THE CONCEPT OF CAPACITY IN THE THEORY
OF FUNCTIONS WITH GENERALIZED DERIVATIVES
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INTRODUCTION

0.1, One of the fundamental ideas of classical potential theory is the concept of capacity, The capacity
of a set is one of its very fine characteristics. However, the classical concept of capacity is in many cases
insufficient for the study of classes of functions baving generalized derivatives, It is the object of the pres-
‘ent paper to remedy this shortcoming.

, Our main tool is the concept of a Bessel potential. Bessel potentials are a very convenient means of
studying questions in the theory of functions with generalized derivatives; this has been demonstrated in the
work of a number of authors, (See for example, [2-5].) A Bessel kernel of order I >0 in the space RPR is
a function of the torm
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where K ,{r), r > 0 is a so-cnlled Bessel function of third kind, The Fourier transform of the function Gp(x)
is given by the formula ’
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The function Gy(x) for I < n has a singularity of type [x[#-D at the origin and for {x] —«= Gy(x) is asymptoti-
{=n~—1 ’

c‘a!iy equal to C{1 + [x]) — 5 ¢18, where C =const,

The Bessel potential of order 1 in the space R? of the measurable function { is the function
Gf) ()= \ Gu(z -~ y) f(y) dy.
i

Let E be any set in the space RP, We consider all nonnegative functions f which are summable on RD
in degree p > 1 and such that for all x€E

(G (=) = 1.

The greatest lower bound of the quantity (||| Lp) taken over the set of all such functions f is called
the {{, p} capacity of the set E,

The theory of the (I, p) capacity of sets is the subject of the present paper. We restrict ourselves
here tothe cage in which 0 <7 <n, p >1, and, in addition, the condition Ip = n is satisfied. The concept of
(I,py capacity can also be considered without these restrictions; however, in this case a number of special
features arise which do not come up in our c¢ase.

The concept of (I, p) capacity is a special case of the general concept of the p-modulus of a family of
measures which was introduced by B, Fuglede [1].
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The class of sets tn RPN having zero {J, p} capacity colncides with the class of sets -7 which was in~
troduced and studied in detail in [3, 5], The ¢, p) copacity of a set F < RP is zero tf and only {f there exists
a function f which is summable on RP in degree p such that (GIf)(X)} = = for all x€ E, The class ®.» {s
closely related to the theory of the function class LP constructed in {3, 5].. A function u belongs to the class
L? if there exists a function v which {s summable on R in degree p and such that u{x) = {Gv}{x) almost
everywhere, The class I}; is an analogue of the class of functions with generalized derivatives, Indeed, if

! is an integer, then LP{R“) coincides with the well—kr}m&n Sobolev class WPRM), The set of possible sin-
gularities of an arbitrary function of Llp is, ns shown in [3], a set of class "W r -i.e,, a set of zero (I, p)
capacity in our terminology,

Different generalizations of the concept of capacity have also been studied by a number of other nu~
thors, We mention, in particular, the papers {6-8] in connection with boundary value problems in the theery
of partial differential equations,

0.2. We now define certain basic concepts and introduce the terminology and notation used in the fol-
lowing considerations,

R® henceforth denotes n-dimensional euclidean space. If x = (X, Xz,...,%n), then we put
fzl= (224 2t 4 ...+ 23"
Further, Lp, with p = 1, denotes the Banach space of functions which are defined and summable on RO
in degree p. The norm in Ly is defined as usual:
. A
Hi&a“(gilwnmk)”-
n»‘&

If P{x) is some proposition, then {x€A: P(x)} denotes the set of all elements of the set A for which the pro-
position P{x)is true,

If x is a point of RP, r > 0, then B(x, r) denotes the open sphere of radius r with center x, i.e.,
B(r,r) ={y € B iy — 2] r}.
Let A be any nonempty sct-of RP and x a point ofv RO, e then put p(x, A) :égf!x~§>f,
Let x be a real nurmher., We putvx* = max (%, 0), x~ =max {x, 0). Clearly, x¥-=x" =x, x* + x~ = [x].
It is obvious thut for any function f€lp
17 ey <y e I .

The support of a function f: RM —R is the smallest closed set A © RD such that f(x) =0 forx¢A. A
function f is said to be {inite if its support is compact,

We say that a function £: RR —R belongs to the clags C™ if it has continuous partial derivatives of
every finite order,

§ 1, Definition of Capacity

1.1. Let K{x, y) be a nonnegative function of the variables x, y € R which is dcfined'and lower semi-
continuous on R*™ = R x R! {the value K(x, ¥) = = is not excluded). We assume, morecover, thut for any
x€RD '

(k@ pdy<oe. (1.1)
RB
Let f be a real, nonnegative, measurable function on RR, We put

Ust@ = § K(z.9/w)dy.
),

The quantity Uxf(x} has a definite finite or infinite value for all x€RD,
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Let E < RD be any set in R?, We consider all nonnegative, measurable functions f belonging to the
class Ly (R™) and such that for all x€ E

Ugf(z) =2 1.
The greatest lower bound of the Integral

Vit @yraz,

R®

taken over the set of all such functions is called the p capacity of the set E relative to the kernel K, We de-
note it by the symbol Capp{E; K).

If no such functions f exist, then we put C‘app(E; K) = o,

The concept of p capacity is a special case of the concept of the p modulus of a system of measures
“introduced by B. Fuglede {1]. Indeed, for x€ R} let

)= $K @ 9 dy.

This defines a family of measures py in R®, Let E be the subfamily consisting of measures py where x€E,
Then Capp(E; K} coincides with the p modulus of the family of measures E in the sense of B, Fuglede [1].

1.2, We shall henceforth not consider the case of an arbitrary kernel K. We restrict ourselves to
the case ’ '

K(Iv ,{/) = Gl('t - y)v
where 0 <! <n, and Gy is a function-on R? with Fourier transform

!
Kl

G =1+
The function Gy itself is given by

K . {z}

G (1) = Cron ——5p—— . (1.2)

£

where K, (r) is a Bessel function of third kind and Cg p is a constant, We shall call the kernel Gp(x-y}) a
Bessel kerne! of order I,

We recall the following properties of the function Gy, Equation (1.2) implies that Gy{x) = 5(Ix|), where
.the function 87(r} is defined for all r > 0 and such that 8y(r) >0 for r >0 and By(r) is a monotone decreasing
function, Moreaver, Bi(r) =ofe”F) for r—w« and 37(r) = _;g_.,- [1 + of1)] for r —0, where C >0, C = const,
From this it follows that the function Gy{x~y) satisfies all the conditions imposed on the function K(x, y).

We henceforth denote the quantity Ugf by the symbol Gy and call it the Bessel potential of order I of
the function £, ‘

For any E < R we denote by M, ©/E) the set of all nonnegative functions f € Lp®™) such that (Gif)(x)
z 1for all x€E,

The p capacity relative to the kernel G we shall call the-{, p) capacity and denote it by the symbol
Cap(l,mﬁ.
From the definition of {, p) capacity we immediatély obtain

LEMMA 1.1, Let E be any set in R7 and let £€ Lp(R") be a nonnegative function such that Gif(x) > o
>0 for all x€ E. Then

Capyml < —p- 1118, (1.2)



Proof, It is clear that the function g = {/a belongs to the class |, , (E), and therefore
N o
CapapE <lig ik, = -5 i,

which was required to prove,

1.3. From the general properties of the modulus of a system of measures proved in {1} there follow
the following propositions regarding the {I, p) capacity,

THEOREM 1.1, For any E < R0 Capg,ppE = 0.
THEOREM 1.2, For any two sets E, and E; such that E; < E;

Capy, E1 < Capg, pifa.
THEOREM 1.3, Let {Eu}' v=1,2,..., be any sequence of sets in R®, Then
Capups U B < ‘Srt(:ap(,,p,s!,
THEOREM 1.4. Let E © R, Then in order that the {, p} capacity of the set E be zero it is necessary
and sufficient that there exist a nonnegative function f € Ly(B7) such that ({Gf)(x) = = for all x€E.

