ESTIMATES OF SEMIINVARIANTS AND CENTERED MOMENTS
OF STOCHASTIC PROCESSES WITH MIXING. I

V. Statulevicius and D. Jakimavicius UDC 519.21

1. Introduction and Basic Results

Let X,, t =1, 2, ..., be a stochastic process defined on the probability space (1, #, P),
and {#!, 1<s<t<o} be a family of o-algebras such that

1) FicF Vs, t;
2) FucFh Vi, tl<ls, ta];

3) Fioe{X, s<ustj.

We introduce, as usual, the a-mixing, ¢-mixing, and ¥-mixing functions by the following
relations:

(s, t)= sup IP(4B)—-P(A)P(B)],
AeFL BeFT

P (AB)~-P (A P (B)
e, )= sup l . P (A)
Ae.‘,’?'}. BE.Q/’.:Q
P(4)>0"

. ( t) sup P(AB)-P (A P(B)
Y, D= - P(A)P (B
’ 4eFi, Be FT (AP B)
P(4)>0, P(B)>0

Let EjX <o for some k = 2 and TI(X,. ..., X) be the k-th order correlation function
of the stochastic process X,, i.e., the mixed semiinvariant of the process Xy
1 ok .
—— Si(u, X) .
T o X)) = 5 InEe o
where wueR X=(X,, .... &) [2].

The centered moment ﬁX,‘...X;‘ is defined as follows:
A
— /—\’\

EX, . . X, =Ex X ly, X,.

k—1 k

The symbol " ~ " over a random variable means that it is centered by its expectation AE:Z_’—Ez
(cf. [4-6]).

This paper is devoted to upper estimates of the function ]AEX,“ ..., &, and with their
help estimating the mixed semiinvariant T'(X,. ..., Xi) and k-th order semiinvariant I (S, of
the sum S, = X, + ... + X, since

Li(S)= P, ... X))
m,,.z.q ' ' (1.1)

The estimates are found in terms of one of the mixing functions @, ¢, and ¥ and the
moment E| X, [%/<k As is known ([4, 5], cf. also [3]) TI'(x,, ..., X,) can be expressed in
terms of the function EXn---Xt. by the following formula:
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E
T, oo X)= 2 (=1 D2 Ny, ..., 1) []Exs,
! 0 1-1 = (1.2)

p=1

where Z denotes summation over all partitions of the set of indices j={s,,.., ]} into

v

U =1

p=1
unordered subsets I, € I. Further, if j, ={#", ..., #{’}, then by definition we set Xri=Xwm...

»
X,g)- The integers O<N(Iy, ..., I,) S(v—1! depend only on the partition {I,, ..., I,}. If
N, (I,, ..., I,) > 0, then '
ax (t,—t)> max (¢, —1).
P max (y=t)> max =t (1.3)

An exact formula for N, (I,, ..., I,) is given in Sec. 3.

We give the basic results. For simplicity of notation, we shall assume everywhere that
t; S ... St

THEOREM 1. 1) if |X,| < C with probability 1, t = t,, ..., t,, then for all i, 1 £ i <

k,
a) IEX,...X, |<2Cha(t, tisn),
b) 1EX,...X, <2*1C @, 64
o) EX,...X. | <20CH(, fiaa);
. 2) if for some integer k =2 2 and § > 0, E |X,|*®*< w0, I=1y,..., o then for all i, 1 =1 <
’ ;EX,,...X,l;<3~2*‘1o:5-"1+5’ (tsy L1 Iil EVa+® k| y, (048K
=1
&
- 3)ji£ 1t;o:: some collection 221, I</<k with }: lpj=1- exist E[X, s, 1<j<k , then for all
i, = , j=1

E lp . .
a) B, X <27 U ) [ EPIX

j=1

k
b BN X SRRt 2 EX K

=1
4) if 34,>0, CIZI:Ee“"X* <£Cy, t=1Iy, ..., I, then for all i, 1 < j <k, and any § > O

