
ESTIMATES OF SEMIINVARIANTS AND CENTERED MOMENTS 

OF STOCHASTIC PROCESSES WITH MIXING. I 
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I. Introduction and Basic Results 

Let X t ,  t - i, 2 . . . . .  b e  a stochastic p r o c e s s  d e f i n e d  o n  t h e  probability s p a c e  (~1, ~ ,  P), 
a n d  { ~ ,  l ~ s ~ t < ~ }  b e  a f a m i l y  o f  a - a l g e b r a s  s u c h  t h a t  

2) ~',," ,.- ~or,,;, V [sa, tt] c [s~, t~] ; 

3) ~'~=r s ~ u < t } .  

We introduce, 
relations: 

as usual, the u-mixing, ~-mixing, and @-mixing functions by the following 

(s, t) = sup i P (AB) - P (A) P (B) I, 

I P(AB)--P(A)P(B) 
(s, t) = sup P (,4) ' 

P (A)>0' 

r  t ) =  sup I 
P (AB)--P (A) P (B) 

P (A) P (B) " 

P (A)>0, P (B)>0 

Let E i .u I k< ~ for some k _> 2 and F(X,,. .... Xq) be the k-th order correlation function 
of the stochastic process Xt, i.e., the mixed semiinvariant of the process X% 

1 ~ 
r ( x , a . . . . ,  Xt~ ) = i t  oux...~uk I n E e i  r x~ ==o, 

where u~R k. X = ( X u ,  . . . ,  X,) 

The centered moment 

[2]. 

EX:...X,~ is defined as follows: 

~x,,...x,=Ex, x,,:::.G_,2,. 

The symbol "~ " over a random variable means that it is centered by its expectation ~=~-E~ 
(cf. [4-6]). 

This paper is devoted to upper estimates of the function E.~ ...... X, k, and with their 
help estimating the mixed semiinvariant r(x, ..... , xt~) and k-th order semiinvariant F~(S,) of 
the sum S n - X I + ... + X= since 

G (S.)  = ~ r (x,~, . . . ,  X , ) .  
~, . . . . . .  ,~, (i.i) 

The estimates are found in terms of one of the mixing functions u, ~, and @ and the 
moment EI X, Ik,/~k. As is known ([4, 5], cf. also [3]) r(x ....... x,) can be expressed in 
terms of the function ~Xrl...Xt~ by the following formula: 
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r<x, . . . . . .  x o =  l X N,<,, . . . .  , ,o I-I 
~= I "~ p :  I 

IJ I = l  
p = l  

(1.2) 

where I denotes summation over all partitions of the set of indices l={t, .... , t~} into 

O l,=t 
p = l  

unordered subsets Ip C I Further if I, ={t~ p), t(~)~, then by definition we set XS: =X,I,)... �9 ) "''~ kp . t )  

X,~o)- The integers O<<.N~(I~ ..... i,) ~<(v-])! depend only on the pareltion {I x ..... Iv}-. If 

Nv(I x ..... Iv) > 0, then 

~ max ( t~-  t,)/> max ( t~-  t,). 
= ~1'  tJ61p l ~ i , j ~ k  

(1.3) 

THEOREM 1, 
k, 

An exact formula for Nu(l ~ ..... 

We give the basic results. 

i) if IXz[ ~ C with probability I, t - tl, 

lw) is given in See. 3. 

For simplicity of notation, we shall assume everywhere that 

a) I~X , .  . .Xt, i <<.2tCta(t, t,+x), 

b) [EX,, . . . )6, '  I <~2t-aC~q~(t,, t,+O, 

c) !EA;,...X,,I<~2~-~C~+(h, h+,);  

. . . ,  tk, =hen for all i, i S i < 

k )  

i ,  

2) i f  f o r  some i n t e g e r  k > 2 and  5 > 0,  E ] X , I ( I + ~ <  ao, t= t l , . . . ,  tk, 

k 

i E X , . . . X q i  <~ 3" 2 k -~t~a+~) (tt, h+l) H E1J(a+~)kIXtJ !(1+8) k; 
y = t  

k 

3) i f  f o r  some c o l l e c t i o n  p~>~l, l<~j<~k w i t h  ~ l / p j = l  e x i s t  EI / ' , j  
l_<j <k, J=~ 

i 
lt~j k 

a) !EX,,. ..Xt~ I <~2"-x* j=' (t,, t,+l) H Ell"iX', ipJ' 
) = i  

k 

: ok-2~ (t,, t,+a) X ElleX',i  e; b) ' F , X , . . . X , ~ I - < -  , .. . 
i = I  

then for all i, i ~ i < 

I pJ, l<../<~k, then for all 

4) i f  3a1>0,  CI>~I:Ee=~;x'~-C~, t= t l  . . . . .  tk, t h e n  f o r  a l l  i ,  1 -< j < k ,  and  a n y  6 > 0 
A 

a) IEXt~. . .Xtki <<-3k! 2k-lCl((l +~)[aOk~/~x+8)(ti, h.1). 
i 

k I; 
b) IF"Xr,'" "X'~ t <~ H P~2"-~Cl(l/al)k~'J/'J (t', t,+~) 

k 

for any collection p:>~l, l<.<j<<.k, with Z I/pj=l, where ~=min{v>~u[v is an integer}. 
j=i 