THEOREM 1,5, If Cap E =0, then for any set E' < E Cap E'=0,
el e ., p a.p

THEOREM 1,6. The union of an at most countable set of sets »f zero (I, p} capacity is a sef of zero
{I, p} capacity.

THEOREM 1.7, I Cnp(l’p) E =0, then forany q <p,q>1
Capy, f = 0.
THEOREM 1.8, U {€ Lp{Rn), f = 0, then the set of all <€ R such that Gf(x) = « is a set of zero (I, p)
capacity. ' .

We say that a condition C is satisfied on a set E < R almost everywhere with respeet to the ¢, p)
capacity, or, move bricfly, (I, p) almost everywhere on E, if the {I, p) capacity of the set of x € E for which
condition C is not satisfied is zero,

htht o b= (1.3)

=]
b any series in Lg®RD) such that ¥ [If fl 1. < =. Then the scries
¥ P <« Fpltbp

(G ) (&) + (Gf2) (x) + .+ {Gf) =) + - .- (1.4)

converges {, p) almost everywhere on R®, Moreover, if f is the sum of the series (1.3), then the series
{1.4) converges to {G;0){x) (I, p) almost everywhere on RT,

There is no general theorem corresponding to Theorem 1.9 in [1], and we shull therefore present its
proof,

The hypotheses of the theorem imply thut

S, <o S, <.
weat et

The functions h =% + £,5 +... + ff +o.andg =67 + 87+, + 7+, . belong to the class Lp. Since
the integrands of the potentials sz,,'*" and Gf,~ are nonnegative, we have for all x€RRD

2 Gifs(z) = Gh(2), (1.5)
vt



3 G (x)~ Gg (). {1.6)
et

From this it is clear that the series (1.4) converges for any X such that {Gg){x} < = and (Gh¥{x) < =, and
hence the set of x for which the series (1.4) diverges is a set of zero @, p) capacity, Moreover, if the series
(1.5) and (1.6) converge at a point x, then the sum of the series (1.4} for this x {8 equal to the difference

G (x)—(Gg)(x) = (GA)(x). This completes the proof of Theorem 1.9,

THEOREM 1.10. Letf,, »=1, 2,...,be a sequence of functions in Lp such that e, Lo—-0 for
p=—-o_ Then there exists a sequence of indices {uk}, vy <¥; <,..%€ pg <,..,s8uch that

(Gill—1D{x)—0

{1, p) almost everywhere on RD as k—eo,

Theorem 1.10 is a special'case of a general theorem of [1], It can also be obtained as a corollary of
Theorem 1.9,

THEOREM 1,11, For any set E < R™ guch that Capy, p)E < =, there exists a nonnegative function
£€ Ly such that (Gf)(x) = 1 (I, p} almost everywhere on E and

Cape.y E =\ f(2)1Pdz.
R.

Let E be any set in R, We denote by R » (E) the closure of the set W P(E) in the space Lp.

LEMMA 1.2, In order thaﬁ a function f = 0, f€ Lp belong to the set W' »(E}), it is necessary and suf-
ficient that (Gyf)(x) = 1 (I, p) almost cverywhere on E,

Proof. The necessity of the condition follows in an obvious way from Theorem 1,10, We prove suf-
ficiency. Letf = 0,f¢€ Lpbe such that the {I, p) capacity of the set E* of all x€ E for which (Gjf)(x) < 1is
equal to zero, By Theorem 1.4, there exists a function v = 0, v€ Lp such that Gyvi{x) = « for all xX€E, We
put fp =f + (1/vv, » =1,2,.,.. Then (Gffv){x) = 1 for all x€ E, .und hence £,€ W4 P{E) for all v, For
p=eoo fp—~f in Lp, whence it follows that £€ | »(E). This completes the proof of the lemma,

THEOREM 1.12, The function Capy p) is invariant under motions of the space RD {e., if the sets
A and B can be obtained from one another by a motion of the space RD, then Cap(z,p);\. = Cnp(g’p)B.

Proof, Let B = ¢A, where ¢ is a motion of R, We take an arbitrary function [€ T 7 {A}.. Then for
all xe A

S Gi(z—y)f{ydy>1.
Rn

This implies that for all x€ B

it S Gi{9z —y)/(y)dy = S Giloz — ey (g™ () dy = SGza’x—-y)/(?“‘ (y)dy.
R"™ R" R,

This means that the function g: y—~f{¢~!y) belongs to W »(B). Hence,
Capg.y B<ljgllL, =1 /1HE,.
and since f€ M. ? (A} (s arbitrary, ‘
Capy, 5B << Capy, .
The sets A and B are equivalent, whence it follows that
| Capg, A < Capy, p)B.

and hence Cap(l‘p)A = Cap(;, yB, -which was required to prove.
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§ 2, Sets Measurable with Respect to the (I, p) Capacity

Let wbe a nonnegative set function defined on all subsets of the space RP, The function ¢ is said to
be a generalized capacity [9] if it satislies the following axioms-

1) If A < A, then 9(A) = 9(AY),
2) For any increasing sequence of sets {A,}, v=1,2,..., in RR

9(Y 4,) = supg(4.).
3) ¥For any decreasing sequence ot compact séts {K,,}, y=1,2,...,inR%
v(f} K) = i':qu;(l\’v).
A'set A © R% is said to be measurable with respect to the generalized capacity ¢ if
P(A) = i"c&@(m'

where K is compact,

THEOREM 2.1 [9]. Let ¢be a generalized capacity in R, Then any analytic set in RP is measurable
with respect to ¢.

LEMMA 2,1, If a function v¢€ Lp is nonnegative, then its Bessel potential Gv is a function which is
lower semicontinuous.

‘ This lemma is an obvisus corolla ry of Fatou's theorem on taking the limit under the sign of the Lebeg-~
gue integral,
LEMMA 2.2, Let E © RP be any set in R™ such that Cap(l’p)E < «, Then for any £ >0 there exists an
open sct U D E such that Capy p)U < Capy; p)E +E

Proof. By definition, for any £ > 0 there exists a nonnegative function v € Lp such that Gpvi{x} = 1 for
all x€ E and

g
S fe(@)1Pdz J{Capy £+ 5
R"
letn >0, 1 <1 be arbitrary, L;:t Uj; bethe set of all x€&RY such that (Gpv){x) > 1—71.’ By Lemma 2.1, the
set Up is open. Moreover, E < Uy and by Lemma 1.1,

. . o i K (:ﬂp([. ME ~ 8/2
{.3?(_[' "’6”<(1-‘Yl)”atniv(x)lpdx< (i __q)p

We suppose that 7 has been chosen such that the right side of last inequality is less than Capyy p)E +e.
Then U = Uj is the set required.

