PROPERTIES OF MULTIPLE ITO INTEGRALS
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Introduction and Notation

In the study of nonlinear transformations of stationary Gaussian processes a considerable space is given
to Ité's multiple integrals (m.i.) (cf. [1-4, 15]). One of the fundamental methods of studying this question is the
method of moments or semliinvariants (3, 4, 10, 111, since it is difficult to apply the method of characteristic
functions due to the absence of the assumption of sufficiently weak dependence in the original Gaussian process.
In the present paper we shall give some formulas for calculating moments and semiinvariants of It m.i. From
exact formulas or from the intermediate equations obtained in proving them in the present paper, one gets esti-
mates of the semlinvariants of the m.i. of such a form that one could apply the results of [5, 8, 13] and get, as
a consequence, some properties of the distributions of It6 m.i., the central limit theorem, the rate of conver-
gence to a Gaussian law. The question of large deviations in such a formulation is considered in [9, 10]. We
note also that the fundamental results of the present paper are formulated without proofs in [12].

We introduce some notation. By I(m)((p), following [1, 2], we denote the m-fold integral with respect to
the random Gaussian measure
I@)=[...[ 00w ..., W)BE@N) ... BN,
Here B is a complex Gaussian orthogonal measure on the line with the usual properties
1) Ef(A) =05

2) B(A) = B(=A);
3) EB(A)B(Ay) =F(Asn Ay);

A, Ay, A, are measurable sets on the line, F is the spectral measure of the measure §, Further, it will be
assumed that the measure F is continuous and F(R!) = 1. We note that the finiteness of the measure F is not
used in Lemma 1, and some other results can be obtained in a more general formulation. With respect to the
integrand ¢ it will be assumed that it belongs to the space

Ly (R™, F)={<p(7\1,..., M)illolt = [ 100w ..o )l [T FldR) <0, @(=2, .0y ~A)=0 0 -, x,,,)}.

R™ j=1
Let A, j = #1, #£2,..., be some symmetric with respect to the point 0, finite partition of the line R! and -7y =
A_j. For simplicity, it will be assumed that A;<0, ) for j > 0 and A;=(—o0,0] for j <0, We define the space

s) of step-functions of the following form:

Afyoojp i (A, oy A)EA, ... A,m and
¢ (V.S TRAN 7\m) = JeER for k=*1,
0 otherwise.

By Iy {¢} and T{ty, ..., £} we denote the k-th semiinvariant of the r.v. £ and the simple semiinvariant of the
random vector (§4,..., £k), respectively.

1. Semiinvariants I1{(2)(g)

We shall prove one simple auxiliary proposition.
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LEMMA 1. Let ¢;eL, (R®, F), j=1, ..., k, the number k-m be even, r =k-m/2. Then

r

k k
| [T 9s0v - 2) [T F@)|<TT eyt
Jj=1

R =l s=1

Here the product II*is taken over collections of different indices (jj,.., jm)s 1 =jg = r and each index jg is
repeated in two different collections.

Proof. We take from the product I*any two functions ¢i(7‘i1’ cees ?\im), ¥ 0‘31’ vees A5 ). We consider

Im
the collections of indices (i, ..., iyy) and @y, ..., ;). Two cases are possible.

1. There are no equal indices in the indicated collections.

2. Some of the indices coincide. Without loss of generality, we shall assume in this case that the first
s indices coincide.

We define the function:
@i-¢; incase 1,

Y, oeees Ay A

)= -
e 41 S f Ay I_I F(dx,) incase 2.

R v=1

541!

We note that by definition of the product l—r the product n* o, is independent of the variables with indices

v#i, J
iy, ..., ig in Case 2. Tt is easy to verify that the function ¢y is square integrable with respect to the correspond~
ing product of the measures of F

m

Hale= [ 14k [T F@r) [T Far)

Rz(M—J) p=s+1 g=s+1

< [ [( [rarTTr@)™ ( [lee T1 @) ] TT Far) r@)=ielt e, <.
g (m—s) RS v=1 r* v=1 v=s+1

Now we choose another factor PLALsenns klm), I #1, j and we define a function ¥, by integrating the product

@ %1 with respect to the variables whose indices are contained in both collections {4, ..., im) and (ig44, ..., im,

jst» -+ Jm). If in the indicated collections there are no equal indices, then we set ¢y = ¢;dy. Further analo-

gously we see that

Il < ol gyl < HoillE ool gy il
Continuing the indicated procedure, we get the assertion of the lemma.