N
a) |EX,...X,is 3kt 261Gy ((l +3)a)t 281+ (1, 1;,4),
P “ ﬁ: Yo
b) (EX,... X <[] 22 Cla)y o=t (1, tihy)
j=1
k
for any collection p;21, 1<j<k, with Z 1/p;=1, where #=min {v>ulr is an integer).
j=1
We consider the case when the variables X, are connected in a Markov chain §, (i.e.,
X,=g, (%), where g,(x) is a measurable function for each t) with transition probabilities
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P, (x, A)=P {£,e4 |E;=x} and P, (4)=P {{,€4}. In this case we set Fi=o{%, s<u<it}. Then ?(s )=
sup |Py(x, A)—P(4)[<] —ay, where a,, is the coefficient of ergodicity of the function P,,

x, deFl

Gy =1= Sp |Py(x, A)=Pu(y, 4)I.

Xy, deF!

If o= min &, ,,; 1is the coefficient of ergodicity of the chain, then it is known that 1—a, <

Iss<n
(l—amy-sge=a™u-9 for all 1 = s <t < n.
Let £;, ..., 2  be growth points of the sequence ty, ..., %, M+ ... +M; =max {i:t,=1}, 1<j<r.
JHEOREM 2. Let the variables X, be comnected in the Markov chain £.;
1) if |X,| = C with probability 1, t = t,, ..., t,, then

r—1
a) EX,. .. X |<2C S o, 1),
i=1

r—1

b)) 1EX,...X, <2k T 4, 1L

j=1

2) if for some collection ¢;>1, 1</</ with Y 1jg=1 the E X, ™%, 1<j<r, exist, then

i=1
i

— 42 1/q ’ m
a) (EX,...X, <> [ e @, L [T EYix ™,

j=1 i=1

r—1 . r
B Ex,.ox <2 [T 40, Lo T] ELX M.
i=1

ji=t
Having the estimates of Theorems 1 and 2, from (1.2), considering the behavior of N, we
get an estimate for T(X,, ..., X)
THEOREM 3. 1) if [X,| =< C with probability 1, t = t,, ..., t,, then for all i, 1 < i <
k
a) L, o0 X)i Sth— D1 2°Cra 1y, tivD)s

b) ID(X,. .oon Ki)1S(= DI Coo (ty tir),

o T, ..., X <k=1! 2572 CRo (1, tig);

2) if for some integer k = 2 and § > O the E|X,+®* t=i,..., 1,, exist, then for all i,
1=s1i<k,
k
T Xy woes XY 1S3 (k= DI T108 A48 (g, gy) [T BV, 10401
i=1
k
3) if for some collection p;>1, I<j<k, with Z l/ps=1 the E X, " exist, then for all
i, 1 =1i<k, b ’
z g - iip
IT (X vees X)ISG=DI210=1 (1, 114y) ﬂ E™ X, 175

i=1
4) if 34,>0. C;>1; Ee*'*'<C,, t=ty,..., ts then for all i, 1=4i <k, and any § > 0,

FaN
DX, ooy XDIS3EIA (LI + ) ay ) a0 (1, 1, ),

THEOREM 4 Let the random variables X, be connected in a Markov chain ¢, (as in Theorem

2):
1) if [X.(<C, t=ty,..., &, then for all k = 2
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r—1

a) (T ..., X)I<k=-1D121C [T 90 Lo,
Fmq
r—1

b) Ty -0 X)ISCh=D1257C [T ¢ U, L1)s

J=1

r
2) if for some collection 4,21, 1</<r with 2 1/g;=! the E(X,|™% j=1l,...,r, exist, then

r—1 4 J=1
Z 1 4 m
a) ITXy, .oy X)lsk=t2%1]] &= " L4 [1E"™1x, %™,
j=1 i=1
r—1 r
b) DXy +.es X €h= D125 [T 40 4o [T EIX, ™
=1 j=1

3) if 34,50, C;>1: Ee*'*'<Cy, t=1y,..., 1, then for all k = 2 and § < 0
~ r—~1
IP (X oy X3 <K144-1(Cy (14 8)/ay) [1 ¥, 4.

i=1

Having the results of Theorems 3 and 4, we can quickly get estimates for I (S,) from
(1.1) under different mixing conditions and different restrictions on the behavior of the
moments E|X,|¥. However, they will not be optimal with respect to the order of the semiin-
variant k, since for this, as we see in the proof of the theorems, it is necessary to study

and estimate the depenedence of I'(X,, ..., Xi;) on t,, ..., t, more closely. This is done with

the help of (1.1), (1.2), and the estimates for ﬁX,l...X,a, which are given in Theorems 1 and
2.