We consider the case when the variables X~ are connected in a Markov chain ~t (i.e., 
X,=g, (i,), where gt(x) is a measurable function for each t) with transition probabilities 
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P,,(x ,  A)=P {~,eA I~, =x} and  p , ( A ) = P  {~,eA}. In t h i s  c a s e  we s e t  ~-**---~r{~.,, s<~u<~t}. Then  q~(s, t)= 
sup iPs,(X, A)-P,(A)[<~I--~,, where =,~ is the coefficient of ergodlclty of the function P,~ 
X, a~t I 

~,t= I-- sup ~ "~ .. &, (X, A) --/ ' , ,  (y, A) 

If =(")= min ~,,,+~ is the coefflclentof ergodlcity of the chain, then it is known that i_~,,<~ 
[<~s<n 

(l-~("~)'-=~<e-=C"'~ ~-~) for all i ~ s ~ t ~ n. 

Let ~i .... , 2, be growth points of the sequence t~ ..... tk, m1+ ... +my =max {i: h=ij}, ] <~j~r. 

THEOREM 2, Let the variables X t be connected in the Markov chain ~; 

I) if IX~I _~ C with probability i, t - t z ..... ix, then 

a) :f f"X", '"X', l  ~<2.-'c~ z~ q~(iy, 1~+0, 
j = l  

r - - l  

b) iF, x , , . . . X , , I ~ ' - ' C  ~ ~ q~q,, ~,+1); 

", + It~lj 2) if for some collection qy>~l, l.</~<r, with ,~ l/q~=l the E I,,) q~, l~j<~r, exist, then 
i=I 

Y 
, ' - 1  ~ l/q~ , r 

a) ;E ,  , , . . .~ ; .  ~<2 s-1 l--I '~'=' (6, Yy+O I-I E'/q' Z', ;%r 
y=l j = l  

r--I r 

b) ~X,...x,~<.e~-~ [-I q,(6, ~,+1> I-I E~x', '~' 
j = l  j = l  

Having the estimates of Theorems I and 2, from (1.2), considering the behavior of N~ we 
get an estimate for r (x, , ,  . . . ,  Xq). 

THEOREM 3. I) if [X~I _< C with probability I, t - t~ ..... tk, then for all i, 1 -< i < 
k 

a) F(X, . . . . . .  X,,) I ~<(k- l)!2aC"~(t,, h+0, 

b) F(X,,,  . . . ,  Xt) )<~(k-1) !2k-~Ck?(h ,  h+*), 

c) F ( I  . . . . . . . .  g , , , ) :4 (k -  I)! 2k-~Ck~(t~, h+~'); 

2) if for some integer k >_ 2 and 6 > 0 the EfX,!(*+a) ", t=h ..... r k, exist, then for all i, 
l _ < i < k ,  

k 

I r (Jr . . . . . . .  2 , )  1 ~< 3 (k - 1)! 2 ~-~ ~s/o+s~ (h, h+O I-I Eml+a~ k IX,/cl+~ k; 
) = I  

k 

3) if for some collection pj/>l, l<~j<~k, with I i/pj=l the E X,~ .5 exist, then for all 
i, i _< i < k, ~=t 

i lyp: k 

i r ( X  . . . . . . .  X . , ) ( ~ ( k - 1 ) t 2 k - ' q  ~j=' (h, h+a) I'-I Etlp'IXS[ py; 
j = t  

4) i f  3a~>O. C , ) I ;  Ee=l~X'l<~C~, t= t ,  . . . . .  tk, t h e n  f o r  a l l  i ,  1 _< i < k ,  and  a n y  6 > O, 
/% 

) r (X, . . . . .  . X , )  ) <-% 3kt 4 k-~ (C~ (1 + ~)/a~) k ~/(~ +~> (h, t ,+9. 

2): 
THEOREM 4, Let the random variables X t be connected in a Markov chain ~t (as in Theorem 

I) if ILl,C, t=t,,..., t~, then for all k >_ 2 
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r--I 

a) :) F (X, . . . . . .  XQ1 -< ( k -  1)l 2 *-~ C* I-I 9 (6, 6+0, 
]--!  

r--I 
b) !F(X,,, . . . ,  X , ) l < ~ ( k - 1 ) ! 2 k - ' C  k H ~(!~, 6+0; 

J - I  

2) if for some collection qj~>l, l<<.j<~r, with 

a) 

b) 

