ N be a subme t ry .  Suppose n o n o v e r l a p p i n g  of  s h o r t e s t  p a t h s  
h o l d s  in  M. Let~----~(t) a n d l = l ( t ) , a < t < b  (a, b E~),  be g e o d e s i c s  in  M and N p a r a m e t r i z e d  by 
a r c - l e n g t h ,  p(~(t 0 ) = l ( t 0 , ~ = l ,  2, a < t , < t 2 < b ,  and l e t  l{Lh,%] be t h e  u n i q u e  s h o r t e s t  p a t h  in  N 

joining the points l(t,) and l(t2). Then p(~(t))=t(t), a<t<b. 

Proof. For t', t", wheret~<~t'<t"<~t2, we obtain tz-t,=p(l(tl), l(tz))<-O(p([(t~)), p(f(t')))+ 
p(p(r ( t ' ) ) ,  p(T(t")))+p(p(~(t")), p([(t2)))<-p([(t,), ~( t ' ) )+p (~ ( t ' ) ,  ~ ( t " ) ) + p ( [ ( t " ) ,  [(t~))<(t'-- 
t~)+(t"-t')-P(t~--t")=tz--t~. C o n s e q u e n t l y ,  a l l  i n e q u a l i t i e s  become e q u a l i t i e s  and 

p(p(E(t ' )) ,  p(~(t")))=p(~(t'), [ ( t " ) ) = t " - t ' .  

T h e r e f o r e ,  (po~)(t) ,  ti<<_t<~t~, i s  a s h o r t e s t  p a t h  in  N, p a r a m e t r i z e d  by a r c - l e n g t h ,  j o i n i n g  t h e  
p o i n t s  l(t 0 and l(t~). By t h e  u n i q u e n e s s  o f  t h e  s h o r t e s t  p a t h  l(t),t~<~t<_t~, we getl(t)=(poE)(t), 
t~ ~ t ~ t~. Now u s i n g  Lemma 1 and P r o p o s i t i o n  1 we o b t a i n  t h e  needed  a s s e r t i o n .  

LEMMA 3. Le t  p: M + N be a subme t ry  where  M, N a r e  comple t e  E u c l i d e a n  spaces  or  u n i t  
s p h e r e s  in  comple te  E u c l i d e a n  s p a c e s ,  and l e t  m~M, n~N,p(m)=n.  Then f o r  e v e r y  g e o d e s i c  
l= l ( t ) , t~R ,  w i t h  / ( 0 ) = n ,  t h e r e  i s  a g e o d e s i c  [ = ~ ( t ) ,  t ~ R ,  w i t h  E (0 )=m in  N c o v e r i n g  l (l, 
and ~ a r e  p a r a m e t r i z e d  by a r c - l e n g t h ) .  Moreover ,  p maps g i s o m e t r i c a l l y  on to  /, and p -~ (n )  
l i e s  in  t h e  c omple t e  t o t a l l y  g e o d e s i c  subspace  H~ of  c o d i m e n s i o n  one in  M, o r t h o g o n a l  t o  L 

Proof. For the proof it suffices to take a point l(to)i 0<t0<~/2, on l , then choose a 
point m 0 in p-'(l(to)) such that p(m, mo)=to, and construct the geodesics [=[(t), t~R, in M for 
which ~(0~= ;n,[(t0)= m0. By Proposition 3, ~ is the sought-for geodesic. Let H~ be the big 

hypersphere in M (if M is a sphere) or a hyperplane in M (if M is Euclidean space) which 
passes through m orthogonal to [. 

Let M be a sphere, m~----~(n/2) , and m_~----~(-n/2). Then p-~(n) lies outside the open balls 
U(ra~, ~/2) and U(rr~-~, ~/2) (i.e., in H~ ); in fact, p is a submetry which maps [ isometrically 

/ 
onto l, and so 

�9 p~ (ra, m,) = p~ (m, m-0  = p~ (n, / (~/2)) = p~ (n, / (--;~/2)). 

If M is Euclidean space, then for every real number t, p-~(n) lies outside the open ball 
U([(t), Itl), and hence in H~, as claimed. 

LEMMA 4. Let p: M § N be the submetry of Lemma 3. If m~M,n~N, p(m)=n, l~, l~ are two 
geodesics in N with origin at n and [~,[z are twogeodescisinMwithoriginatmcovering s s 
(constructed in Lerama 3), then ~(11,/z)=Z_([~, [~) . In particular, the geodesic [ with origin 
at m covering s whose existence is asserted in Lemma 3 is uniquely determined. 

Proof. Let l~- ----- l~ (t), l~-=l~(--t),t>~O, i = i, 2, be two rays on the geodesic l~ , and~+,~ - 
the corresponding rays on [~ . Since [~ is mapped isometrically onto l~ and p does not in- 
crease distance, 

z (L+jt) Z(Zl +, = z(%+,7;) = z(%+,%+), 
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and so Z(7~7,7 +) -----z(l +, l+). The lerama i s  proved.  