We set

A, u)=max{ 1, max Z fUu(s, t)}
1<ssn
for any function £ =2 0 and u > 0.
THEOREM 5. 1) if |X,] < C with probability 1, t =1, ..., n, then for all k=2 2, 8 >0,

§>0

a)  |Tk(Sy) <2k 1CE AL~ (o, k- 1),

b) | Ti(S)!<k!8*-1CH-2Ak=2(qg, (1+B)(1 +1/8) (k~2))

X Z QPOIL+B) (14+8) (5 () EHA+8) | X 1418 EUG+D) | ¥, 142,

Issgtsn
2) if for some k = 2 and § > 0, E|[X,|0+D* <0, 1=1,...,n then for all g > 0

) |Te(S,)| <2k 12571 Ak (a, (1+1/8) (k—1))n max EVO+®) | X, |1+8 &
b) l Pk (Sn)] s I<t<n
SKUBIAL2 (9, (1+8)(1+1/8) (k —2)) max EC-20+d k| x, 1+8) &
; : !

=r<n
x - Z PPHA+B (148) (5 HEVA+D Xy [+ K EU+B) K|y, 1148 ;s
l<s<ign

3) if 34,>0, C;21:Ee” % '<C,, t=1,..., n. then for all k 2 2 and § > O,

Ty (21 <2 (D2 12571 (Cy (14 Day}* A~ (o, (4 1/8) (k= D) 7.

THEOREM 6. Let the random variables X, be connected in a Markov chain £, (as in Theorem
2);
1) if |X,| = C with probability 1, t = 1,..., n, then for all k= 2 and § > O,
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a) L (S)|<kl81CH AL (9, D,

b)| T, (S,) | <k!8*-1C*2Ak~2(g, 1+1/5) Z QYA+D (5, HEN+D) | X (1418 Fr+8) | X, [143;

1<s<t<n

2) if for some k= 2 and § > 0, E|X,/Q+¥kc o, t=1,..., 7 , then
a) |Du(SH <kI8-1Ak~!(p, 1+ 1/8)n max EVQ+8) |, [1+8 &

1<t<n

B) ITu(S)|<k!8*1AE2(g, 1+1/3) max E*-2/0+d)k| ¥, [a+a)k
1<t<n

x Z g8+8) (5 () EUA+D k| ¥, (1+8) kEUA+D & | i, A+ &,
1<s%t<n ’
3) if 34,>0, C,>1:Ee*'¥i'<C,, t=1,..., n, then for all k = 2 and § > 0
N
[T (S| < (k1281 (Cy (1 +3)ar)* Ak~ (9, 1+ 1/8)n;
4) if 34,50, C,21:Ee"'*'<C,, t=1,..., n, then for all k = 2,
ITe(S)) <k165-1(Cofay)* AS™1 (¢, D

The estimates for I (S,) found in Theorems 5 and 6 let us get theorems on large devia-
tions for the distribution P(Z, < x) of the normalized sum Z,=S$,/B, Bi=ES? (we shall assume

everywhere that EX,=0, /=1,..., n). For this we shall use the following lemma.
LEMMA. 1If for the random variable Z with EZ=0, EZ?=1, there exist vy 2 0 and A > 0 such
that for the k-th-order semiinvariant one has
IT(Z) S GRDFYJAR-2, k=3, 4, ..., (1.4)

then in the interval 0 = x < Ay

Ay=c AV o = 6 (Y 2/6)a+20)
one has (cf. [8]) |

P(Z>x ; _ o x+
e =exp (L, (9} {146,/ (9 W ). (1.5)
P(Z< —2x) +1

P o0 1 52

where

) . Iiy+2, ¥v>0
Lo(x)= xk =J ’
v (%) Z cxk,p | o, =0,

Igsk<yp

e S2/k(16/AY((k+ DY), k=3, 4, ..., 18<1, i=1,2,

60 (1+10A%exp { — (1 —xjAy) VAL D {1 +2 (x/A)?
Fo0= i VA U2 eite)