1/qs=l the E [ XSt "8%, J =1 . . . . .  r, 
r--I ] j= l  

[ r ( X  t . . . . . .  Xt . )  I6(k  - 1)! 2 k - 1 H  *i=~i I/q, (6) /j+l) I ~  EllqJ]Xtl ]ql ml 
j= l  j= l  

r--I r 

I r (x ,  . . . . .  , X,))<<.(k-1)f.2"-" I-[ ~(6, 6+0 I ]  z lx , ,7 , ;  
j ~ t  Jf f i t  

exist, then 

3) if Bat>0, C1>~1 : Eea"x"<~C1, t= t t  . . . . .  tk, then for all k >- 2 and 6 < 0 

r--I 

I I~ (X, . . . . . .  X , ) l  ~< k! 4 *-I (C1 (I + 8)/11)* H ~8/(1+8) (Ij, I,+,). 
3 = I  

Having the results of Theorems 3 and 4, we can quickly get estimates for Fk(S n) from 
(I.i) under different mixing conditions and different restrictions on the behavior of the 
moments EIX~I k. However, they will not be optimal with respect to the order of the semiin- 
variant k, since for this, as we see in the proof of the theorems, it is necessary to study 

and estimate the depenedence of F(X,,, ..., A',) on t I ..... t k more closely. This is done with 

the help of (l.l), (1.2), and the estimates for EX,...//t,, which are given in Theorems 1 and 
2. 

We set 

A, (f, u) = max { 1, 
n 

max X fa'"(s' ' ) }  
I~st~n t~.v 

THEORY. 5. 
6>0 

for any function f ~ 0 and u > 0. 

i) if [Xt[ ~ C with probability i, t - I ..... n, then for all k Z 2, 3 > 0, 

a) 

b) 

t I'k (S.) I ~< 2k! 8 k-1C~A~ -z (r k - 1) n, 

t r .  (s . )  t -< k! 8.-~ c *-~ A.~-~ (~,  0 + ~) 0 + 1/8) (~ - 2)) • 

X ~ ~8/(I+[3) (1+5) (S, t) E 8/(1+n) IX, [1+I[8 E1]{1+8) I Xt  [1+5; 
l(a(t~n 

2) i f  f o r  some k Z 2 and 6 > 0, E JX, I(I+8)*<~,t=I  . . . . .  n, t h e n  f o r  a l l  fl > 0 

3) if 

a) Irk(S.)l<2k!12*-*A.k-'(~, ( l + l / 8 ) ( k - l ) ) n  maxE1/(l+8) iK,!(,+*) t 

b) I r~(S.)l < "<'~" 

~<k! 8 *-a A,k-2 (~, (I + ~)(1 + I/$) (k -2 ) )  max E(*-',a,+8, ~ I X[ f(,+8), , ~'I >( 

x Z ~(1+~)(1+*)( s, t)Ett(l+S)*IX, t(a+a)kEXm+a)~!X,!(x+a)~; 

Ba~>0, C~>I:Ee"'Ix,~<~Cx, t= l  . . . .  , n, t h e n  f o r  a l l  k >_ 2 and 6 > 0, 
/k  

I F,  (S.) I ~< 2 (k!)* 12 ~-x ( G  (1 + 8)/ax)* A~- '  [~, (t + 1/8) ( k -  1)) n. 

2); 
THEOREM ~. Let the random variables X t be connected in a Markov chain ~ (as in Theorem 

i) if IX~I ~ C with probability I, t - 1 ..... n, then for all k a 2 and 6 > O, 
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a) Ir,(S.)l-~<k!8*-xC&A~-~(~p, l)n, 

b)l r,(s.)l ~k!8*-~C*-=A~.-2(~, 1+1/8) ~ cp'/(a+~)(s, t)ES/(x+8)lX=la+,l~E,m+~)lX, la+~; 

2) if for some k _> 2 and 6 > O, E Ix, I(x+"*<m, t = l  . . . . .  n , then 

a) !r ,(S,)I-<k!S'-~A~-'(~,  l + l / 8 ) n m a x  EXl(x+')lY, l(l+a)* , 

b) Ir,(s,)i-.<kt8*-aA~-Z(~, 1 + 1 / 8 )  m a x  E<*-~)/(x+n)*IX, l(X+n)*• 
l ~ t ~ n  

x ~7 ~ps/{x+8) (s, t)E at('+') *IX,3 (x+') "E xl(1+') *IX, I (I+')'; 
l ~ # ( t ( n  

3) i f  3a~>0, C~>l:Ee~lX, t~<C1, t = l  ..... n, t hen  f o r  a l l  k >_ 2 and 6 > 0 

I t ,  (&)l~ < (/~!Y 8~-~ ( G  (~ + ~)/a0* A.~-' (~, ~ § 1/8).; 

4) if 3a~>0, Ct>~l:Ee*'lx'l<~Ct, t = l  .....  n, then for all k > 2, 

I r , ( s . )  ~<k! 16~-~(C,/a,)*A, ~-' (+, 1),. 

The estimates for Pk(Sn) found in Theorems 5 and 6 let us get theorems on large devia- 
tions for the distribution P(Z n < x) of the normalized sum Z,=S,/B,, B~=ES~ (we shall assume 
everywhere that EX,=0, t=l ..... n). For this we shall use the following lemmo. 