If E={[=, a~A} is a family of pairwise orthogonal geodesics [= in M with origin at m, 

we let H~ and H E denote the intersection of all Hi (see Lemma 3) and, respectively, the 

totally geodesic subspace in M passing through m, such that the tangent spaces to //~ and H E 
L at m yield a direct sum decomposition of the tangent space to M at m. 

LEMMA 5. Let L={l=, a~A} be a family of geodesics in N pairwise orthogonal at n~N, 
such that the closed convex hull of the set L equals N, Let L be the uniquely defined family 
{[=, =~A} of geodesics [= in M with origin at m, with i~ covering l=. Then p maps/fZ iso- 
metrically onto N, and H~ (n). 

Proof. First, let us show that p maps HI. onto N. Let ni~N, l=l(t), t~R, be the geo- 
desic in N with origin at n passing through n I, and ~ the geodesic over I with origin at m~ 

Further, let e==l=(0), e==/~(0), ~A, and e=i(0), e.=/(0) be the unit tangent vectors to the 
corresponding geodesics. By Lemma 4, we have the equality of inner products 

<ea, e> = <e=, e> = as, ~ a~ 
~xEA 

Therefore, e=~a~e~, and so ~ is tangent to H E at the point m, and l= ~(t), t~R is a geodesic 
~EA 

in H E . If l(t)-----n, then p([(t))=n,. 
If nl, n 2 belong to N and lie on the geodesics l~=/,(t), l==12(t), t~R, respectively, then 

the corresponding geodesics [~, [2 lie in HI., and, by Lemma 4, their unit tangent vectors sat- 
isfy<el, e2> = <F,, ez>. Hence, p~(ml, m2)-----p~(n,, n2), if ml, m 2 are points on [i, [2 such that p(m i) = 
n i, i = i, 2. 

Now let us show that p-1 (n) = H~. The inclusion p-~ (n) ~/f~ follows from Lemma 3. Suppose 
L L 

now that m I is not contained in p-l(n), i.e., p(m I) = n I ~ n. Let p(m 2) = nl, where m 2 is a 
point in H E. Applying the already proven assertion to the point m 2 instead of m and taking 
into account that p maps H E isometrically onto N, we conclude that nh~p-~(n~)~H~(m2), where 
Hi (m~) intersects H E orthogonally at m 2. We consider two cases. 
L 

i 
Let M, N be Euclidean spaces. In this case H L (m~) and HZ, being Euclidean subspaces of 

M and orthogonal complements to one and the same (complete) subspace HE, but at different 
points m and m2, do not intersect. Hence, m I is not contained in Hi. 

L 
Let M and N be unit spheres in Euclidean spaces. We prove that H E = M. Assume the con- 

3- trary. Then H~ (m), where m is an arbitrary point in L, does not reduce to one point. If 

m I is a point inHL(m ) with p~(m, n%)<~/2, then m I does not belong to Ifi(m') providedm'~HE, 
L 

m' ~ m, m t ~ -m (where -m designates the point diametrically opposingm). Hence, in view of 
the already established inclusion p-l(n) cH~, p(nh)----p(m) or p(m~) = p(-m). Obviously, the 
set 

i s  dense in H~(m). Hence, s i nce  the  s e t s  p-X(p(m)) and p ' a ( p ( - m ) )  a re  c losed ,  

n k  (nz) = p-1 (p (t/Z)) O P-~ (P (-- m)),, 
L 

These sets are closed, nonempty and disjoint. This implies that H~(m) is disconnected, which 
is impossible. Thus,p-~(n)={m}=H~. Lemma 5 is proven. 

�9 L 

Theorems i and 2 formulated in Introduction are obvious consequences of Lemma 5, more 
precisely of its proof. 

THEOREM 3. Every submetry of complete Riemannian subspaces of equal positive curvature 
is a Riemannian covering. 

Proof. Let p: M + N be the given submetry, s: M~ § M and q: N~ + N universal Riemannian 
coverings. We obtain a commutative diagram of continuous maps 

Mi. .  :,./lit 

".I I', 
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where the existence of p~ follows from the lifting theorem (see [3]). By Proposition 2, p~ 
is a submetry. By Theorem 2, it is an isometry, in particular a Riemannian submersion. Then 
obviously p is a Riemannian covering, as asserted. 

In Sec. 2 we consider submetries of locally Euclidean Riemannian spaces. 

2. Category of Riemannian Submersions 

The connected complete Riemannian C=-manifolds and their Riemannian submersions form a 
category ~. The category of morphisms of ~ will be referred to as the category of Rie- 
mannian submersions and will be denoted by S. Thus, the objects of S are Riemannian sub- 
mersions of complete connected Riemannian C~-manifolds ; a morphism of a submersion p: M~ + M= 
into a submersion q: N~ + N= is a pair u = (u~, u=), where ut: MI + N~ and u=: M= + N 2 are 
Riemannian submersions such that the diagram 

M~ - -+  N~ 

M~ --~ N~ 

is commutative. 