Moreover (cf. [9]), if

ITe (Z)| < (KY2r+Y HIA*-2, k=2,3, ..., A>0, H>0,
then for all x = 0,

1 x3
P(:Z>x)<exp { T2 TH+(x/AvatmyatmiaTn } (1.6)
From this
—x2/4H S(HY Y A1 +2y)
P(iZ;x)sfexp{ x'4H }, X S(HVYApasan,

‘ exp { — (x A)V+v)/4 L, x> (HUYAyare,

Under the condition (1.4),
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s'llplP(Z<x) D (x)| < 18/A,, (1.7)

and if in addition we know an upper bound for |fz(u)—e*'?|, f, (u)=Ee*2 outside the interval [O,
A,,], then the following relation holds [10]:

T-
- 6Y -3V7a, 370 |
suplP(Z<x) -0 (x)|< 1/3‘2“ { 3A +1004, 77" A7 +—’+ % ,_Af [ fz(u)— 12! d"} (1.8)
. Y

for any T = a,.

In order not to complicate the proof too much, we give the theorems of large deviations
here for P(Z, < x) only for the case of a stationary sequence X,, t = 1, 2, ... . In the case
of a general nonstationary sequence, it is better to express the estimates of Theorems 5 and

6 for I (Z,) in terms of A%-2(, )L, instead of A"“z( :)n max E|X,"/B;, where Li,= Z E| X, *Bk.
<t<n
1=

For this it is necessary to express the sum S, in terms of new consolidated summands and to
study the behavior of BZ. This will be done in a subsequent paper, published in Lietuvos
Matematikos Rinkinys. Estimates for I} (S,) in terms of the conditional moments E([X,/*#i-!)
will also be given.

Thus, in the following theorems we consider a stationary sequence X, with EX,=0, EX}=1,
=ESi>cfn. Ve set Z,=S5,/B,.
- THEOREM 7. 1) if |X;] = C, with probability 1, «(s, )< K,e~%-% then

*K 8Ce \k-2
il‘k(z,)is(k!)z%% em,,( e) ,

1 Dp

k > 2, K = max(1, K,;), i.e., for Z = Z, the large deviation relations (1.5) and (1.6) hold as
well as the estimates (1.7) and (1.8) for

Y= 1! A‘y=cy(8n/H0)1,37

where
_ 8eC 8KC* .4
Hy= b, max{ 1, ot ¢ ,
T_ Bub _2KC L.
A= H=—g5— e

2) if 3a,>0, C;21:Eem X11<Cy, a(s, )S$Ky e~ -9 then

T (Z) | < (Kl _26_1/_1_(_(:1 el+hil2 ( 48eC, )t—z,

a, b, B,
k=2 K=max(l. K;), i.e., for Z = Z, the large deviation relations (1.5) and (1.6) as well as
the estimates (1.7) and (1.8) for

Y= 2’ A‘( =&y (Bu/HO)lls;
where

_ 48eC, 96V K¢} p+bi
™ Ta b, max{ 1, alh, o} .

~  a b B, 768 VK C?
A= 4‘8eIC1 , H= alb, ol etrhit;

3) if 34,>0, C,>1:EeniXil<Cy, (s, 1)< K, e-t -9 then

ZKC 4eKC, \k—2
| L(Z)i< (k')2 12 elth ( a, b33: ) ’

k> 2, K= max(1l, K;), i.e., for Z = Z, the large deviation relations (1.5) and (1.6) hold as
well as the estimates (1.7) and (1.8) for