LEMMA. If for the random variable Z with EZ=O, EZ2=I, there exist 7 ~ 0 and A > 0 such 
that for the k-th-order semiinvariant one has 

[rk(Z)i~(k!)t+v/A k-~, k=3 ,  4 . . . . .  ( 1 .4 )  

then in the interval 0 ~ x < A7 

A t -  cvAl/tl+2v), cr = 116 (V-216) lm+2~,) 
one has  ( o f .  [8 ] )  

where 

P ( Z  > .r) 

1 -- �9 (x) 
P (Z< -.v) 

(P (--x) 

exp~Lv(x)} ( l+0a f (x )  x+l~ 
. A v 1' 

x + !  = xp ), 

Lv(x)= ~ e~.xL p={ i /y+2,  y>0 ,  
3~<k<p OO, '~f ~--- O,  

(1 .5)  

ick'~2/k(16/,.%)k-2((k+l)!)v, k=3 ,  4 . . . . .  iO,~j<l, 

60 (1 + loa~ ~xp { -(1 -.~/a~) 1/-~ }) 0 +2 (xl%),) 
f (x) = 1 - x/% 

i=l,  2, 

Moreover ( c f .  

then for all x z 0, 

[ 9 ] ) ,  i f  

trk(Z)i<~(k!t2)~+~HIAk-L k=2,  3 . . . . .  E>O, H> O, 

1 x' } 
P(+Z>~x)<~ exp - ~  H+(x/~.~+~.)).+.v,m+~ ' . (1.6) 

From this 

P(+Z~>x)  ~<{ 
c x p  ( - x2/4H }. 

exp ( - (xZ)V(l+v)/4 }, 

x ~ (HI+~ ~)lm +,% 

x I> (/-/~+~ ~)~m +2TL 

Under the condition (1.4), 
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sup I P ( Z <  x) - @ (x) t ~< 18/Av, ( 1 . 7 )  

and if in addition we know an upper bound for Ifz(u)-e-'l~I, fz (u)=Ee "z outside the interval [0, 
AT], then the following relation holds [i0]: 

r- 

s u p l P ( Z < x ) - ~ ( x ) l (  ~ +100A,e -~r  + ~ ' + ~  r ] f z (u ) -e -" ' l "  du �9 ~ ( 1 . 8 )  
X " A 

for any T Z A 7.  

In  o r d e r  n o t  t o  c o m p l i c a t e  t h e  p r o o f  t o o  much, we g i v e  t h e  t h eo rem s  o f  l a r g e  d e v i a t i o n s  
here for P(Z, < x) only for the case of a stationary sequence Xt, t - I, 2 ..... In the case 
of a general nonstationary sequence, it is better to express the estimates of Theorems 5 and 

6 for Fk(Zn) in terms of A~-2(...)L~, instead of A~-2(...)n maxEIXtik/B~, where L~,= ~ EII, i~/B~. 
1 ~ t ~ n  

t = l  

For this it is necessary to express the sumS n in terms of new consolidated s,,---ands and to 
study the behavior of B~. This will he done in a subsequent paper, published in Lietuvos 
Matematikos Rinkinys. Estimates for Fk(Sn) in terms of the conditional moments E(IX, Ik~ -l) 
will also be given. 

Thus, in the following theorems we consider a stationary sequence X% with EX~=0, EX~=I, 
B~ E 2 2 .= S,>%n. We set Z,=S,/B,. 

THEOREM 7. i) if [Xl[ ~ C, with probability i, =(s, t)<Kae-b,~'-~ then 

8C~K eX+b ' { 8Ce ~-~ 
I r ,  (z . )  i ~ (k V %,~0- \ ~ /  , 

k > 2, K - max(l, KI) , i.e., for Z - Z n the large deviation relations (1.5) and (1.6) hold as 
well as the estimates (1.7) and (1.8) for 

where 
�9 r =  1, ~ = c ~ , ( B . I n o ) , ~  ~, 

/-/o =SeC { SKC' el+b, } ~ - m a x  1, b-TW 

-~= B. bx H= 32KC~ el+hi; 
8eC ' 

2) if 3a1>0, C1>~1 :Eea*tx,*<~C1, a(s, t)<~K,e -b*('-'), t h e n  

i Fk (Z . ) [  <~ (k!)  3 96 V'KC~. el+b,l 2 [ 48eC, ~"- "  

k>2. K=max(1. K1), i . e . ,  f o r  Z - Z n t he  l a r g e  d e v i a t i o n  r e l a t i o n s  ( 1 . 5 )  and ( 1 . 6 )  as  w e l l  as  
the estimates (1.7) and (1.8) for 

where 
Z = 2, A.: = c. r (B./Ho)I/5, 

H _  48eC, { 9 6 V - K C ; e , + ~ d ~  } o - ~ max 1, a~ b~ ~ 

= a, b, B, 768 l /K  C~ 
48eC, ' H =  a~b,a~ el+b*12' 