THEOREM 2.1, For any I and p such that I >0, p > 1, Ip = n, the ({, p) capacity is a generalized
capacity,

Proof, By Theorem 1.1, the function Cap(l,p)E is nonnegative. By Theorem 1.2, it satisfies axiom1)
for a generalized capacity,

We will show that it satisfies axiom 2), Let {a V}, v=1,2,..,, be an arbitrary increasing sequence
of sets in RD, A = l‘.j A,. Foreachy Capg p)A = Cap(l’ p)Ay, and hence

Capy, y A >suplapy, ;5. . 2.1

From (2.1} it follows that if sup Cap(, p)A, = =, then the equality of axiom 2y is valid for the given sequence,
v

We now assume that :
y == supCapy 34, < oo, (2.2)



Let My =% » (A}, The scts My are all closed and convex, and the sequence of scts M, Is decreas-
ing, We put

M0 M.,

o }

We show that M is nonempty, Indeed, let d, = (Cnp(_l,p)Ay)’{P be the distance from the point 0 in the space

to the set M,,. The sequence. {a,} is increasing, and d,,—d; = }"/P“‘By inequality 2.2), d; < =, We con-
sider the sphere B = {uELp:ﬂul} Lp = do}. For each v, M, 7 B is a nonempty, closed convex set in Lp.
‘Because of the weak compactness of the sphere B, the intersection

NN By M

is nonempty, and hence the set M is nonempty.

It is clear that M is closed and convex. Let ug be the point of M closest to the point 0, Then [lugl
= dg. The function ug€ M, for all v and hence for any v

{Gug) (1) =1
{, p} almost everywhere on Ay, This implies th;xt
(Guso) (x) = 1
{I, p) almoest everywhere on A, and hence uy€é W {A); therefore
Y = dE S lug ik > Cape A . 23
Comparing inequalities {2.2) and {2.3), we find that
Capy, jy A4 = sup Cape, iy 4.

and this completes the verification of axiom 2),

We now shown that axiom 3} is satisfied. It is easily shown that the (€, p) capacity of any compaet

set in'RY is finite. Let {K,}, v = 1,2, ..., be an arbitrary decreasing sequence of compact sets
B
K- NRK,

The set K is compact, We suppose that £ > 0 is given, By Lemma 2.2, there exists an open set U oK
such that Cap (g, p) U< Capy,; p)K + &, By the compactness of the set K, there exists a vy such that for v
>v,, K, cU. For v >v, we have:

Capy, pK << Capy, v << Capy, U < Capy, pn €.
Since £ > 0 is arbitrary, it follows that

Capy, pKy— Capy, p K

for v—~e=, This completes the verification of axiom 3), The theorem has now been proved. .

§ 5. The Dual Definition of the Concept of (I, p) Capacity

3.1. All measures henceforth considered are assumed to be defined on the o -algebra of Borel sets
in RB,

We say that a measure ¢ is concentrated on a set E < RP if there exists a Borel set E' < E such that
for any Borel set Au(A) = ;{(A nEY.

We fix I >0 and p > 1 such that Ip = n, We put q =p/(p—1).

For any measure i in R? we set
G = \ Gz —ydu).

““
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The function Grp is called the Bessel potential of order I of the measure g, The function Gy is nonnegative
and lower semicontinuous on RN,

Let Ec R, The dual (2, p) eapacity of the set E is defined by

sp WO (3.1)
Y uew @

nﬂ

where the supremum Is taken over the set of all measures i concentrated on the set E, We denote the dual
{, p) capacity by the symbol Capg p)E.

The function of the measurey standing to the right of the supremum in (3.1) is positive homogeneous
of degree zero with respect to the measurey, i.e., its value is unchanged if ¢ is multiplied by an arbitrary
positive constant. This implies that the dual @, p} capacity can alsobe defined as follows, We denote by
% ; (E} and 8, ,, (E) the séts consisting of all measures concentrated on E and satisfving the conditions in
the case of %, , (E): pR") = 1 and _Gu;tELq, and in the case of 9 3, (E}:

lGull, <1
Then

Cape.wE=sup - 1= sup [pyy (3.2)

PEY L (E) E§C;Mf§i: w9 B}

LEMMA 3.1. For any E{ and E; in RD such that

El C»E:r ma‘, p'}Ex g (3’;}).(1, mEg.
Proof, Indeed, if -E, = E,, then clearly ¥, ,,(E)) < % ;(E,), whence by (3.2) the required inequality
follows,

LEMMA 3.2, For any set E < RR

“Capg, pE < Capy, i
Proof. We take an arbitrary measurep €8, ,(E) an&fuhction 4 €W 2{E), We have the following in-
equalities:
fulle, >luly liGm flr.,
> Vun @y~ (G du(y) > p(R7).

o

R"® R™
since Gpu(x) = I by hypothesis for all x€E, Since u€ R »(E) andpt €98, (E) are arbitrary, thig completes
the proof of the lemma.

- LEMMA 3.3. Let f be any function on R® having compact support and belonging to the class C® Then
there exists a function u€ C™ such that u(x) = oe~!xt) for [x}|—~=and f =Gp.

Proof. Let m be a natural number such that 2m = I, We put
u{x) == (2a)"Gam-{I — A)™/,

where I is the identity operator and A is the Lapiace operator, The function v = (I— AYMf has compact sup~
port and belongs to the class C®. This implies that u€ C* and u(x) = ote~{x!y for |x] ==, The equality

G(ﬂ—"‘:f

is easy to check by considering the Fourier transforms of the functionr u and f. This completes the proof of
the lemma.

CHEOREM 3.1, For any compact set A © R% it is true that Cap(; p)A = Egﬁ(z.p)A. Moreover, there
exists a measure i€ 9, ,,(A) such that {u(RMIP = Cap(l_’ p)A. If the function ug€ M. p(A) is such that
Capg, p)A = fugl Lp. then the measure pg is concentrated on the set E = {x€A: Gpy(x) = 1} and for all x€R?

(o ()17t = luo JEH (G} (2) .



Proof, We begin with the fact that by (3.2)

Capy, p(4d) = sup  [p(R™)P.
REB(, pYLA)

It C“P(l,p)A =0, then Lemma 3.2 implies that Cnp(z_p;A =0, i.e., Cap(f, p)A = 5:75(1_5,):\,
We assurde that Cap(z p)A > 0. Let ug be a function of &, , (A) such that Capy, pyi = Jlugll. We put

E={z€4: (Cu) < 1)
Since by Lemma 2.1 G, is lower semicontinuous, it follows that the set E is compact.