Y= [ A'r:c‘y (Bn/H!))lIs’
where
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2
Hy=2KG max{ 1, NG avs, },

ay by al b, 6}
A= ay by B, - 8KC? el +bs
4eKC, °’ al by o *

THEOREM 8, Let the random variables X, be connected in a Markov chain §;; 1) if |X,| =
C with probability 1, o(s, f)<e-nr-9 then

| Ty (Z,)| <k! 8 (1+by) C* ( 8(1+b,) C )"'2,

bg 0'5 bzﬂn

k>2, i.e., for Z = Z, the large deviation relations (1.5) and (1.6) hold as well as the
estimates (1.7) and (1.8) for '

Y=0’ AY=CYB,‘/H0,

where
H,= 8(1-;bz)c max{ 1. 8(1+b:)C’ }
2 by c?
T__ bB, _16(1+8,) C?
A= 8(1+by)C H= by

(cf. also [4]);
2) if 3a,>0, CIZIZEB""X‘;ﬁcl,(p(S, e b t=3), then

s 32(2+5,)C} ( 16 2+ b,) C, (k2
ai byoj ayby B, ) ’

IT(Z) | < (k)

k> 2, i.e., for Z = Z, the large deviation relations (1.5) and (1.6) hold as well as the
estimates (1.7) and (1.8) for

Y= 17 Ay=cy(Bn/H0)1I37

where
_162+b) G 32(2+b,) C?
Ho= SR max {1, ZEE
K__ @bB, _ 128(2+4,) C3
A= 16 (2+5b,) Gy ’ H= a5 byt

(cf. also [33, 34)]):
3) 1f 3a,>0, C,21:Eea X1 Cy, U (s, )SKze~n -9 then

16 (1+b,) KC} ( 16 (1 +b3) KC; )“"2
al by o ay by By ’

T, (Z,)! <k!

k>2, K=max(l, K3) , i.e., for Z = Z, the large deviation relations (1.5) and (1.6) hold as
well as the estimates (1.7) and (1.8) for

v=0, A,=c,B,/H,

where
KC?
Hy= 16 (1 +b,) KC, max d 1. 16(1:173)2 e
ay by ai by}
A= @, by B, _ 320+ KC?
T 16(1+by) KC, - alb, a5t '

IHEQ 9. Let the random variables X, be m-dependent;
1) if |X|, = C with probability 1, then '

16 (m+ 1 C? ( 8C (m+1) )k -2
H \ B, ’

T.(Z)|<k!

k>2, i.e., for Z = Zn the large deviation relations (1.5) and (1.6) hold as well as the
estimates (1.7) and (1.8) for
Y=0, AY=L‘YB,,/H0,

where



Ho=8(m+l)Cmax{ 15 ________I6(m:;l)C’ }’
1

T B, _Rm+nC

A’3(m+1)c’ H= o3 ?

2) if 3a,>0, C,21:Een'%i<C, | then

ITe(Zn) | < (kY

, 96 (m+1)C} (16(m+1) C, )""2
al ol a, B, ’

k>2, i.e., for Z = Z, the large deviation relations (1.5) and (1.6) hold as well as the
estimates (1.7) and (1.8) for

Y= 19 A7= c‘r(Bm{HO)n@,

where
2
Hy= 16 (m+1) G, max{ 1, 96(m2+:)C1 }
& aj o}
T _ a B, _Bam+1C}
A= 16(m+DC, ° H= a? ol .

Some more partial results were published by the authors previously (cf. [3-7]), some
results are cited in conference reports (cf. [11-21]) without proof. The papers of I. G.
Zhurbenko [22-24}, A. V. Bulinskii [25], N. M. Zuev [26, 27], P. M. Lappo [29], and of other
authors are devoted to estimates of I'(X.;, ..., X).

R Using a different approach, the authors of the present paper géve sharper estimates for
Ex, .. X, I'(x, ..., X) , and T,(S,) with respect to k!, a, ¢, ¥, n, and the moments E|X[*
with numerical constants.

2. Notation

For the convenience of the reader and more clarity in the paper we use standard notationm.