If u I and u 2 are Riemannian submersions and also coverings, we say that submersion p 
covers submersion q and call u = (ul, u 2) a covering morphism. The morphism u = (u I, u 2) 
is called an equivalence if and only if u I, u 2 are isometries. Two submersions p and q are 
equivalent if there exists an equivalence of p into q. The equivalences of p with itself 
form a group, called the group of self-equivalences of submersion p and denoted r(p). The 
sets 

r i ( p ) = { u i l ~ r @ ) } ,  r ~ ( p ) = { ~ 2 I u ~ r ( p ) }  

a r e  s u b g r o u p s  o f  t h e  g r o u p s  o f  m o t i o n s  I(M1) and I(M2) o f  t h e  s p a c e s  M 1 and M2, r e s p e c t i v e l y .  
If ue r(p), then u is a single-valued function p+(u I) of u I. Obviously, p+ is an epimorphism 
of the group r~(p) onto r2(p), and r(p) is precisely the graph of p+. The map ui~ ri(p)-+(ul, 
p+(ul)) is a group isomorphism of r~(p) onto r(p). We call the kernel of p+ the group of 
sliding motions of submersion p and denote it by Z(p). A motion 7~I(M,) belongs to r~(p) 
if and only if it maps the fibers of p one into another. Under the natural identification of 
the set of fibers of p with M2, 7 generates p+(7). 

Remark i. In the case of a Riemannian submersion which is also a covering our termin- 
ology disagrees with that used in [3]. 

Remark 2. Let p=MiXM~ be product of Riemannian spaces M l and M~ and let PI: P + MI 
be the canonical Riemannian submersion. Then r~(p~)=/(MI)XI(M2) and(pl)+(?,, 72)= 7~ whenever 
(7. 7~) ~ L(p,) .  

P r o p o s i t i o n  4. For  e v e r y  R iemann ian  s u b m e r s i o n  q: N 1 + N 2 t h e r e  e x i s t  a R iemannian  
s u b m e r s i o n  p:  M 1 + M 2 and a morphism (u~,  u 2) o f  p i n t o  q such  t h a t  u~ and u 2 a r e  u n i v e r s a l  
Riemannian coverings. Moreover, E(al)cFi(p) and p+(E(al))cE(a2), and E(a~), i = i, 2, are iso- 
morphic to the fundamental groups ~l(Ni). Under these isomorphisms the restriction of p+ to 
E(u I) is taken into the homomorphism q4: n~(N~)--~i(N2) induced by q. Finally, N~ =M~/Z(at), N~ = 
M/E(az), and q: N I + N 2 is a factor of p. 

Proof. Let ui: M i + N i be universal Riemannian coverings. By the lifting theorem 
there exists a continuous map p: M I + M 2 such that u2op= qou~. By Theorem 2, p is a submetry, 
and it obviously is a Riemannian submersion. Consider the followingsegment of the homotopy 
sequence of the C~-bundle p: M I * M 2 [3]: 

~ ' '  -"-~ g l  (M1) - -~  ~ (M2) --+ no (F) "-+ n0 (M~) ->" ~o (M=). (5 )  

Here F is an arbitrary fiber of p and for brevity we omit the base points of the homotopy 
groups. Since M~ is connected, M= is simply connected, and sequence (5) is exact, F is con- 
nected. It follows from the commutativity of the diagram (4) that ~o7 = ~ for every 7 in 
Z(ul), and so(~op)o~=(qo~176176176 i.e., 7~E(a2~ For this reason ~ permutes the 
components of the fibers of the submersion uzop (i.e., the fibers of p) and ~F~(p). From 
7~Z(~op) and the equality p+(7)~176 we conclude that~zOp+(~)~176176176 Conse- 
quently, uzop+(7)=a~ andp+(])~E(=~). By Corollary 4 of [3], Z(u i) is isomorphic to the group 
~(Ni) , i = i, 2. The corresponding isomorphism is defined as follows. Let n~N~, m~?~(n~),: 
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and ~EV,(U,). Then ii(?) [uio0)], where [u io~]  is the element of ~I(NI, n I) corresponding to 
the path ul ~ ~o, with:m an arbitrary path in M I" joining the points m I and ?(re,)~u[ I (nl). The 
homomorphism i~: Y,(u2)-~i(N2, n~) is defined in a similar manner. We shall assume that n 2 = 
q(nt). Set m 2 = p(ml). For ~Z(u,) " 

(re2) = P+ ( p ( r e , ) )  = p ( r e , ) ) .  

If m joins the points m I and 7(mi), then the pathpoo joins the points m 2 and p+(7)(m2) , and 
then we have 

= lu p ] = [qm ] = q+ = 

From Corollary 8 of [3] we obtain the identificationsNi=MJ~(u,.) andN==M2/~(u~). The dis- 
crete subgroups Z(ui) of I(Mi) act freely on M i. The submersions u I and u 2 can be identified 
with the corresponding factor maps. It follows from the commutativity of the diagram (4), 
the equality p o~----p+(~)op for y in g(ul) , and the inclusionp+(X(~i))cZ(~) that q: N I + N 2 is 
a factor of p, as claimed. 