LEMMA 2, Let gcL, (R", F) be symmetric. Then

Fk{I(z) (9) }=2k—1 (k- 19} f <P(7\1’ —hy) ¢ (e —Ag) oo @ (mrs — )
Rk
k ar
<o —M) [] FEN =22 k= 1)Im (), k=2, 3, ...
v=1
Proof. First we prove the assertion of the lemma for ¢eS®. Using elementary properties of semi-
invariants (cf., e.g., [9]), we have

T r00}=T, { 3 @b A)E () | =T{Za (A8, -0 Ta8 (41)B(40)

Jasds

=2a,5.0,1, - -, 5, TIBAIB A, - B(A,,_)B(A; )} a)

For calculating the last semiinvariant, we shall use formula IV.d of [9]. Since the r.v. 8(A) is Gaussian, the
indicated semiinvariant will be expressible in terms of a certain sum of products of second semiinvariants.
We note that the semiinvariant T'{.,..., .} from (1) can be nonzero only when the collection of indices (ji, ...,
jsk) satisfies the following conditions:

1) for any index jp one can find an index jq such that jp = —igs
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2) the product a
modulus,

iie Hok-tiok cannot be divided into two parts, having no indices which are equal in

Now, using the symmetry of the function ¢ and the evenness of themeasure F, we get from (1) Zk"1(k - 1)
identical integral sums. It remains to see the validity of the lemma for any symmetric function ¢ from
Lz(Rz, F). We compare the function ¢ with a fundamental sequence {q)n} from S(z), which converges to ¢

in Ly(R?, F). This means that I®(g,)
| T {ID () — I® (9) } = | Te { I® (00— 0m) } | S22 (k= 1) | 0= |}, k=2, 3, ...

n—rw

—-I®(¢).in mean square. Using Lemma 1, we have

This is equivalent to
E|I®(0)—I® (9 *<Cllog~omlt, k=2, 3,..., C=C(k)>0.

Whence it follows that E@(2) (@ )X ~ Eq@® @)K, n —«, i.e., T {I® (@)} = T {I® (@)}, 0~ =. Noting that
my (¢n) — mi(@), n — = also, we conclude that the lemma is proved.

A symmetric and almost everywhere with respect to the measure F nonzero function ¢ from L, (R?, F)
defines by the equation

Gi()= [ 0o, MF@N), da(-)eLy (R, F),
Rl

a self-adjoint operator from Lz(Rl, ¥) to Lz(Rl, F), having nonzero eigenvalues {MJ} If {¢j} are eigenfunctions
corresponding to these eigenvalues, then it is known that one has the following decomposition:

(A, A= Z Yy () gy (o).

Using this decomposition, it is easy to verify that
m (@)=, uh.
i

Thus, Lemma 2 assumes the following form.

LEMMA 2'. Under the hypotheses of Lemma 2 one has
D {I®(g) =2 k=11 3 uh, k=2, 3, ...
j

From Lemmas 1 and 2 we get the following corollary.
COROLLARY 1. Let geL, (R?, F) be symmetric. Then
[Te{I® (@)} <2 k- Dol k=2, 3, ...
The equality sign is achieved for ¢ = const.

This estimate in using the Carleman test of the moment problem allows one to assert that the distribu-
tion 1(2) (@) is completely determined by its moments. Whence we deduce the following proposition.

LEMMA 3.* Let geL,(R?, F) be symmetric. The random variable I(Z)(q)) is distributed just like

Z p;(X3-1), where X; are independent standard Gaussian variables.
j

To prove Lemma 3 it suffices to see the equality of all moments or semiinvariants of the r.v. I(Z)((p) and
the r.v. D, p,(X?~1). From Lemma 3 it follows that the characteristic function h(t) of the r.v. I(Z)((p) has the

form
ho)=[] (1=2iwe)-ize™, i=V-1.
k

We give a formula for calculating the moments of 1(2)(¢1).
*This result, apparently, is known to specialists, but the author has not been able to find it in the literature.

After [12]1 was in press, Dobrushin and Major [15] appeared, in which this assertion is also given.
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LEMMA 4. Let geL, (R% F) be symmetric. Then

M =

E (1<2> ((p))k =k!

I
-

M

Jj=1

Z ok—q mkj
q &,

q

k]-== k

1

i

where mkj = mk]— {9), kj =1, my =0. The inner sum is taken over all positive integral solutions of the equation

q
3 k=k.
j=1

The proof follows from Lemma 2 and the connection formulas between moments and semiinvariants [9].
One can also derive Lemma 4 directly for functions from 8(2), as in Lemma 2, but this method is more cum-
bersome.