The set E fs nonempty. Indeed, if it were empty, then for all x€ A we would have {Gpug)(x) > 1. Since
Gy is lower semicontinuous and the set A is compact, the function Gy, assumes its minimum on the set A
at some point X, € A: For all x€ A Gpgd(x) = Gpug)(xs} =1 + 8, where 8§ >0. The function

uy = ug/(1 + )€ M- #(A). On the other hand
fudlE, <HlulZ,,

which contradicts the definition of u;. The contradiction thus obtained proves that at least for one x€A
{Gu){x) =1, i,e., E is nonempty,

We denote by S(E) the set of all functions né Lp(R“) such that the function Gy7 is continuous and for
all x€E (Gm(x) = 0,

Further, we put
Uy = UeP Y 15 HL:‘ .
It is then obvious that

Dy € Lo {(R™)and [ vy E;Lq =1,
We shall show that for any function n€3(E)
{ v (@ (r)dz >0,
"Bn

We first suppose that the function 7€ S(E) is such that Gyn(x) >0 for all x€ E, Then there exists an
open set U o E such that Gyn(x) > 0 for all x€U, We set H =A N\ U. The set H is compact and for all
x €H (Gpg)(x) > 1, Since Gy, is lower semicontinuous, this implies that for all x€H (Gpug)(x) = 1 + §,
where & >0,

We now show that there exists a ty >0 such that 0 <t <ty {Gugd(x) + t({GM(x) =1 (I, p) almost every~-
where on A. Indeed, for x€ A N U andallt >0

(Guo) (z) + H{Gm) () = (Gwo) (z) =1
{1, p) almost everywhere on A N U, Let x€H =ANU, We set M = max | (Gyn)(x)|. Then for 0 <t <ty = §/M

(Geluy + tn}) (z) > 1
for all x€ H. This implies that for 0 <t < ¢,

(Gi(uo + tn)) (z) = 1
{{, p} almost everywhere on A,
Let 0 <t <tg. Clearly
(Gilus + tn]) (2) = (Gi(uo + tn)) (2)

for all x. This implies that for 0 <t < ty]u, + tn] € @« »(A). Since the function ug gives the minimum value
of the function ullE on the set M. 1 {A), this means that for any t€ (0, 8)

Lp



§luota) ¢ (@) mde s \ Jug (2} 0 dr.
n* Rr™

This implies that

G<p S ju () ' y{z)dz = lim S [uo (2) + IN{2)]P — [ U (D}iP 4y
-0 {

L tya BT

and hence

{ vo(@n(@dr >0, 3.3

R!I

This proves inequality (3.3) under the assumption that {Gpm(x) >0 for all x€E., Let n€53(E) be such
that (Gym(x) = Oon E. Let ¢0€ C™ be an arbitrary nonnegative function with compact support which is nat
identically zero, Then (Glﬂ(x)'> 0 for all x€¢ R and Gyw € C*, The function 7 + T¢ € S(E) for any 7 >0 and
IG1(m + T9)]{x) > 0 for all x€ E, Thus, by what has been shown S

(@@ + w@dz>0

P
for any v >0, Letting 7tend to zero, we obtain in the limit

RS,.""(I) n(z)dz >0,
which was required to prove.

Let € Lp be such that the function (Gym)(x) is continuous and for all x€E {(Gn)(x) =0, Then

§ostn(x)dz=v. (3.4)
Rﬂ

Indeed, the functions 7(x)and ~n(x) belong to S(E), and hence

(n@n@dr >0, § o (@ -n@1dz>0,

R® R"
whieh implies (3.4).

We denote by C(E) the set of all continuous real-valued functions defined on the set E, Let C™(E) be
the set of all those functions of C(E), each of which is the restriction to E of some function ¢ € C*@RM with
compact support. For f€C(E) we put {|f] gy = max [f(x)]. It is obvious that C*(E) is a dense linear sub-
set of the Banach space C(E}, '

We now defirie 2 certain linear functional L on C(E). The functional L will first be defined on the set
C™(E), Let u€C™(E). Then there exists a function ¢ € CP®N) such that ¢¥{x) =u(x) for all x€ E, By Lemma
3.3, there exists a function € Lp®R™) such that ¢(x) = (Gyn)(x). We put

L= {v(@) ()i
R’l
The quantity L({u)does not depend on the choice of the extension ¢ of the function u, Indeed, let ¢ and @ be
two functions with compact support in C* such that ¢ (x) = @(x) = u(x) for all»xé E, Theng; = Glm,gaz = Gy,
We set 1 = 1,—7,. The function Gy is continuous, and Gymix) =0 for all x€E. By what has been proved, this
means that

0= {vu@n@dr= {ve(@)m(@) —m(2)Nds.
R® R

whence



Ves(@In (2 dz = § vg (@) ma(o)ds.
an [ 3l

This proves that the quantity L) does not depend on the cholee of the extension ¢ of the function u,

It is clear that L is a linear functional on the linear subset C*(E) of the space C(E). By the prop-
erties of the functions of the class S(E) proved above, it follows that for any nonnegative function u € C¥(E)
L) =0, ’I'hus“, L ig 2 nonnegative functional on C¥(E), This implies that the functional L is bounded, and
hence continuous on'C=(E), We extend L by continuity to the entiré space C{E). Such an extension exists
uniquely and represents s linear functional on C(E),

By the well-kriown theorem on the representation of a nonnegative linear functional on the space of
continuous functions on a compact metric space, there exists a measure gy concentrated on the set E such
that for all u€C(E)

Lu = §u(x)dp‘,(:).

We extend the measure 4, to the entire space RU by defining #e(B) = 1o(B 1 E) for any Borel set B,

Let 7€ C™ be any function with compact support, and let u be the restriction of the function (G to
the set E, u€ C*(E)., We then have

S pe{z)n(x)dr = Lu = g g(z)dpo(z) = S

(G (=) e (dr) =\ (Cio) (2 n(z)dz
R’! R™ Hn R™

by Fubini’s theorem. We thus see that for any function 7€ C*{RM) with compact support in Rt

Vootoin(z)dz = { (G2 n(@)ds
R“

AP
Since 7 is arbitrary, this implies that for almost all x¢RD
volz) = (Gue) (2)- (3.5)
The measure ¥y is concentrated on the set A and
Gy = Nlwollzg = 1,
whence it follows that g€ 9, . {A).

The proof of the theorem is now completed as follows. By the definition-of the function ug,

Capy, A = 1o I amy = ( § vo (2o (2) afz)".
Rﬂ

From this and equality (3.5) we conclude that

Capy, A = { § () (G @y dr)” = [ § (Caned () diy ()] = [§ (G (@) o ()]

R® i3

By the definition of the set E (Gpuy)(v) = 1 for all y € E, whence it follows that
§ (Grtn) (9 10 (d0) < a () = o (7).
R, -

As was shown above, the measure g,€ 8, ;, (A), and this means that y#y(RP) = ,16-55(1’ p.)A]’/P, We thus obtain
the inequality

Capy, A < Cape. pA.

By Lemma 3.2, this implies that Capa, p)A = Eﬁ(z'p)A.
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It {s also easy to sce that the measure tg satisfies all the condltions recquired, This completes the
proof of the thcorem,

THEOREM 3,2, For any set A < R® which i8 measurahle with respect to the {I, p) capacity, the {f, p)
_¢capacity and dua!l {, p) capacity colncide,

Proof, Ict A be any set which {s measurable with respect to the {I, p) capacity, Then for any com-
pact set K © A we have:

Capy. 4 2 Capy 4 = Capy, 5y K = Capy, 5 K.
Since

Ca A = sup Ca .
Piom xc:li pe. K

thig tmplies that

Cape A = Capg, p 4,
which was required to prove,

3.2. In the case p =2 the (I, p) capacity coincides with the coneept of capacity with respect to the
Bessel potential which was introduced in the work of Aronszajn and Smith {2].

Let A be any set in RP, and let « be a real number such that 0 < 2¢ = n. We denote by £{4) the set
of all measures u concentrated on A such that u{A) = 1, Foruf€ £(4) we set
Lty = § § Gtz —pdu@)duty).
R® x R%

We put

C z;;) —_«’ su .__.__1_._..._..