THEOREM 4. Let p: M n + N n be a submetry of locally Euclidean spaces. Then M=E~X 
E=-~/E, N=E"/Eo , where EcI(E")XI(E ~-") and ZDcl{E ~) are discrete isometry groups acting freely 
on E m and E n, respectively. Moreover, Y~,={?21?=(?i, 'y2)~Z}=~0 and p is a factor of the Rie- 
mannian submersion Pl, the projection of E"XE ~-~ onto E n. 

Proof. The submetry p can be incorporated in a commutative diagram 

Em ~ , M ~ 

+'i I ~+v+ 
.+'+ YL..  

where s, q are Riemannian coverings, and the existence of Pt is guaranteed by the lifting 
theorem. By Proposition 2, pl is a submetry. Also, by Theorem 1 we may assume that E m = 
Enx Em-n and Pl is the orthogonal projection onto En; in particular, Pl is a Riemannian sub- 
mersion. It remains to use Remark 2 and Proposition 4. 

The next theorem supplements Proposition 4. 

THEOREM 5. Let p: M + N be a Riemannian submersion. Then p can be incorporated in a 
commutative diagram of Riemannian submersions with universal Riemannian coverings r 2 and ql: 

M r~ M+rI:M 

<!+, 
%-71 

Here  r~ i s  a r e g u l a r  R i e m a n n i a n  c o v e r i n g  and q0 i s  a R i e m a n n i a n  c o v e r i n g .  The f i b e r s  o f  
s u b m e r s i o n  P0 a r e  c o n n e c t e d .  The b u n d l e  Pa:  1,11 + N1 i s  i n d u c e d  f rom t h e  b u n d l e  P0: M § N 0 
v i a  % .  M o r e o v e r ,  one h a s  t h e  e x a c t  s e q u e n c e  o f  f u n d a m e n t a l  g r o u p s  

Proof. It follows from Proposition 4 that p is incorporated in a commutative diagram 
of Riemannian submersions 

r 

M~ > M 

w i t h  u n i v e r s a l  R i e m a n n i a n  c o v e r i n g s  r and q.  D e n o t e X , = E ( r ) ~ X ( p z ) ,  Mt=MJY,~, r~: M,-~M~ t h e  
c o r r e s p o n d i n g  R i e m a n n i a n  c o v e r i n g s ,  and r,: M,-+M=MJX(r) t h e  R i e m a n n i a n  c o v e r i n g  d e f i n e d  by 
the inclusion X,cE(r). As X x is the kernel of the restriction of the homomorphism (P2)+ to 
E(r), it is a normal subgroup of Y(r). Consequently, the covering r~ is regular [3] and 
Z(r,)=Y.(r)/Zi. Since Y~icY.(p2) , for each y in 7.1, pzo?=Ig~ and there exists a unique contin- 
uous mapp~: M, -~N, such that p~orz=pz. As r 2 is a Riemannian covering and pz a Riemannian 
submersion, it is obvious that pl is also a Riemannian submersion. 

As a consequence of Proposition 4, Y~o-----(pa)+(Z(r)),-Y(q). Denote No=N~/~o, qi: N:~No the 
corresponding universal Riemannian covering, and q0: No~N=NJE(q) the Riemannian covering 
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defined by the inclusion Y~ocY~(q). Since (p2)+(E(r))=Zo, there exists a unique map P0: M=MJ 
~(r)-~No=NJY~o, which is a factor of P2; P0 is obviously a Riemannian submersion. Next, since 
p: M=MJE(r)~N=NJZ(q) is also a factor of P2 (Proposition 4), it follows that p----q0op0. It 
is also clear thatpoor=q~op~. Consequently, q~op~or2=q~op,=poor=poor, or~~ Since r 2 is a 
surjection, qlopi=poor~, and the diagram of Theorem 5 is conm~utative. 

The groups Z(r), ~(q), ~.,, and l 0 are isomorphic to ~,(M), x~(N), x,(M~), and ~,(N0), respec- 
tively. Under these isomorphisms to the homomorphism p#: ~,(M)~,(N) these corresponds the 
homomorphism (p2)+: Z(r)-+~.{q). Since Z~ and E 0 are the kernel and, respectively, the image of 
(p2)+, sequence (6) is exact. 

Examining the segment 

. . .  - +  ~ (M) ~ g, (No) ~ ~o (P~~ (no)) -+ no (M) - +  . . . .  

of the homotopy sequence of the bundle P0 [3], where n0~N0, and recalling that (6) is exact, 
we see that 3 = i. At the same time, 8 is a surjection (thanks to the connectedness of M). 
Therefore, ~0(PoX(n0)) --- I and the fiber pol(n0) is connected. 

t 

Let p,: ]~]x-wN I be the bundle induced from the bundle P0: M + N o via the universal cover- 
ing ql: NI + No. By definition, ]~/~ ={(n1~m)~N, XM]q,(n~)=po(m)} with the natural differ- 
ential structure. If (n1~ m) ~]~i, then p1(n~, n~)-----,,, rl (nl, m)=m. Obviously, r[ is a connected 
covering of M. 