3) if 3a1>0, C~>~l:Eea, tx,'<.C1, ~(s, t )~K~e -b,cr-s~, t h e n  

t r~ (z.)  ! < (k!) ~ 2~c----L~ e~+~, ( 4~Kc, ~-~ 
a~b3~o ~ a,b,B. ] ' 

k > 2, K - max(I, K3) , i.e., for Z - Z, the large deviation relations (1.5) and (1.6) hold as 
well as the estimates (1.7) and (1.8) for 

where 
7 -- 1, Ax -- c~ (B./Ho) 1/~, 
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I-lo= 4eKc* { 2KCI ~l+b,} 
at ba o 

-~= a , b , B .  H= 8KC._..._~ el+b, .  
4eKCl ' a~ bz ~ 

THEOREM 8. Let the random variables X~ be connected in a Markov chain ~t; I) if IXtl 
C with probability 1, ~(s,t)~e-b,('-~), then 

ir~(z.)i~k, 8(l+b')C= ( 8(l+bz)C) t~-=, 
�9 b, a~ b, B, 

k > 2, i.e., for Z - Z~ the large deviation relations (1.5) and (1.6) hold as well as the 
estimates (1.7) and (1.8) for 

where 
7 = 0, A v = cvB,,/Ho, 

(ef. also [4]); 

H0= 8(l+b,)C { 8(l+b~.)O } b, max 1, b.. ~---~ ' 

"~= biB. H =  16 (1 +b") C2 
8 (1 +b~) C ' b, cr~ 

2) i f  qaa>0, Ct>~l:Ee"~'x=!<~Cx,?(s, t)<~e -b,( '-~,  t h e n  

ir~(Z=)l~<(k!) 2 32(2+b~)C~ (16(2+b.)C~t k-2 

k > 2, i.e., for Z - Z n the large deviation relations (1.5) and (1.6) hold as well as the 
estimates (1.7) and (1.8) for 

where 

y= l ,  A v=c  v(BJHo) */3, 

Ho= 16(2+b,)C, { 32(2+b,)C~ } 
a, b~ max 1, al b, ~ ' 

aab, B. H =  128 (2+b,) C~ 
16 (2+bz) C1 " a~. b._ '7=o 

( e f .  a l s o  [33,  3 4 ] ) ;  

3) i f  ]al  > 0, C1 >1 1 : E e a,~ x,, <~ C1, 'b (s, t) ~ Ks e - b . . - %  t h e n  

Fk (Z.) i ~<k' 16(l+b,~)KC~ax = b= a~ (. 16(1+b3) KC~ ) ,,% 

�9 , al b=B.  

k>2 ,  K=max(1,  Ka) , i . e . ,  f o r  Z - Z~ t h e  l a r g e  d e v i a t i o n  r e l a t i o n s  (1.5) and  ( 1 . 6 )  h o l d  as  
well as the estimates (1.7) and (1.8) for 

where 

y =  O, Av = cvB./Ho. 

Ho= 16(I+b3)KCa { 16(I+b,)KC~ } 
a. b3 maX 1. al b~ ~ ' 

~ =  aibaB~ H= 32(I+b~KC~ 
16 ( t + b3) KC~ , at2 he ~o 

THEOREM 9. Let the random variables X t be m-dependent; 

i) if IXII ~ C with probability i, then 

i F~ (Z.)[ ~<k! 16 (m+ 1) C ~ o  z (,' 8c (m+ 1 ) B .  )k-2, 

k > 2, i.e., for Z - ~ the large deviation relations (1.5) and (1.6) hold as well as the 
estimates (1.7) and (1.8) for 

u = O, Ay = %BUHo, 

where 
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H0_~ 8 (m~-])C max { ] ~ [6(mq-|) C2 } 
~] 

~ =  B, H =  32(m+1)C= �9 
8 ( m + l )  C ' ao ~ ' 

2 )  i f  ] a ~ > O ,  C,>~l:Ee~,tx')<<.Cx. , t h e n  

I r , ( z , ) t  ~<(,!) '  96(m+1) c*~ ( 16(m+l )  C, ) * - ' ,  
al  ~o 

k > 2, i.e., for Z - Z, the large deviation relations (1.5) and (1.6) hold as well as the 
estimates (1.7) and (1.8) for 

where 
7= 1, A~.=c~.(Sj/ ' /o)% 

Ho= 16( '+1)c~ m a x {  1, 96(m+I)C~ } 
a l  a l  'J~ 

~= a~B. H =  384 (m+ 1) C~ 

Some more partial results were published by the authors previously (of. [3-7]), some 
results are cited in conference reports (cf. [11-21]) without proof. The papers of I. G. 
Zhurbenko [22-24], A. V, Bulinskii [25], N. M. Zuev [26, 27], P. M. Lappo [29], and of other 
authors are devoted to estimates of F(~ I ..... ~k)- 

Using a different approach, the authors of the present paper gave sharper estimates for 
EX,,...X,,, F(X,, ..., X,,) , and Pk(Sn) with respect to k[, ~, ~, ~, n, and the moments EIX~[ k 
with numerical constants. 

2. Notation 

For the convenience of the reader and more clarity in the paper we use standard notation. 

i. CoDstants. We shall denote positive constants by the letters C, K, a, and b with or 
without indices. 