2. Semiinvariants I<m>(¢), m =2, 3,..

Suppose we have some set of pairs of indices of the following form:

((1, D, 2, ..., (1, m))
D= El

(&, 1), (&, 2), ..., (k, m)

i.e., the set D has m columns and k rows, and its elements are pairs (i, j), 1 =i =k, 1 =j=m. A partition
of the set D=D"y D" will be called a row partition if any row from D belongs either to D' or D". Further we
shall consider only such sets D when the number k-m is even. We write r =k -m/2 and we introduce the fol-
lowing definition.

Definition. A partition D= U D; will be called indecomposable if:

j=1
a) there exists no row partition D=D"UD" for which any Dj belongs either to D' or D";
b} all Dj contain at least two pairs of indices from different rows.

We note that in our definition of indecomposable partition, requirement b) differs from the definition used

LEMMA 5. Let geL, (R", F), m=2,3, ... Then, if the number k-m is even and r =k -m/2, then

k r
T 1™ (9)}=%* [ [T ¢0us - & m [T F@) @
R J=1 v=1
3
and T {I™) (@)} = 0, if k-m is odd. The product JT #®0 ..., &, in @) defines an indecomposable partition
j=1
T
D=\ D, as follows: if Dj = {(p, 9), (s, t)}, then one should set Ap,q = Mjs Ag,t = —Aj. The sum = *denotes
=1
sumimation over all indecomposable partitions of the set D.
The proof of 2} is in principle analogous to the proof of Lemma 2, so we omit it.

2 e ?
We denote by Hy, &) = (—=1)e* / 2 (@™ /gx™M)e™X /2 the Hermite polynomial of degree m. From Lemma 5,
using Lemma 1, it is easy to get the following estimate.

LEMMA 6. TLet geL, (R", F). Then
[T {1 (@) <Mk, m)llolF, k=2, 3, ... 3)
Here M (k, m) = I'y{Hp, (X)}, X is a standard Gaussian r.v. The equality sign is achieved for ¢ = const.

We note that M(k, m) is the number of indecomposable partitions of the set D. We have already seen
that M k, 2) = Zk'i(k ~ 1)! Using Stirling's formula for factorials, one can estimate the constant Mk, m) from
above so that the estimate of the semliinvariants (3) assumes a form allowing the use of Lemma 2.1 of [8]. We
get

IT{I™ ()} < ™2 @l F ()™, k=2, 3, ... @)

~
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Since
df 2
o =E (1™ (g)) =mt| o2,

it follows from @) that

1 Ty { A ™ (¢) } ‘ < (mm)—112 (% 92)"’/2 [(2rm)i4 e—miz]2=k (%i)m/z .

Sm
Now it remains to apply Lemma 2.1 of [8].

THEOREM 1. For any geL, (R", F) one has

—_—2
P{I(m>(¢)>cmx}<exp{m}, x>0

In particular,

i exp ;—:; for x <A,
PUI™ (@)>0uxb<] & 7S
R O } for x>4,.

Here

H=H =2 (mm) (2 &)™, A=A m)=2e (2nm)2om,

m*+1 m'

A=A(m)=(m-m)~ VA2 F =D 34{A-m omiz2,

T

3. Semiinvariants [ I (g)dt
6

We consider the stationary Gaussian process
x= [ e*B(dn), teR.
Rl
Further it will be assumed that the process X has spectral density £(A), i.e., F{dM) =f£(A\)/dA. By It(m)(<p) we
shall denote the m-fold It6 integral

I (@)= [ [T T o (M) B @) - B (@),

m

We note that It(m)(w) is the result of applying the operation of translation generated by the process Xy to the

r.v. I™(g) ZI"&”(@)- In [10, 11} the probability is studied of large deviations for the quantities

T

Y¢ = [ 10 (9)dt, T>0.

0
The exponential expression for these probabilities contain semiinvariants of the quantities Y&I-n), in terms of
which one can express the coefficients of the Cramer series. Hence there is interest in exact formulas for the
semiinvariants of the r.v. Y,(l{n). These formulas will have the form of some integral of the product of two
functions, one of which is independent of T, and the other of ¢. We define the first of them. We take a func~

r

tion g<Ly(R", F) and we fix some indecomposable partition of the set D=| J D;, r=k-m/2. (We assume that
j=1
the number k- m is even for us.) We form the function !