Juxtaposition of the homotopy sequences of the bundles P0 and p[ by means of the homomor- 
phisms induced by the maps r~' and ql yields the commutative diagram 

. . .  , (M0 (NO ( =  

Here n o = q1(nl), and ii, i 0 are the inclusions of the fibers of p[, P0 in M[, M, respec- 
tively. Since the bundle p~: M[ ~ N I is induced by P0, it follows that rioii is a diffeomor- 
phism of the fiber of p~' onto the fiber of P0; the left vertical arrow denotes the isomor- 
phism induced by this diffeomorphism. We also have 

K e r p ~  = K e r  (%~ Po)~ = K e r p o ~  = (io)~ (n~ (Po  ~ (no))) = 
v_ 1 t z 

= { n o ) ) )  = (M'O).  
! 

The last equality follows from the fact that P1# = I and ii# is an epimorphism. On the other 
hand, Kerp#=(rl).(~i(Mi)). Therefore, r I and r~ are equivalent in the category of connected 
coverings of M [3]. From this it readily follows that p[: M[ + N l and PI: Ml + Nl are equiv- 
alent in the category of morphisms over N I of the category of C~-manifolds and their C~-maps. 
We can therefore assume that Pl is the bundle induced from P0 via the map q1: NI + No. Theo- 
rem 5 is proven. 

3. Riemannian Submersions with Integrable Horizontal Distributions 

We are interested in Riemannian submersions p: M + N in the case where M and N are spaces 
of equal constant curvature. It follows from formula 3 of Corollary I of [1] that the inte- 
grability tensor A of such a submersion p vanishes. This is equivalent to the integrability 
of the horizontal distribution of p. The present section is devoted to such submersions. 

Alongside with A, O'Neill introduces the tensor T, the second fundamental form of the 
fibers p-1(z), x ~N. T vanishes if and only if the fibers of the submersion are totally geo- 
desic. If, in addition, M is complete and connected, then p is a C~-bundle whose structure 
group is the Lie group of isometries of the fiber (see [2]). 

The vectors tangent to the fibers of submersion p are called vertical vectors, they form 
an integrable C~-distribution V on M, called the vertical distribution. The distribution H 
which orthogonally complements V (in TM) is C~-differentiable and is termed the horizontal 
distribution. The orthogonal projection maps of TM onto V and H will be denoted by the same 
letters. For arbitrary C~-vector fields E and F on M, T is defined by the formula 

T~F = HVwVF + VVwHF. (7) 
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In dual manner one defines the tensor field 

A~F = Vv~HF + Hv~EVF. (8)  

Proposition 5. Suppose M is complete and connected and the integrability tensor A of 
the Riemannian submersion p: M § N vanishes. Then the maximal integral manifolds of distri- 
bution H give a totality geodesic foliation ~'~ on M. The foliations ~ and ~'v (where ~v 
is formed by the components of the fibers of p) are mutually orthogonal and transverse [4]. 
If L is a leaf of ~'~ and iL: L + M is the immersion defined by the inclusion LcM, then 
p ~ iL: L-+ M is a Riemannian covering. 

These assertions are essentially contained in [i]. 

Let X, be a C~-vector field on N. Then X, has a unique horizontal lift X to M, i.e., a 
horizontal vector field X on M such that p,X = X,. Obviously, X is a C~-field. Such fields 
on M are called basic fields [i]. 

If X, Y, and Z are two vertical and a horizontal vector fields, we denote 

V ~ Y = V V x Y ,  v~zZ=HVxZ.  (9) 

These notations are justified by the following circumstances. Let L be a leaf of the 
foliation Sty, i.e., a component of a fiberp-~(x), x~N. Let xL and vL denote the tangent 
and, respectively, the normal vector bundles over L. Then the restrictions X L and YL of the 
vector fields X and Y to L are sections of xL, whereas Z L is a section of vL. Moreover, 

(VxY)L and (V~Z)T. are the canonical covariant derivatives of the vector fields YL and Z e in 
the direction of the vector field X L (in ~L and vL, resepctive!y). 

Proposition 6. Let p: M + N be a Riemannian submersion and A the integrability tensor 
of p. Then A --- 0 if and only if for every x~N and every basic field Z the restriction Z L 
of Z to L = p-l(x) is parallel relative to the canonical connection in vL. 

Proof. Let X be a vertical vector field on M and Z a basic field. Then [X~ Z] is ver- 
tical (see [i]) and 

vzx = HVzX+ VVzX = AzX + VVzX, 

VzX = V x Z  + [Z, X] = HVxZ + VVxZ + [Z, X] = V~xZ + TxZ +[Z, X]. 

Equating the horizontal and vertical components we get the equalities 

~zZ = AzX,  TxZ = V~TzX -- [Z, X]. 

Thus, X7~Z =0 if and only if AzX = 0. The last condition is equivalent to A .=. 0 thanks to 
the arbitrariness of the basic field Z and the vertical field X and the skew-symmetry of A Z 
[i]. The proposition is proven. 