2. Sets (the definitions are taken from [32], Chap. I). Finite sets will be denoted by 
the letters d. ~, ~, I. J. possibly in square brackets [], with or without indices, and it 
will be assumed that the sets below have the same structure throughout the entire paper: 

a/=ial ..... as}. a1.<...<.as, 
- ~ = {  1 . . . . .  , , ) ,  
l = { t a  . . . . .  tk;tj~e'K}, tx<~. . .  ~tk,  

J={ I1 ,  - . . ,  l , } ,  1 1 < . - . < l , ,  

a i s  tho  suppox't o f  t~ho k - s o t  I ,  
{I1,- .- ,  I~) -- i s  a I m ~ i t i ~ n  of  tale se t  I .  

! o -  ~ ,lv) toy ) ~. t~ p~ <. <~ t(~ '''~. I <<. p 4 "*. 
--I~I ~ �9 �9 .~ k ~ J ~ . . . .  

k~ + , . .  + k , ,=  k, 

{ J i , - . . , 3 , , }  is the p ~ t i t i o n  o~ t~* set J, co=:eSl~din6 to the l t ~ i t i o n  

[I 1 . . . . .  I,,} oZ t h e  s e t  I ,  stmh tha t  Jr, i s  t h e  ~ l ~ : t  o t  t h e  k r - s e t  Ip, 

so = ~,.~,' . . . . .  l~  ~}, t~: < . . .  < l'.~', 1 <. f, <.,,, 

r ~ + . . .  +r,>~r, 

(m I . . . . .  m~) is the vector of exponents of the primary specification of the set I, 
generated by the set J, m I + ... + m= - k, 

(m{P), mfv)) is the vector of exponents of primary specification of the set Ip genera- 
ted by the set Jp, 

[~r162  b = { ,~I I a~ .<t .<a .} .  
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Obviously 
[z]=[1]ffiL 

[z,] ffi [4]- 

We introduce three more notations for sets 

q~.-{u,  u + l ,  �9 v } ,  

c'K.= { u, u + l  . . . . .  n}, 

d ( o  = ~ r  a~ . . . . .  a ,  }, 

u, reCK, u~<v~<n, 

ueC~ ,  U ~<n, 

i<~s. 

The symbol I .~ '1  will, as usual, denote the number of elements of the set d- 

3. Sums. We shall denote the s-Cartesian power of the set J by ~,)~. 

o)!~ =.~? x ... x d. 
4 . �9 

s t ~ = s  

Indices are preserved upon passing from a set to its Cartesian power, for example, 

( ,~[~J](" = [ d ] ( ' ~  • . . .  • [~']('), 
S ~@S 

(s)~. -- Qc,, x . . . .  

s t tmH 

In accord with the notation introduced for Cartesian powers, we denote by 

S - is th. s,-- ov.z all =(O], ..., a~)e(s)~I. 
Qe(s~ 

<) --il thin sum oyez all dE(s?)[ el..- Q~; such that <~ 

~-,(<) 
z~ --is the sum over all OE(s~)[ such that dl < �9 �9 �9 < Qs. 

O e (s)~ 

Sometimes, instead of (~)~[ we shall simply write V[, provided the number of coordinates 
of the vector a, which determines the value of the index (s), is known. 

If it will be convenient for us, as the notation for the domain of s-mmation of the 
vector a we shall use the set ~; in this case the summation will be over elements of the 
set ~ with values from ~ for each of them, and the value of the index (s) will be equal to 
the cardinality of the set ~; Z will denote the sum over all v-block partitions {Ii, 

v 

U Ip=I 

..., I v} of the set I. 

Following [31], by a partition of the natural number k we mean any finite nonincreasing 

sequence of natural numbers A I .... , A v such that X },p=k; we call the Ap the parts of the 
p=| 

partition {A I .... , Av}. 

By a composition of the natural number k we mean any finite sequence of natural numbers 
v 

~I, ..., I v such that X lp=k- 

We denote by p(k,P~ l) the number of partitions of the number k into v parts, and by c(k, 
v) the number of compositions of the number k into w parts. Then 

c(k, v)= <~7 11) (k- 1), = O-1):(k-~)! ' (2.1) 

p (k, 9 ~< c (k, ~), 
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i s  t h e  sum o y e z  a l l .  pentathlon!  o f  t h e  number k i n t o  ~ pa~s, 
{},, ..... ~v}~k - 

i s  ~hs  mum ovo~ a l l  c o m p o s i t i o n s  o f  t h e  n u ~ e z  k i n t o  v p a l ~ s .  

We need some facts from the theory of partitions [30, 32]. 