SR A TS}

The quantity Cyo{A) is the (2¢) capacity of the set A in the sense of Aronszajn and Smith (2],

THEOREM 3,3, For any set A ¢ RP

Cia(A) = é};\z 5 4.
Proof, By (3.2)

.é;;m_ od = sup I {3.6)
) #E% (A G sz

We transform the expression in the denominator on the right-hand side:

1wt = § (G @nde = {({Cor—pip){§ e — 2)dp (3} dz
Hn

R" R" R™

= UV 6tz —06. @ — o) az]dupydp ),

by Fubini's theorem,

But since,

{ Gulz = 1)Ce(z— 2)dr = G (2 — ),
Kﬂ

this means that,



|Gep NL = Dya(p)

which completes the proof of the theorem,

§ 4, Capacity and the Hausdorff Measure

4.1. We recall the concept of a Hausdorff h-measure. Let hir), 0 = r. < =, be a nondecreasing func-
tion such that h(0) = 0 and h(r) — = for r —w, ‘

Let A be any set in RP, Let ¢ '>"'0._bé given, and suppose that By, By, ... ,By, ... is a sequence of
aopenspheres such that Ac 88», and the radii ry, r3,..., ry. ... of the spheres does not exceed e, The

greatest lower bound of the sum
2h(r);

taken over the set of all sequences of spheres with the prescribed properties is denoted by p (A, £). The
guantity up(A, €} is a noninb':easing function of £, The limit Iigu'#h (A, €) = 15, (A) is called the Hausdorff h~

measure of the set A, In the case h(r) =r%, o >0, p (A) is called the a-dimensional Hausdorff measure
and is denoted by the symbol uy(A). The measure i{A) is also called the linear Hausdorff measure,

If the functions h,(r) and h,{r) are such that h,(r) = hy{r) for 0 = r = ry, ry >3, then the corresponding
Hausdorff measures By and_uh2 coincide. For this reason, in the deéfinition of a Hausdorff h~measure it may
be assumed that the function is defined initially only on some interval [0, ry], where ry >0, and is extended
beyond this interval in an arbitrary manner, The final result does not depend on how the function is ex-
tended,

In addition to the Hausdorff measure, we need one more property of a set, Let hir) be a monotone
nondecreasing function defined for all r = 0 and such that h{0) = 0 and h(r) == for r~=, We consider all
sequences of open spheres {BU}, v=12 ..,, which cover a given set A, The greatest lower bound of the
sum

&

2 k(r),
=l

where ry is the radius of the sphere By, v =1,2,..., taken over all such sequences of spheres, is called
the h-content of the set and is denoted by the symbol ¥, (A). In the case hir) = r% in place of YH{A) we write
YalA).

We note that if A and B are arbitrary sets in RB, then the inclusion A < B implies Yy (A) = v (B).

The h-content is a simpler property of a set; because of this, it will be more convenient to obtain sub-
sequent estimates for it rather than for the Hausdorff measure, Actually, the h-content is equivalent in the
Hausdorff h-measure in a certain sense, as is evident from the following lemma,

LEMMA 4.1, In order that the Hausdorff h-measure of a set A = RM be equal to zero, it is necessary
and sufficient that its h-content be.zero,

We leave the proof of this lemma to the reader,

nondecreasing function such that h(0) = 0 and h{r) —« for r —=. We denote by A,, where A > 0, the set of
all x £ RP such that for any r = 0 it is true thatpu{B(x, r)] = h{r}/A. Thenthe following estimate holds:
Vh(ﬂ" \Al) é'cnlu(ﬂ")-

This is the well-known lemma of Cartan, For a proof in the two-dimensional case see, for example,
[10]. For the case of arbitrary n a proof is given in [11].

We now establish a formula for the transformation of iterated integrals,

LEMMA 4.3, Let F(r), 0 = r < =, be a nonnegative, decreasing function such that F(r)—~0 for r—=,
Suppose that F(r) has a continuous derivative F'(r) for all r >0, Then for any nonnegative, measurable



function u{x), x € R, we have:

tx £

€0
.S Fz—yl) s (y)dy= -§( S u(y)d_,/ F(r)dr.
" & B
Proof, We put X.(x,y)=1for|x—y| < rand xp(x,y) =0 for |[x-y| = r. Then
S uly)dy = S % {x, Yu(y)dy.
a(xr) R’

Hence

S S u(y)dy F'(f)dr«S (S xe(z, y)uly)dy }F (rydr.
L

?hxn [ -1

We apply Fubini's theorem to the integral on the right. As a result, we obtain

°§( S u(y)dy) F'(r)dr= S (og % (2, ")F’(r)dr)u(y)dy-
R ©

'y B,

It is easy to see that for any x, y
\ %@y Fydr = —F(z—y).
(1]

This completes the proof of the lemma.,

4.2, We have Gy(x} = Briix|). The properties of the function 3; which we need are given in Section
1.2,

THEOREM 4.1, Let h(r), 0 = r < =, be a nondecreasing function such that h(0) = 0 and h{r) -~ for
r —cc, We suppose further that '

S “‘(")P’f“- “;15:!(’):0’"' = hy < co.

@

Then for any set E < R the following inequality holds:
Y (EY e 0 hP Cﬂp(z.p)E. {4.1)

where ¢ is the volume of the unit sphere in RP and Cy is the constant of Lemma 4.2,

Proof, Let E c RP be an arbitrary set, We assume that Cap(z’p')E < o, since otherwise inequality
{4.1}) is obvious,

We introduce the following notation, For any nonnegative, measurable function f(x) on RM we put
8z r.= | fway.
B (x.r)

Now let ué Lp(Rn) be any nonnegative function such that Guu(x) = 1 for all x€E,

Using Lemma 4,3 to transform the integral, we obtain

(Gu)(2) =\ 8(z, r, u) B/ (r}]dr. (4.2)

ceag

We estimate the quantity 8(x, r, u) by Holder's inequality, This gives

| "
O(z, 7, u)<oa Pr P(O(z,ur, r)|e,
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Hence

% a—
G < w7 {100, r upyr T3 (1) .
&

We suppose that A > 0 is arbitrary and denote by A the set of all x€ R! for which

8(z, r, ur) < AN /A,

Applying Lemma 4.2 to the measure u(E) = S uPdx; we obtain
£
WR N\ A< CA (@) 17z,
. R®

For x¢ A) we have

SR - = 1 a 1=
(Cu)n<s, » S (8 (x. r,uPyuor™ % By (1)) dr < xu * § R T r " B (rydr ?:,'.‘"._._;_.."*
[}

Now let A be such that /\’/p, > O'n""/Phg. Then for all x€A) we have (Gu){x)} < 1. Since for all x€E
Gra3(x) = 1, it follows that E € RA\ A;. We thus obtain the estimate

WE WA NA) < § w@@ra (+.3)
i
Since X is here an arbitrary number greater than crrpl“hg, inequality (4.3) implies that
WEY oz i? { (u (170, (4.4)
s
Since u € REPH(E) was arbitrary, inequality (£.4) implies that
Ya(EY oo, 7 h® Capyip E.

and this completes the proof of the theorem.