LEMMA 6. Let p: M + N be a Riemannian submersion with M complete, and let H c TM denote 
the horizontal distribution of p on M. Then one has the commutative diagram 

l'/V 
exPM~ _ $ expN. 

M ~ , N  
M~N It, x = p ( ~ ,  v = p , ~ ) ~ N x ;  ?(t)-=expN(tv), 0~<t~< i ,  c o n n e c t s  t h e  p o i n t s  
e q u a l i t y  ( 1 ) ,  t h e r e  e x i s t s  a s h o r t e s t  p a t h  ~ ( t )  = e x p M ( t V l ) ,  0 ~ t <  1, 

c o n n e c t s  t h e  p o i n t s  ~ and p - l ( y ) ,  and whose l e n g t h  e q u a l s  l (~)=p~(x ,  y) 

Proof. Let ~ 
x and y = ~(i). By 

with~,~M~, which 
Obviously, ~ ~ H. 

If y = ~(t) is 

the points x and y, 

the unique shortest path, parametrizedbyreduced arc-length, which joins 

then it follows from Proposition 3 that po~----? and u=?(0)=p,(?{0))= 

P.~I)- Hence, vl = v. The general case is reduced to the one just examined by partitioning 
of ?----~(t), 0~<t~< I, into sufficiently small pieces. The lemma is proven. 

LEMMA 7. Let p: M + N be a Riemannian submersion with M complete, let M, x, y EN, v~N~, 
y = exPN (v), and let V be the lift of the vector v to a horizontal vector field along the 
fiber F = p-1(x). Then the map ~v: F-+M defined by the relation cpv(/)=exp~(V(/}) is a dif- 
feomorphism of F onto p-1(y). 

Proof. Obviously, ~v is a C~-map. Also, by Lemma 6, 

P (~v (1)) = p[(expM (V (]))) = exp~ (p,  (V (/))) = expN (v) -- Y, 
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that is, ~v maps F into p-1(y). 

If 7(I) = -vle Ny, then x = exPN (vl). Let V I be the vector field along F I = p-1(y), 
which is the horizontal lift of the vector v I. Then by the foregoing discussion ~V~ is a 

C~-map of F I into F. Moreover, the proof of Lemma 6 shows that u1=expM(IF(O) is horizontal 
and pm(u I) = -v I. Consequently, Vi(~v(~))=--~i and(~v1~ Similarly, (~vo~vO x 
~1) =11~ li~Fi. Therefore, ~V is a diffeomorphism of F onto F I. Lemma 7 is proven. 

Proposition 7. Let p: M + N be a Riemannian submersion and A its integrability tensor. 
Suppose A E 0, M is complete and connected, and N is simply connected. Then every fiber 
F=p-1(z), zeN, is connected, and M, regarded as the total space of the C~-bundle p: M § N, 
is isomorphic to the trivial bundle N x F over N. If, in addition, T ~ 0, then M is iso- 
metric to N • F. 

Proof. The map p is a locally trivial bundle. It follows from the homotopy sequence 
of the bundle p (see [3]) and the simple-connectedness of N that p-1(x) is connected. 

We define a map ~: NXF-+M as follows. If v~N~, ,=eXp~(v), and V is the same field 
as in Lemma 7, we put ~(n, /)=~v(~). First, let us show that this definition is correct. Let 
viEN~, and n = exPN (vl). Then, by Lemma 6, 

p (~vl (/)) = p (exp~ (V I (0)) = expN (p, (V1 (/))) = exp~ (vl),= n'= p (~v (/)). 

Moreover, the tangent vectors to the curves ~i(t)=exp,(tV,(])) and ~(t)=exp~(tV(])) are horizon- 
tal, as follows from the proof of Lemma 6. If A ~ 0, then the horizontal distribution H is 
integrable and so ~ (1) and ~v(/) lie in the same leaf L (passing through the point f) of the 

foliation ~r~ . Moreover, po~, being a C~-covering of the simply-connected space N (Proposi- 
tion 5), is a diffeomorphism. In particular,~v09 = ~vi(I), since they both lie in the fiber 
p-1(n). This proves the correctness of the definition of ~. 

We already saw that @(n, ~) lies in the fiber over the point n. If we establish that 
is a diffeomorphism, this will imply that ~ is an isomorphism of the bundle under considera- 
tion and N x F + N. 

The map ~ is one-to-one, sincep(~(n, ~))=,, and, for fixed n, ~(n, ")=~v is a diffeo- 
morphism of F onto p-1(n), This implies that ~ is a surjection. 

Suppose that there is a v~Nx such that exPN (v) = n and eXPNx: N x + N has rank dimN 

at the point v, i.e., the points x and n are not conjugate along the geodesic ~ = ~(t)= exp~(tv), 
0~t~I. By the inverse function theorem, there exists a neighborhood U of v such that ~ = 
eXPNx] U is a diffeomorphism onto a neighborhood W of n. The correspondence g: v-+V [v~N~, 
V the horizontal lift of the vector v along p-1(x)] is a linear isomorphism, and the map a: 
(v, f) + (V(f)) is differentiable. Obviously, ~l~xF~=exp~o= =(,-iXid~) and the maps exPM, 
a, and ~-l x id F are all differentiable. Consequently, ~ is differentiable on W x F. 