13
(P*()\lv ety )‘r)=l—I (P(ln,ly LIRS ] )\n,m)-
n=1

Here on the right side of the equation for Dj = {(p, q), (s, t)} we set xp,q = )\j, 7‘s,t = _7‘j' We define a non-
degenerate transformation of variables of the form

m

D Ay=Xp n=1,..., k=1,
v=1

7\jk=.xk,

Ap =X,
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The first k — 1 equations are linearly independent by virtue of the indecomposability of the partition of the set
D. The remaining r — k + 1 equations we choose in the simplest way and so that the transformation will be
nondegenerate. Now we fake the function

<P* O‘lv CECC ) 7‘!') 1—1 f(xj)

and we make the indicated change of variables. We get some function (p’f(xi, ..., Xp) and finally we set
(Dk, m (X1 ooy Xpo1)= q)k, m{x) =Z* { oFf (X4 oo ey Xy dxydXgqpr o - dx,;
Rr—.k-ﬂ

% *denotes summation over all indecomposable partitions of the set D. We write further

n+1
!
PO (x) = 2= T2 n xj“sm-g Tx;,

j=1
R
X=(X1 oo vy Xp) x,,+1=Z x;, T>0, n=1, 2,...
i=1

The function \Iu}i)(x) is usually called the Fejer kernel. The functions \I'&I?), n = 2, we introduced by Bentkus in
[6, 7T]. Their most important properties were investigated there too.

LEMMA 7. Let geL, (R®, F). Then

TAYP)=@up T [ PFD(x) 0, () dx, k=2, 3, ...

Rk—1
Proof. We set gyeS™, i.e.,
df df
a;, .. i =G if (7\1,. - .,7\,,,)61\,-1 X ... XA-’m =A(j)
onQar ey D)= and Ju#Ji for k=1,
0 otherwise,

Let (g = (1?, ey jISn) denote different collections of m different indices, each of which varies within certain
finite limits Iijl = N. Then

1™ (o) = ag [ [ OB L B@ =Y [T [ ers@n= Y a [T Y0

) Ay 0 on=lay (o 3

Now it is easy to calculate that

n. f 1wt} = [ Z(

0, 7F (Di-eos

k
ITao, {1 v, ... [T Y i 5)
Ny 5=t (i W,

dt=dt, ...dt,.

Further, to conclude the proof of the lemma it is necessary to apply formula IV.d of {9] and to integrate with
respect to dt. The validity of the lemma for any geZ, (R", F) is proved analogously to the corresponding place
in the proof of Lemma 2.

4. Estimates of the Semiinvariants of the r.v. Y&m)

We denote by R(t) = EX Xy the correlation function of our original Gaussian process. One has the follow-
ing estimate of the semiinvariants of the r.v, Y&‘m).

LEMMA 8. Suppose one has
esssup i@ (A, - ooy Ap)|=Ag<00.
Then

T Y <AEM (K, mToh [ |R@)Par,

[—*ZE", T]

where or= f IR (z) |ds.
—T, 7]
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Remarks on the Proof. To prove this lemma one can use (5). From the right side of (5) we take out Alé,,
and to estimate the remaining semiinvariant, which, as we saw in the proof of Lemma 7, can be expressed
through the sum =™ (sum over indecomposable partitions), we estimate each of the summands and multiply by
the number of summands M (k, m).

Let ozm(T) = E(Y&m))z. Maruyama in (2, 3], without proof there is formulated the central limit theorem
for the r.v. Z%n) = U;é (T)Y&En). We prove this theorem under some other assumptions.

THEOREM 2. Suppose one has the following conditions:

a) esssup| (A - .oy Am) =4 <90,
b) [ |R()Pdt=Ag<o,
Iél
c¢) there exists a constant Cy > 0 such that
e (T)>CIT, yT>0.
Then

X

1 s id
P{Z(Tm)<x}—>ﬁ _;{ eVPdy =0 (x), T—>o.
Proof. Since the hypotheses of Lemma 8 hold, one has

Edp M (k, k=2
;PR{Z‘TM)}tsﬁ—"ﬁ(‘—i’GTT) . k=34, ... ®)
1

It follows from (b) that v = o(m, T — «. Consequently, (6) gives the convergence of all semiinvariants,
starting with the third of the r.v. Z,II«n) to zero, which proves our theorem.

We note that a) can be weakened, but we shall not get this here.

Using the results of Saulis [14] and Lemma 8, one can get a uniform estimate of the rate of convergence
in the central limit theorem for Z,(Ifn .

THEOREM 3. Suppose one has a) and c¢) of Theorem 2 and the condition

lim o;=Cp< 0.
T—

Then
sup |[P{Z{M < x}—® (x) | < CTH2 @-m)

Here C depends on Cy, CR, Ay and it can be estimated from above easily.

In conclusion, we add that under the hypotheses of Theorem 3 one can get the ratios of large deviations
for the r.v, Z,(rm) also. Here the hypotheses of Theorem 3 differ from the hypotheses under which the ratios

mentioned are obtained in {10, 117,
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