1. Copnstants., We shall denote positive constants by the letters C, K, a, and b with or
without indices. )

2. Sets (the definitions are taken from [32], Chap. I). Finite sets will be denoted by
the letters & #, 9, I. J. possibly in square brackets [], with or without indices, and it
will be assumed that the sets below have the same structure throughout the entire paper:

A={dy .... a}, &<...<4,
W={1. ..., n},

T={t;, ..., KieN}, H<...<H,
J={l, ..., L}, h<...<l, ‘

J is the support of the k-set I,

{I4v..., I,} — is a partition of the set I,

=1t ..., r,g:’}, <L Tsps
ki+...+k,=k,

$/1s-..ud,} is the partition of the set J, correaponding to the partition

1Y PV 1.} of the set I, such that J, is the support of the k.-set I,
L=, o, 1P}, P < <L), 1<psy,
N+ ...+r,2r. '
(my, ..., m) is the vector of exponents of the primary specification of the set I,
generated by the set J, m; + ... + m_, = Kk,
(m{”, ..., m») is the vector of exponents of primary specification of the set I, genera-

ted by the set J,;

m§P)+.._+m(rP)=k,,, 1<p<gy,
[

[Hl=[ag ={rellay<t<a,}.
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Obviously
U=yl=I,

[Ip]=[Jp]'

We introduce three more notations for sets
ANe={u, u+1, ..., v}, u, veN, u<vs<n,
Ny={u, u+1, ..., n}, ueN, us<n,
AV=o\{ay, ..., a;}, i<s
The symbol || will, as usual, denote the number of elements of the set & -
3, _Sums., We shall denote the s-Cartesian power of the set & by ¥

(,)Q[=MX -
e p—

s times
Indices are preserved upon passing from a set to its Cartesian power, for example,

[P =[] x . .. x[L]D,
T s times
@M= x ... x9N, .
T e times

In accord with the notation introduced for Cartesian powers, we denote by

Z ~ is the sum over all =(q;, ..., Q) A,

ae ¥

(<)
Z — is the sum over all d&(,¥  such that €. .. S0

aeu)(u

) .
Z(< — is the sum over all aem‘gl such that G <...<q.

ae ¥

Sometimes, instead of (¥ we shall simply write |, provided the number of coordinates
of the vector g, which determines the value of the index (s), is known.

If it will be convenient for us, as the notation for the domain of summation of the
vector a we shall use the set %; in this case the summation will be over elements of the
set # with values from & for each of them, and the value of the index (s) will be equal to
the cardinality of the set % ; Z will denote the sum over all v-block partitions (I,,

.., I,} of the set I.
Following [31], by a partition of the natural number k we mean any finite nonincreasing

sequence of natural numbers A,, ..., }, such that Z hp=k; we call the A, the parts of the
r=1
partition {X;, ..., A ).

By a composition of the natural number k we mean any finite sequence of natural numbers
A1y «-., Ay such that Y =k

=1 .
We denote by p(k,pu) the number of partitions of the number k into v parts, and by c(k,
v) the number of compositions of the number k into v parts. Then

- k-1
(k—=1)!
e (k, “)=(v_ 1>=‘<—:ﬁ‘<ir——>‘ 2.1

plk, <selk, v),

75



Z is the sum over all partitions of the number k into v parts,
Ourees A}k "

Z is the sum over all compositions of the number k into v parts.
An'-.‘..-i»k“—k

We need some facts from the theory of partitions [30, 32].

By the Stirling number of the second kind s(k, v) we mean the number of ways of par-
titioning a k-element set into v nonempty subsets. In our standard notation this definition
can be written in one of the following ways:

ste, ="{{h, ..., L}}', (2.2)
s(k, V)= Z l,
b oy @.3)
r=1
k!
sk, v)= AN LT
k,+...Z+k,,-k kil kyIv! (2.4)

The following part of the paper contains the proofs of the results. It is divided into
sections. The numbering of formulas and also of auxiliary assertions supplementary to the
basic results and their corollaries is done as follows: we indicate the number of the section
and the number of the formula (assertion) with respect to the beginning of the section.

We shall refer to the basic results analogously, i.e., write, for example, "Theorem
3.1.b" instead of "part b of Assertion 1 of Theorem 3," etc.