To show that the map ~ is differentiable everywhere, we remark that ~ depends in fact 
on the choice of the point x~N and should be denoted ~. Let y be another point of N. 
Arguing as above, we find that if y~=exp~(v)=exp~(v~), where v, v~N~, then for the correspond- 
ing vector fields V, V~ along p-~(x) the diffeomorphisms ~v,~v~:p-'(x)-+p-~(y) coincide. Thus, 

there is a uniquely determined diffeomorphism ~yx of the fiber p-!(x) onto p-~(y). Obviously, 
~==*~~ [it suffices to remark that J~p-'(x) and ~yx(f) lie in the same leaf L of the 
foliation~'~, and L intersects each fiber p-'(z),z~N, at exactly one point]. 

It is readily seen that ~=~,o(id~X~,~) and that idxX~ is a diffeomorphism of N • 
p-~(x) onto N x p-t(y). For each point n in N one can find a point y in N such that y and 
n are not conjugate along some geodesic connecting them. As we showed above, ~ is differ- 
entiable on W x p-~(y), where W is a neighborhood of the point n~N. Then ~ is differen- 
tiable on W x p-l(x). Hence,~=~= is differentiable. 

For fixed n~N ~(n, .) is a diffeomorphism of F onto p-~(n). For fixed f, po(~(-, /))~=id~, 
~(n', ]) lies in the same leaf L (passing through f) of the foliation~ , and poi~ is a dif- 
feomorphism of L onto N. Finally, L and p-~(n) intersect transversely at the point ~(n, /). 
Consequently, ~ has a nonzero Jacobian at the point (n, f) and is a diffeomorphism of N x F 
onto M. 

Let g denote the metric tensor on N • F defined by the equality g= ~*g~ (where gM is the 
metric tensor on M). Then.pD (NXF, g)-~(N, gx), the projection on the first factor, is a 
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Riemannian submersion. Let gF n= ~F~g, where F n = pit(n) and iFn denotes the inclusion of F n 

in N x F. We may assume that gFn, n~N, is a family of metric tensors gn on F which depends 

differentiably onn:~N. Ifp2: NXF-~F denotes the projection onto the second factor, then 
g(n,  O * * =PxgN+P2gn" Conversely, for a metric tensor of this kind the projection p~: (NXF, g)-+ 
(N, gN) is a Riemannian submersion with integrable horizontal distribution. 

Finally, suppose T ~ 0. Then all the fibers p-i(n), n~N , are totally geodesic, and it 
is readily verified that all diffeomorphisms ~yx are isometries of the fibers. We remarked 
above that ~== ~v~ This implies that the metric tensor g on N • F can be written in 
the form g = P~gN+ P2g~ and that M is isometric to the product N • F. Proposition 7 is proved. 

4. Transverse Foliations 

It is well known that every CZ-foliation ~r of codimension one on an n-dimensional C l- 
manifold admits a transverse foliation of codimension n - i [4, Theorem 4.2]. In the ad- 
dendum of D. V. Anosov to this theorem (see [4]) it is asserted that it is not known whether 
there always exists a foliation transverse to Srwhen~rhas codimension higher than one. 
Here we give examples of foliations (in fact, even fiber bundles) which admit no transverse 
foliations (in the terminology of I. Tamura). 

THEOREM 6. Let p: M + N be a C~-submersion of a closed connected C~-manifold M onto a 
closed C~-manifold N. Suppose that the foliation Sr on M given by the components of the fibers 
p-'(n), n~N, admits a transverse CZ-foliation Sri Then p is a C=-bundle. If N is simply 
connected, then the fibers of p are connected, and the bundle p: M + N is topologically triv- 
ial. If M is simply connected, then the bundle p: M + N lifts to a bundle Pz: M + N ! whose 
fibers are the leaves of the foliation ~r where q: N z + N is the universal covering. The 
bundle Pl is topologically trivial. 

Proof. The first assertion is proved, under weaker conditions, in [4, Theorem 4.3]. 

Let gN, gM be arbitrary metric C~-tensors on N and M, respectively. We introduce a new 
(generally speaking, only continuous) metric tensor g~ on M, such that p: (M, gM)-->-(N, gN) is a 
Riemannian C1-submersion. Since the foiiations Sr and St'are transverse, every continuous 
vector field X on M admits a unique representation as a sum X = VX + }IX, where VX and HX are 
continuous vector fields on M tangent to the foliations ~r and ~r', respectively. Then ob- 
viously 

t, 

gM = V*gM +H*p*gN 

is the sought-for metric tensor. It is clear that $ r' is the horizontal foliation of the 
Riemannian submersion p: (M, g~)-+(N, gN), and that H and V are the projectors onto the hori- 
zontal and vertical distributions of this submersion. 