By the Stlrling number of the second kind s(k, v) we mean the number of ways of par- 
titioning a k-element set into v nonempty subsets. In our standard notate'on this definition 
can be written in one of the following ways: 

~(k, ~)=!{(I ,  . . . . .  I ,}}~, (2 .2 )  

s(k, ~)= ~ 1, 
,j 

U G =z (2.3) 
pc! 

k! 
s (k ,  v)= I k~!. . .k,:~,i" ( 2 . 4 )  

k, +... + k ~ k  

The following part of the paper contains the proofs of the results. It is divided into 
sections. The numbering of formulas and also of auxiliary assertions supplementary to the 
basic results and their corollaries is done as follows: we indicate the number of the section 
and the number of the formula (assertion) with respect to the beginning of the section. 

We shall refer to the basic results analogously, i.e., write, for example, "Theorem 
3.l.b" instead of "part b of Assertion 1 of Theorem 3," etc. 

3, Decomposition of the Mixed Semiinvariant with Respect to Centered Moment~ 

Following [4, 5], we define a function Nv(ll, .... I v) with nonnegative integral values, 
on the set of all v-block partitions {I I ..... I v } of the set I. Its explicit form is given 
by (II) of [5]. Here we give an equivalent representation. 

Let (~g,,...,A~} be a system of subsets of the set I. 

We shall say that {~i ..... d~} covers t E I if 

{q~te[ .~c, l{ t}] ,  l < q < ~ } # Z .  ( 3 . 1 )  

We call the number 

n,(~ . . . . .  ~)=l{qlte[~c~\{t}], I ~ q ~ } t  

the maximal covering number of the point t by  the system {.~'~ . . . . .  ,a~'~]. 

We set 

,v~ (t)--- l, 

N,(I1,  . . . ,  Ix)= f i  n & ( l l  . . . . .  iO ' 2~<v~<k. ( 3 . 2 )  
i=2 

Following [22, 23], we make correspond to the set I and to each block Ip of a partition 
{I I ..... Iv} the vectors of exponents of primar7 specification ,~=0% ..... m,) and ~PJ=(~P~ ..... 
(~m) with respect to the set J. Obviously in #Cp) there are exactly r, ~ nonzero components, 

. r ( p )  . 

equal to m~ pt ..... m~ p) and located in p(P) at those places at whlch 11 ~ ..... l~ are sztuated 
p 

among the numbers 21, ..., 2 r. 

In our notation 

trot . (p.(P)) = min {,/i ~ r) ~ 0  }, 
l~j~<r 

tm~ (~' P)) = max ( j  ! ~P~ ~ 0 }. 

76 



The "reflexivity" property of a sequence of vectors ~.(~) ..... ~t('):izm+...+~t(')= ~ 
is defined by ~he inequalities 

t.,~(~(v))>~ tmtn('j.(v+l)), 1 ~<p<'~, 

t.,., (,'s >/t~m (~(1)). 

( e f .  [22,  23.]) 

The concept of "indecomposability" is introduced in [i]. IC turns out that the-vectors 
of an "indecomposahle" sequence ~(~) ..... X(~) such that X(x>+...+~(~),=~., as well as ~(~) ..... ~eo, 
are the vectors of corresponding exponents of primary specification of the sets Ii ..... I v 
with respect co J, and one has the following relations: 

{{ll . . . . .  l,}iN,(Ix, . . . ,  I,,)>0}= 
= { {~,, . . . ,  , ,  } ! ~(,> . . . . .  ~ ( "  - ~ .  " , . ~ u ~ , , . "  } = 

= {  {~, . . . . .  ~ ,}  l ~,(,, . . . . .  x(') - , .  , , = ~ . ~ . . . , , ~ . -  }.  

The mixed semiinvariant can be decomposed with respect to moments in the following ways: 

where 

k 

r (X . . . . . . .  Xt,)= E (-I)"-I( '~-I)!  E 
,a 

U la=l 
p=l 

k 

r ( x  . . . . . . .  x , )  = ! (-1)*-1 
v = l  

k 

r ( x ,  . . . . . .  x , )  = ~ ( -  l ) , - ,  

v 

I-I EXG, 
p = l  

'* p=t 
[J Iv=l" 

N T '  (,1 . . . . .  J~) I - I  ~(~) x ,  . 

U l v=l  
p=l 

(3 .3 )  

( 3 . 4 )  

( 3 . 5 )  

re(P) 

E x,  =Ex, , e , . .  . x  ,,, = E ~!"...  X(,~, 
k ,  t' 

~ x , = E x , ,, ,  x ,  , , ,  . . . x , , & ,  L ~ , ;  

re(P) mfP) 
E(2) (o) ~v) r - - I  r v X/p=EXI,(~) Xl(p)...XI( m X ( v ) ,  

r o -- I l yp  

(3 .3 )  i s  proved in  [1] ;  ( 3 . 4 )  in  [4,  5 ] ,  a l though the idea  o f  d e c o m p o s i t i o n  wi th  r e s p e c t  to  
centered moments is already realized in [3] (of. Lemma 6). (3.5) is a modification of a 
formula of [22, 23]. Since the kernels of the maps N v and N~2) coincide, passage from the 
method of centered EXr to ~a) Xrp only replaces N v by N~ 2). 

We shall use (3.4), since the number N~(I~ ..... I~) has a number of good properties, one of 
which is the estimate 

and another is proved below. 