3. Decomposition of the Mixed Semiinvariant with Respect to Centered Moments

Following [4, 5], we define a function N,(I,, ..., I,) with nonnegative integral values,
on the set of all v-block partitions {I;, ..., I,) of the set I. Its explicit form is given
by (11) of [5]. Here we give an equivalent representation. ’

Let {&,,...f,} be a system of subsets of the set I.
We shall say that {&...%,} covers t € I if
{qitel\{1}], 1<q<pu}# 2. (3.1)
We call the number
By ..., Fy=1{gltelF)\{1}], 1<g<p}]

the maximal covering number of the point t by the system {&),....#,).

We set
NI(I)=1,
No(y, -0y 1= l—[ non(ly -0y L), 2<v<k. (3.2)
=2
Following [22, 23], we make correspond to the set I and to each block 1, of a partition
{I,, ..., I,} the vectors of exponents of primary specification u=(m,,..., m,) and uP =, ...,
W) with respect to the set J. Obviously in p P) there are exactly r, nonzero components,
equal to nﬂ“,..-,nﬁ? and located in p(P) at those places at which /), ..., ﬂ? are situated
among the numbers £,, ..., Z£..

In our notation’
tmin (2P = min {jIuP#0},

I<jsr

tmax (#'7) = max {jluiP#0}.
1

gi<r
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The "reflexivity" property of a sequence of vectors u@, .. p™:u®+ +u®=y (cf. [22, 23])
is defined by the inequalities

tmax (W) 2 i (RPFD),  1<p <y,

tmax (:J-(v)) 2 tmin (EL"U)'

The concept of "indecomposability" is introduced in {1]. It turns out that the vectors

of an "indecomposable” sequence .3,  aA™  such that AV 4 . . +3=% as well as p,..., u,
are the vectors of corresponding exponents of primary specification of the sets I,,..., I,
with respect to J, and one has the following relations:

{{Ih ety IV}HVV(ID rery Iv)>0}=

={{11, cey LY@, Lo u™ - s "nﬂ.octivo"}D

D{{Ih caey I\n}‘7\(1); ey A — is "indecomposable” }

The mixed semiinvariant can be.decomposed with respect to moments in the following ways:

k v
TXy ooos )= 2 (=12=1 2 ] Ex, (3.3)
v=1 lj ]p=] r=1
p=1
k v
Ty oo, X)= D0 (=1 D Nyl .., 1) [1Ex, (3.4)
v=1] L\aJ 1,=[ p=1
p=1
(3.5)

k v
r&X,, ..., x,)= Z(—l)\'—l Z Ner, .., Iv)ni;(z)X,P,

v=1{ p=1|

U r,=1
p=1

where
> m(P)
r
EX; =EX,... Xn=EXin ...X 3,
14 1 k 1 iy
F] P
————
o
EX;F=EX“U)X"(;)...X,gcp) X‘g‘”),

P

emmn—
—
mtp) m(P)

- ?) (¢ r -1 4
2) — My Mg P r»
E( X[p\—-EX[‘(D) X"(F)...stp)-x Xlﬁl'),

» »

E=(t—EEL.

(3.3) is proved in [1]; (3.4) in [4, 5], although the idea of decomposition with respect to
centered moments is already realized in [3] (cf. Lemma 6). 23.5) is a modification of a
formula of [22, 23]. Since the kernels of the maps N, and Nyz) coincide, passage from the
method of centered EX;, to E@)Xﬁ only replaces N, by NSZ).
We shall use (3.4), since the number N,(/,...., I) has a number of good properties, one of
which is the estimate
Nv(lh L] lv)s(v_l)!!

and another is proved below.
LEMMA 3.1,

v—1 .
S N ..o L= Z(—DJ(";"’:])@—f—1)!s(k,v—f).
i=0 -

(3.6)

v
U 1.=1
p=1
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Bragf, Direct comparison of the right sides of (3.3) and (3.4) leads to the relations

-1
k—v+j .
s(k, v)=Tr_1—1)—!Z( k” ’) Nk, v—j), 1<v<k,

=0 -V

where

Nk;vy= 3 Ny ..., I).