COROLLARY 1, If the {, p) capacity of a set E < RR, where 0 <! <n, is equal to zero, then for any
nondecreasing function h(r), 0 = r < =, such that h(0) =0 and

1
e
the Hausdorff h-measure of the set A is equal to zero,

Proof, We redefine the function h(r} on the interval [1, «) by putting it equal to kr there, where k
= gonst, The Hausdorff h~-measure of the set A hereby remains unchanged. For r—0

dr<oo {4.3)

L ik

V¥

4

18 ()] =~ 1 + ()]

and f.@t’(r), = a{e~T) forr — =, This implies thatif inequality (4.5) is satisfied for the function h, then
o u-—x——'——-
= (e T (1dr < oo
[ 4

This means that if Cap(l'p)E = 0, then by Theorem 4,1 Yh(E) = 0, and hence pp(E) = 0 by Lemma 4,1,

COROLLARY 2, Let E < R be such that Capg b)E =0, where Ip =< n. Then for any @ > n—~Ipu,(E)
=8,
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For the proof it suffices to take hir) = r¥ {n Corollary 1.
4,3, We shall now establish some sufficient conditions in order that the (I, p) capacity be zero.
LEMMA 4.4, Let ¥ plr) be the I, p) capaclty of a sphere of radius r, where Ip < n. Then for r—0

V. p(r) = O(r"'7)
if o >lpand

$p() =0 [(ln .})""]

iffip=n.

Proof. Let B =B({0, r) be a sphere. of Tadius r with center at the origin, We shall assume that r < 1.
We put u(x) =1/|x|K, where k = n/p for r =|x| = 1, and u(x) =0 for:all other x. We have

§ (e gitPds = ““"‘S P = e (vf-f‘ —~1)

if k >n/p and

S {u(x))Pdz = w, 4 1n —-:‘
ol

if k =n/p.
We now estimate the potential Gpu below on the sphere Byp, .For x€ By we have
Cw@= § G-y . (4.6)
r<ivic lyl

It follows from the properties of the function Gj that there exists a constant Ky > 0 'such that for (x| = 2

Gi(x) = Kil |z]"% .7
Inequalities (4,6) and (.7) imply that

di
() (2) > K A
r<ipiCt jz =y J"

for all x€ B, For x€ By and'y ¢ By we obviously have

le—yl'< |2} + [yl <2yl
since in this case |x| < !y|. From this we find that for all x€B,

_dy

K
(Gw) (1)>“2’v?~'lr‘ S Ey!n«nt

raivigt

The last integral is equal to K'(l/rk"l-' 1) for k # ! and to K1n{1/r) for k =1,
We have the following estimate for the (I, p} capacity of the sphere B.:

Cap(.r,,ﬂ,gng [u()1? dy/ [min Gua) (2)1. (4.8)
n stE,

We assume first of all that n > Ip, In this case we put k >n/p > 1. Inequality (4.8) leads to the fol~
lowing estimate for Cap(], p)Bri

rie-1p (pn-pt __ 1) K* e (f — pipn)

Capin B, < K7 A=~ (I—ry -




This proves that Capg pyBr = O(r™IP) for r -0,
In the case n = lp we put k =n/p = I; inequality (4.8) leads to the estimate

Capy B, < K° (l —-——)‘ ’.

This completes the proof of the lemma,

THEOREM 4.2, Let h(r) = x®Ip if n > Ip and h(r) = [In/r)]""Pfor 0 < r = "4 if Ip =n. (It is as-
sumed that then p >1,) If the Hausdorff h-measure of the set E < R! is equal to zero, then its {I, p) capncity
is equal to zero,

Proof. Let B, B;,...,B,,...be any sequence of spheres covering the set E such that their radii r,,
3,020, Fpee.. donot exceed € < 4. Then by Lemma 4.4

Capis B« S Capuy B <K Th(r),
where K is a constant, Because the sequence of spheres {Bv} was arbitrary, this implies that ’
Capy, n E << Kpn(E, ¢).
Passing to the limit as £ —0, we obtain
Capy, n E << Kpn(E} = 0,

whence C.ap(z’ p)E =0, which was required to prove,

£ 5, The Concept of {I, p) Capacity and Functions Having

Generalized Derivatives

5,1, In this part of the paper we shall indicate-some applications of the councept of (I, p} capacity to
the study of functions having generalized derivatives, We first recall certain well-known facts from the
theory of Bessel potentials,

The set of all real-valued functions u on R? which admit the representation
u(z) = (Gw) (), (3.1)
where v€ L,{R0), p > 1, I >0, we denote by L;PRD). We introduce a norm in L7PYRD) as follows. L u€
LiPR™) is represented as in Eq. (5.1), where v€ LyR"), then we put ffull LP@mn) = Tvll Lp ®0). The repre-

sentation of u by Eq. (5.1}, if such a representation exists, is unique, and hence the norm is well defined.
The space L;P(RD) is a Banach space,

The integral in (5.1) is interpreted as the Lebesgue integral Gpv = le+—- Grv~, By Theorem 1.8, the
set of x for which Gpv(x) is undefined or equal to ==, is a set of zero {I; p) capacity.
Let I >0 be an integer, We denote by W Z(R“) the Sobolev class of real-valued functions defmed on

R® and which have on RB all generalized demwtnes of order I summable on R? in degree p. For u€ W, I(R“)
we put

N lly3 o, = [S > |Dou (;}.gvdt]w

R? oclaigl

THEOREM 5.1 [3, 5]. For integral I the class W, I(Rn) coincides with the class L;P(RP)} in the follow-
ing sense: for any function u €W, I(R“) there exists a funcnon u*€ LP(RD) such that u(x) = u*(x) almost
everywhere on R® and

Hu“ <CH LP(R’B’ Hu‘ HLF(R“)<CHI‘" W;(B“) ]

W (R"}

where the constant C does not depend on the choice of the function u,



THEOREM 5.2 {3, 5], For Ip >n each of the functions of the class LP(R7) is continuous and bounded,
Moreover, there exists a constant C such that for any u€ LiPRD) '

sup fu{z)] <Clulf

¥ -
SER" £ (R

COROLLARY, If 2 >0, p >1, and Ip >n, then the @, p) capacity of any nonempty set of R% is no less
than the constant ¥ = C“F,v where.C is the constant of Théorem 5.2.
Indeed, let E be an arbitrary fionempty set in RP, and fet v€ Ly, If [ vl Ep? Y. then (Gpv(x) < 1 for
all x, from which it follows that v€ ®, ,,(E) if and only if Hﬂ}p = v, and hence Capa,p)E = Y.
THEOREM 5.3 {3, 5]. Letl>0,p >1be suchthat Ip < n, and let m <. Then for any q such that

t/g—1/p+(l—m)/nz=0,

L 9RP) = LP{RD). Moreover, there exists a constant C = C(p, q, I, m, n) such that for any u€ LiIPR")
ifu HL'Q"{R,;)< ¢ %f“f.’,_‘vmn,-

Theorems 1.9 and 1,10 imply the following results,

THEOREM 5.3. Letug +uy +.,..+uy+.., be aseries of functions in L;P(R™) such that the numer-

tcal series

31 H - -
ﬁul ”L?(R”}T{lu’“l.?(ﬂ“) e II“‘HHP(RA}

+...

converges, Then the series

w(z) + wlz) + .. ulz) +...

converges (I, p) almost everywhere on RI, '
THEOREM 5.4, Let {uu}, v=1,2,..., be an arbitrary sequence of functions of LyPRM) such that
flu,~ul L?(Rn) —~0 for y—c, Then there exists a sequence of indices v; < v, <... < » < ... such that for

k —»

u,, (x) > u(z)

", p} almost everywhere on RP,
5.2, For functions of the class LPRD) the well-known properties of measurable functions contained

in the theorems of Lusin and Egorov can be sharpened by using the concept of {I, p) capacity. It is assumed
that 1 >0,p>1,Ip = n.