By analogy with Proposition 7 one establishes that the bundle p: M ~ N is topologically 
trivial whenever N is simply connected. Here the proof is in fact simpler, since it is not 
necessary to show that ~ is a diffeomorphism. 

The last assertion follows from the result just proved, the lifting theorem [3], and 
Proposition 2. 

COROLLARY i. Under the assumptions of Theorem 6, if p is a principal C~-bundle, then p 
or pl is a trivial C~-bundle. 

COROLLARY 2. Let p: M + N be a topologically nontrivial C~-bundle, where M and N are 
closed and connected, and N is simply connected. Then the foliation ~={p-i(n), n~N} on M 
admits no transverse C1-foliations. 

COROLLARY 3. Let p: Mm+ N n, m > n, be a C=-bundle, where M and N are closed and con- 
nected, and M or N is simply connected; also, the n- or (m - n)-dimensional Betti number of 
M over Z 2 vanishes. Then the foliation ~r on M given by the components of the fibers of p 
admits no transverse C~-foliations. 

Remark. If 5 r' is a C2-foliation then (under the assumptions of Theorem 6) using a re- 
sult of [5] one can show that p (or Pl) is a C~-trivial bundle. 

THEOREM 7. The Hopf bundles (more precisely, the corresponding foliations on the total 
spaces of these bundles) 

S 2 . + ' ~ p c . ,  S ~ " + ~ p H  ", S i s - , . S  ' 

admit no transverse CZ-foliations. 
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Let us prove Corollary 3 and Theorem 7. The bundle p (or Pl) has a simply connected 
base N (respectively, NI). Suppose the foliation~ r on N admits a transverse CZ-foliation 
~', Then the bundle p (or Pl) over N (respectively, N I) is topologically trivial, as fol- 
lows from Theorem 6. In particular, M is homeomorphic to N x F (respectively, N l • F), where 
F is a leaf of ~-. He remark that N I is closed, and hence for the Betti numbers over Z2, 
~,(NI)~0,~,-~(F)~ 0 [3]. Then, by Kunneth's theorem [3], ~,(/W)~0, ~=_~(]W)~0. This proves 
Corollary 3. Theorem 7 is a straightforward consequence of Corollary 3, since the bases of 
the Hopf bundles are simply connected, and 8m(S n) = 0 if m ~ 0, m ~ n. 
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UNIQUE (UP TO ORIENTATION) DEFINABILITY OF TIME BY MEANS OF THE 

SPATIAL STRUCTURE OF A SET OF EVENTS 

Yu. F. Borisov U-DC 513.53(07) 

I. Contents of the Article 

In [I] a motivated definition of a kinematic on a set of events is given explicitly 
(Definition i). If K = (~, T + B T) is a kinematic on set M, then �9 is a set of partitions of 
M which are endowed with the structure of three-dimensional Euclidean space and called rela- 
tive spaces. Mapping T + B T maps each relative space T~ to a partition B T of set M, which 
is endowed with the structure of one-dimensional oriented Euclidean space and called local 
time determined by T. We call the set ~, taking into consideration the Euclidean structure 
of partitions T~ ~, the spatial structure of set M with kinematic K, and we denote it by the 
symbol ~K" Correspondingly, we shall call the mapping T~BT, TE ~, taking into consideration 
the structure of one-dimensional oriented Euclidean space on each of the partitions B T, the 
time on the set of events M with kinematic K, and we denote it by symbol B K. If K = (~, 
T + BT), K = (~, T + BT) are kinematics on M with the same set of relative spaces, i.e., 
those,satisfying condition ~ = ~K , then notation B~ = BK means that for every T~ �9 , we have 
that B T is obtained from B T by a change of orientation. 

Postulate I of [i], which is the kinematic form of the law of inertia, expresses a defi- 
nite connection between spatial structure ~K and time B K on a set of events with kinematic K. 
In a kinematic K which also satisfies Postulate II of [i] (the kinematic form of the principle 
of Galilean relativity), the connection between ~K and B K proves to be very rigid, namely: 
time B K is determined by the spatial structure ~K of a set of events uniquely up to a pos- 
sible change of orientation of local time B T for all T E 7. In other words, we have the 

THEOREM. Let K = (~, T + B T) be a kinematic on M satisfying Postulates I and II of [i]. 
The following assertions are true: 

i. If K is a kinematic on M that also satisfies Postulates I and II, and T~ = T K, then 
either B~ = B E or B~ = BK. 

2. There exists a kinematic K on M satisfying Postulates I and II such that ~ = ~K, 
B~ = BK. 

A proof of the formulated theorem is presented in Sec. 3, and auxiliary propositions 
on which the proof is based are presented in Sec. 2. In Sec. 4 we state some corollaries of 

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 28, No. 4, pp. 57-64, July- 
August, 1987. Original article submitted August 19, 1986. Dedicated to Aleksandr Danilovich 
Aleksandrov on the occasion of his seventieth birthday. 

562 0037-4466/87/2804-0562512.50 �9 1988 Plenum Publishing Corporation 