LEMMA 3.1. 

~ , < , ,  . . . . .  ,o= E <-'>' C - " + q  ,, i=o k - ' ~  / ( ' J - J -  1)!s(k, ,~-j). 

O I r , = l  
p =  1 

(3.6> 
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Direct comparison of the  right sides of (3 .3)  and (3 .4 )  leads to  the  relations 

I ~o [k-~+j~ N(k, v-j), 1 4v (k ,  (3 .7)  s(k, ~)= (u_l)! = \ k - v  / 

where 

N (k," v) = Z N, (11 . . . . .  I0. 
v 

O I~=I  
g= 1 

We n o t e  t h a t  N(k, v) i s  t he  number o f  tezlas o f  t he  form I-IEx~, 
p ~  I 

deeompositlon of the m;ixed semiinvarian~ by (3.4). 

For example, for k - 6, 

0Is(6, 1)= 5 N(6, l), 

(5 )  (44) l!s(6. 2)= 4 N(6, 1)+ N(6, 2), 

. . . . . . . . . . . . . . .  . . . . .  , . . . . . . . .  

(') (;) 5!s(6, 6)= 0 N(6, 1)+ N(6, 2 ) + . . .  

which appear  in the  

From this, 

N(6, I)=], N(6, 2)=26, N(6, 3)=66, 

N(6, 4)=26, N(6, 5)= 1, N(6, 6)=0. 

By substitution of (3.7) into (3.6), we get 

Since 

]=0 - -  j = O  i ~ O  

( k . v + i + j ) !  
(k-~)!i!i! N(k, v - i - j ) =  

v - - I  ' , - -1  

(k-v)!i!/t ( -1)JN(k '  ~ - e ) = N ( k .  '0+ I (k-v+e)! N(k,'~-~) (k- v)! -! " 
=~0 i + j ~  ~ = 1  

i, j~>O 

Z ( - I ) # ~  =0 Va>~l, (3.6) is proved.  
i .-F/=:z 
i , / ~ > 0  

COROLLARIES of Lemma 3.1. 

( -  1/ ;,j~. 

i ,  j ~  0 

Proof 
v-i toO. 

I) 

2) 

(3.8) follows quickly from (3.7) 
(3.9) follows from the equations 

N (k, 4)= 1=o ~ ( -  l)V-J§ (k-j-~.. - v 1)jIs(k, j+ 1); (3 .8)  

k 

N (k, ,J)=(k-1)! (3 .9)  

if one changes the direction of summation from 

k k ~ -  1 

k--1 k k--I  k--J--i z , , , , - r  '> < 
~=o,=j+, k -v  j!s(k,j+l)--- j=oZ ,,=oZ (-1)" \ k _ j _  v_ } 

k - - 2  k - - j - - I  

= ~ j:~(k, j+ ~) ~ (- t)- \ J {  k-i-~_ ~)~-(k-o:,(k, k). 
j=o ,=o k - -  
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Since s(k, k) - I, and the left term of the last equation vanishes, (3.9) is proved. 
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ADMISSIBILITY OF THE NONPARAMETRIC ANALOG OF THE PITMAN 

ESTIMATE IN THE CASE OF ONE UNKNOWN PARAMETER 

A. Tempelman and J. Jaura UDC 519.24 

In this paper we prove the admissibility of the estimate (i) of an element g0~ of a 
Hilbert space H, where ~ is a known element, gt, t E R, is a one-parameter group of affine 
isometries of the space H, and 0 is an unknown number. Special cases of (1) are the Pitman 
estimates (i') (cf. Example i) and (I") of the function ~(x-0),~L2(-~, ~) under an unknown 
translation 0 of the argument (cf. Example 2). The method applied was developed in the proof 
of Thegrem 3 of [8]. 

Let H be a separable real or complex Hilberc space, gt, t e R - (-~, ~) be a continuous 
group of isometric affine transformations of the space H; in other words: I) g~g,~=g,,+,,,tl, 
t~eR; 2) for any ~ e H the map t~g,? is continuous; 3) g,?=U,~+~(O, t~R, ~eH, where U t are 
orthogonal (unitary in the complex case) operators, ~(t) E H; it is clear that gt are iso- 
metric, i.e., ~Ig,~-g,~i=~-~il, t~R,~,~eH. Such groups can be of two types. 

Type I: "rotation" about a point ~0 E H, i.e., g,~=U,(~-~o)+~0, where U, =U~, t~R, is a 
group of orthogonal (unitary) operators. 

Type 2; g,~=U,~+t~o , where U,=U~, t~R. is a group of orthogonal (unitary) operators, 
~0 is a characteristic element of them (if U I is the identity transformation E, then g,~=~+ 
t~o is translation by the element t~0 if UI * E, then gt~ is a helical motion along the axis 
t+0, - ~<,< ~). 

For transformations of type I, !l~-g, ~l[~C=il~!l+2!I+,i!, teR, ~eH. For transformations of 
type 2, l}g,~-g. ~ll~It-ul, ~eH. 
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