(-~
THEOREM 5.5. Let Z, uy, be any absolutely convergent series in the Banach space LjP, Ip < n, and

yeaz 1
let u be the sum of this series. Then for any £ >0 there exists an open set U < R such that Cap( p)U < €

&
and the series 2 u,, converges to u uniformly on the set RP\ U,

vt

Proof. Let £ >0 be arbitrary. For each v we have u, = Gyv, whure vy, € Ly (RP) and [Ju, LPRD)
=fv ] {P. We put 1

c‘:'Hu‘HLf' v=4,2,....

o«
We suppose first of all that the functions v, are nonnegative, Since the series 3 flv,] Lp converges,
there exists a sequence of natural numbers v; < v <.,. < K < .., such that vl

' 4
B =1+ Vngrat oo+ 00 My < -
275 ©
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We put

Wy = Oy + Vgt s d O, 8= e,
L Rl 2R ES D'.+'+ e 0-.+‘ for k>0.

Let ¢ >0 be arbitrary, and let

1 23y
We = izER‘:(G‘w.)(r);}(—s—) ai.
- 1 '
Wa={e " (Guea)(2) > grggs) =12,
The functions wi, k =0,1,2,..., are nonnegative, and hence the functions Gpwi are lower semicon-
timous on R™, This implies that eéach of the sets Wi is open, The capacity of the set Wy for any k is no
greater than g/2K+1,

We put
U= 3 W,
[ 3
The set U is open, and the capacity of U does not exceed £, We shall prove 3 Gpv,, converges uniformly on
[ 253 §

the set RR\ U, Indeed, from the construction of the set U it is clear that for all k

i

2*eVip

(Guen) <

for x€ R\ U, We take any integers v and q such that v = 1., k > 1, q > 0 and consider the sum
Vo p{z) = (Gvp) (2} + (Gitvon) (-‘) +...+ (’Gxt’v«x»q) (z).
We suppose that m >k is such that v + q < yy,. Then
' U 0 (2) + s (Z) = oo = Dung (@) L (T + Uy 2 (Z) 5 oo 0 (2)
= We{r) 4+ Way {(2) + . . W {2).

This implies that for x6 RN\ U
. . o .4
Voo (@) UG (2) + (Gone- ) (@) + - oo + (G ) (2) < *B.T( R ol N —._;;;T)<m~;

Passing to the limit as q —, we find that for all x€ RA\ U and for » > y

b i
Viw(@) = 2 Com () <impem

m=k

o

whence it clearly follows that the series 2, Gpvi,(x) converges uniformly on RO\ U,

v f

We now consider the case in which the functions u, € Lp(R™) have arbitrary sign. Forany v =1,2,...
we obviously have v, = v, ¥—v,~. By what has been proved, there exist open sets U, and U,, the {I, p) capaci-
ty of which is less than £ /2, such that the series

3 (Gw.*) (2)acd ) (G ") (z)
s |

vasg
converge uniformly on the sets R1\ U; and R™ \ U, respectively. Let U=U,U U,. Then Cap{l,p)U < ¢ and '

the series ) Gpv,(x) converges uniformly on the set R? \U.

vl



The proof of the theorem is now complete,

THEOREM 5,6, let u be any function of the class LIPRM), where Ip = n, Then for any ¢ > 0 there

exists an open set U < RP guch that Cnpa_p)U < ¢ and the function u is continuous on the set RA \ U,

Proof, We have u =Gyv, where v€ Ly@RP), Letw,, v=1,2,..,,bea sequence of functions with
compact support in R? which belong to the class C* and are such that fv—w,ll 1p < "4 for all v. We put

Py oE= Wy, Uy == Wy — Weey for v 2> 4,
Then
v Fobootbeeh.
hod .
and the series 2 ﬂvvﬁ Ly converges, By Theorem 5,5, there exists an open set U'< R® gsuch that Capg pyU!
|

< ¢ and the series

> Guw.(2) (5.2)

Loy ]

converges uniformly on the set R0 N U',
g ¥

By Theorem 1,9, the sum of the series (5,2) is equal to {Gra{(x} {, p) almost everywhere on R, Lot
3 he the set of those x for which the series (5.2) either diverges or else converges to n sum different from
{Gyv){x), Then C“P(l,p)s =0, Let V3 §be an open set such that Capg pV<e- Cap(z‘p)U'. We put U
=V U U, Then

Capy, U << Cap;, bV 4 Cape, U7,
The series (5.2) converges uniformly on the set RPN\ U, and its sum iz equal to {Gp)(x) for all x€ RO U,

Since cach of the functions Gpv,, is continuous, it follows that Gyv is continuous on RPN U, This completes
the proof of the theorem.

5.3, Let f:U—R be any locally summable function (U is an open set in RM), We fix a point x;€ U,
The numbher M is called the natural value of the function f at the point x, if

lim § [f(ze+hX)— M|dX =0. (5.3)
h=0ixi<a
If £{x;} is defined and
lim S V(2o + hX) — [ (z)|dX = 0, (5.4)
A oixtat '

then we say that the function { is continuous at the point x4 in the sense of convergence in L;. By a well-
known theorem of Lebesgue [3], the relation (5.4) is satisfied for almost all x € U, i.e., the value of the func-
‘tion f at the point x; is its natural value at this point for almost all x,.

The set of those x for which the natural value of the function f at the point x does not exist is called
the exceptional set, The exceptional set of any locally summable function is a set of measure zero. For
functions of the class LyP(RD) this property of summable functions admits considerable sharpening.

THEOREM 5.7 [3]. For any function u of the class LjPRDN) the erceptional set is a set of zero (I, p)
capacity.

5.4. Let E be a set in the space R, The set E is said to be p-exceptional with respect to k~dimen-’
slonal surfaces {more briefly, exceptional in the sense [k, p]) if the p-modulus (see {1}]) of the family of al
Lipschitz surfaces passing through the points of the set E is equal to zero. It is shown in [1] that in order
that E be exceptional in the senge [k, p], where kp = n, it is necessary and sufficient that there exist a func-
tion f = 0, {€ Lp, such that



Uyts) = § 2=y gy - o
L

for all x€ E, while the function Ug{x) is not identically equal to =,

sets of zero &k, p) capacity.

Proof, Let E be a set which is exceptional in the sense [k, p]. Then there exists a function f€ Ly,
such that U * eoand Ug(x) = «= for all x€ E, Since Ug # =, it follows that

folyitrdy oo
¥iot

and this means that

2=yl f(y)dy = o

fv—xj<1

for all x€E, It is not difficult to see from this that (sz)(x) = for all x€E, i.e,, Capa‘p)ﬁ =(,
Conversely, suppose that Capg p)E =0. Let Epy = {x€E:m~1 = [«| < m}, where m =1,2,....
Then E = U Ep. Let [ € Ly (RP) be such that

men

-

for all x€ Egy. We may hereby assume that fm(x) =0 for {x] c m=2 and{x] >m + 1 and that [ fm |l Lp < ym

Weputf=f +f,+,..+fm *+.... Itisthen easy tocheck that .{ f(y)|y|K~Mdy < =, and hence Uf(x) # =,
julat

On the other hand, it is eusy to verify that Ug{x) = = far all x€ E. This completes the proof of the theorem,

§ 6, Variational Capacity

6.1, Henceforth I denotes an integer, I >0, p > 1. Let A and Bhe closed sets in R, We say that the
sets A and B form a regular pair if they have no common elements and one of them (say A} is bounded while
the other {say B) is such that its complement is a-bounded set, We denote by Cx(;\, B) the set of all func-~
tions ¢ € C* such that ¢(x) = 1 for x€ A and ¢(x) =0 for all x€B,

lLet € CT(A, B). We put
I ' T
D, (p) - ’S | Z (,%'IDGW"; dr.
CINT- PR '

The integral Dy , is called the Dirichlet integral of type &, p) for the function @, The greatest lower bound
of the quantity Dy p{(¢) on the sct C*®(A, B) is called the variational {, p) capacity of the pair of sets A, B,
We shall denote it by the symbol C.V.(l‘p)(A, B).