(3.7

We note that N(k, v) is the number of terms of the form an,p, which sppear in the

p=1

decompesition of the mixed semiinvariant by (3.4).

For example, for k = 6,

w

5
0!s(6, 1)=( )N(é, 1),

5 4
11s(6. 2)=<4> N (S, 1)+<4> N(6, 2),

5 4 0
515(6, 6)=<0> N (6. 1)+<0 N (6, 2)+...+<0> N (6, 6).

SN

From this,

N6, Hy=1, N(6, 2)=26, N(6, 3)=66,
N6, 4)=26, N(6, S)=1, N(6, 6)=0.

By substitution of (3.7) into (3.6), we get

v— 1 —v+i+j) . .
Nk v= D, (—1)1< _;H> (v=j—=Dlslk. v=j)= 7 -1 2 —{fk—v;irfl)’ Nk, v=i=j)=

=0 J= 0 i=0

v—j~1

w—1

k—v+a)! (k=v+ap !
Z 2 g CUNG v =N+ A N k= 3 (-1

itj!
a=0 i+j=a a=1 i+j=2
i,jz0 i j=0
Since 2: (-1)’“—*~0 Ya>1, (3.6) is proved.
i+j=a
hjz0
COROLIARTES of Lemma 3.1.
= k—j—1
D NGk =D (—UV-M( -~ )j!s(k,j+1>:
-y
=9

2) ZN(A v) =k~ 1)!

v=]

Proof, (3.8) follows quickly from (3.7) if one changes the direction of summation
v=1ta0. (3.9) follows from the equations

Z Nk, v)= Z Z (= 1yt (" =J- >j!s(k,j+1)=

y=1 ;=0
k—1 k k J 1 k—1 k—j—1] k j 1
=Y — [y-s+1 - sk, j+ D = -1y B Vs (k, 7 =
,%‘MHZJ,,( ) (k_v >Js( J+ D ;0 ;0 (-1 (k_j_v_1>/,s(/\,/+l)
k—j—1
Zﬂsa AEDNE < )+<fr*&)'s<f< ©).
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(3.8)

(3.9)

from



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Since s(k, k) = 1, and the left term of the last equation vanishes, (3.9) is proved.
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ADMISSIBILITY OF THE NONPARAMETRIC ANALOG OF THE PITMAN
ESTIMATE IN THE CASE OF ONE UNKNOWN PARAMETER

A. Tempelman and J. Jaura UDC 519.24

In this paper we prove the admissibility of the estimate (1) of an element gpp of a
Hilbert space H, where ¢ is a known element, g,, t € R, is a one-parameter group of affine
isometries of the space H, and # is an unknown number. Special cases of (1) are the Pitman
estimates (1') (cf. Example 1) and (1") of the function o (x—0),pel?(— 0, ) under an unknown
translation § of the argument (cf. Example 2). The method applied was developed in the proof
of Theorem 3 of [8].

Let H be a separable real or complex Hilbert space, g,, t € R = (—, =) be a continuous
group of isometric affine transformations of the space H; in other words: 1) £.8,=&u+r 1
t.cR; 2) for any ¢ € H the map twg, 9 is continuous; 3) g o=U,p+4¢ (1), teR, geH , where U, are
orthogonal (unitary in the complex case) operators, ¥(t) € H; it is clear that g, are iso-
metric, i.e., g, 0—g bi="p —¥i, 1R, @, 4eH.  Such groups can be of two types.

Type 1; "rotation" about a point y, € H, i.e., g:o=U, (p—Yo)+ ¥, where U, ;U{, tcR, is a
group of orthogonal (unitary) operators.

Iype 2: g oe=U,o+1y, , where U,=Uj, teR, is a group of orthogonal (unitary) operators,
¥y 1s a characteristic element of them (if U; is the identity transformation E, then g ¢=o+
ty, is translation by the element ty, if U, ~ E, then g,¢ is a helical motion along the axis
1y, — 0O <t< o),

For transformations of type 1, (g, ¢o—g, ¢o!l<C=ipl+2ld,', 1R, peH. For transformations of
type 2, |ig, o—ga 9l=xir—ul, peH.
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