We note some properties of the variational {, p) capacity which follow dirvectly from the definition,

LEMMA 6.1, Let (A;, B)) and (A,, By) be two regular pairs of sets such that A, = A;, B; © B,, Then

C.V.y (4, B} < CVy 5(da, Br).

The lemma is obvious from the inclusion C*(A,, B,;) © C¥(A,, B,).

LEMMA 6.2, Lét ¢ € C*(R!) be a function on RP® with compact support. Then for ali x € R the fol-
lowing integral formuls holds:

e =y | 3 N _E—wrDol) g,

ﬂ"‘u[nlu! !x__y'n

where Y[ _,, is a constant.



Proof, Let ¢ be any unit vector, Let ry > 0be such that for r > rg ¢(x + re) =0. We take any r > rq,
Let ¢ir) = ¢ {x + re), Then @{x) = (0}, We express $(0) by Taylor's formula with the remainder term in
_integral form involving the values of the derivatives of order no greater than ! of the function ¢ at the point
r. We then obtain '

fa o3
§{x) == Q){Q) g)! S(“ Y-"x’”(p)‘iﬂ ‘*(““ :S ——-D“cp(z-— re)e“pg“dp
L

et

We integrate both sides of this equation with respect to the unit vector e over the sphere Oy, and after
some obvious rearrangements we obtain the required formula. The constant ¥7 p is hereby equal to wp-y
/-1l =1)-1,

THEOREM 6,1, Let (A, B) be a regular pair.of sets in RP. We suppose that A is bounded and let d
be the diameter of U =RPY B, Then

C&p(! pyi z KC.V (l ;;)(A. 8)1

where K depends only on I, p, n, and d.
Proof, We take any function @ € C™{A, B), By Lemma 6.2,

o) =yin § DL Doy -y Y
FRECIE EI-—-yl

It is easy to sce that

DA U LGt Tl B
et 6l 2 —y]" Clr—y

| i
; e {2 o

The expression on ihe right side of the last inequality which multiplies | x—y]Z-n we denote by v{v). We have

I <'n§,_.__giyl__—w-d :v‘,ng._._.a_.‘,y_?____]
le(r) <y, STy ¥ Lé“ T

since v{y) = 0 for y§ U, From the properties of the function G7{x) noted in Section 1.2, there exists a con-
stant.L{d) such that for [x| = d]x]#-" = L@)Gy(x). Hence, for all x€A

t<le@)i< ?:,,,L(J)S*Gg (z =)o (Rdy =yl (d) \G, (x — yv(y)dy.
v Thd
From this we obtain the estimate

Capep A <K \ (o @)™y = KDy, (9),
Rﬁ

where the constant K = 1/[‘/(1 n}L(d)lp. Since ¢ was an arbitrary function in C*(A, B), this completes the
proof of the theorem. ‘

For any regular pair of closed sets A, B we put
8(4,B)= inf jz—-y|>O0,
XEA,vER
LEMMA 6,3, For any regular pair of closed sets (A, B) there exists a function £€ C™(A, B) such
that for any «
jDet{z)| << Ko/ [6(4, B)]
for all x&€ R%, where K4 does not depend on the sets A and B,

Proof. We put .
V@)= o <V,
¥(@)=0 for |z]>Vn.
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We sot

8(r) = D ¥(z —v), (6.1)

where v runs through the set of all vectors with Integer coordinates in Rh, It is easy to see that 8(x) >0
for all x, Moreover, for any point x there exists a nelighborhood U in which only a finite number of terms
on the right side of (6.1) are different from zero. This implies that peC™,

We put 1(x) = ¥(x)/6(x). Then 7€ C*®"), n(x)=0 for [x| = Vn, and for.all x€RD
2nlz—v)=1.
The functions 7{x—») form a partition of unity in the space RB, The support of the function n{x— v}

is hereby the sphere with center v and radius Vn,

Now let h = (1/2Vn)é(A, B), We consider the system of functions n[(x— th)/h], where v is a vector
with integer coordinates, Let p,14,..., vp be all the vectors v for which the support of the function 7[(x
—~ vh}/h] intersects the set A, We put

P
ta) =S, ©.2)
fot
It is clear that { €C®@AN) and £(x) =1 for all x€ A, Further, by the choice of h each of the functions n{(x
- yih}/h] is equal to zero for x€ B, Hence £{x) = 0 for x€ B, We note that for any point x there is a neigh-
borhood U in which not more than k, < « of the functions n{(x-vh)/h] are different from zero. It is easy
to see that

z— vh) My
{Dg"( h )!< R
where M, = max] D¥(x)l. This implies that

1Do5(z) | << hnMo/ W%t = Ko/ [6(4, B)}isl.
The proof of the lemma is now complete.

thie quantity (full Lp)P taken over the set of all functions u€ C”@M) belonging to LiP and such that u(x) = 1
on the get A,

Prdof. Let u = Gyv, where v€ " m{RN), v = 0, Then u(x) = 1for all x€A, Leth >0 be arbitrary,
and let

Aw= {z € li; p(r, A) << h}.
We put 1—-46(h) = Yiﬁn{f u{x). The function u{x) is lower semicontinuous. From this we easily conclude that
&¢h}—~0 for h »0; M\;’e mollify the function u with the parameter h, We obtain the function
un(z) = Mya(z) = (CMy) (7).
We note that for all x€A
un(z) = 1 — 8(h).
Let

M

Then ¢ € |- » (A), ¢ —v in Lp(R“), and the function ¢ € C™, We thus see that the set of those v€ e (A)
for which Gyv€ C* is dense in 8¢ » (A), This clearly implies the required result,
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THEOREM 6,2, Let (A, B) be any regular palr of closed sets in R1 where the set A 18 bounded, Then

C. Vi pfd, BY<U K Capg, o,

where K depends only on I, p, and 8(A, B),

Proof, Let ¢ € CT®M) 7 LP(RP) be any function such that @(x) = 1 for all x€ A, Now let { be the
function whose éxistence was demonstrated in Lemma 6,3, We put

iz} =l{r)y(s)..
Then ¥ € C*(A, B), We have:

(D «;:‘;.};;}7'11,, (6.3

& c ]
C. r-(‘];){'A~ By D(f.;i (%) -~ § { 2 ‘ET
g Lim S

It is casy to see that forjal =1

D g inl< M ZIzzrwnl
Laleg

where M= max [DPL{x)]. This implies the inequality
€0 jaagi

D (§) < Kl {6.4)

w B

where the constant-K, depends only on max !Dﬁf('x)f , and hence K, depends finally only on l, p, n, and
x84l

3(A, B). From the equivalence of the norms ™ [\l and | || LP for integral I, there exists a constant K,
gsuch that p [

Hol o < Keli@ll]y - (6.3)
Comparing inequalitivs (6.3), (5.4), and (6.5), we obtain
C V(A B K i
l
‘Since vECTRNY) N LP@RD) was arbitrary, this implies the inequality

C. Va p(d, By <C K Capy, et

The proof of the thecorem is now complete,
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