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INTRODUCTION 

0,1. One of the fundamental ideas of elassleal potential theory is the concept of capacity. The capacity 
of a set is one of its very  fine charac te r i s t i c s .  However, the classical  concept of.capacity is in many cases  
Insufficient for  the study of c lasses  of functions having general ized derivat ives.  It is the object of the p res -  

e n t  paper  to remedy this shortcoming.  

Our main tool is the concept of a Bessel  potential. Bessel potentials are  a very convenient means of 
studying questions in the theory of functions with general ized derivat ives;  this has been demonstrated in the 
work of a number of authors.  ~ee  for example, [2-5].) A Bessel kernel of order  l > 0 in the apace R n is 
a function of the t e r m  

. 4 4  --+$ ,~ 

2 -  ~ i - - ~ - - ~  ~ - "  

= = A - . _ , ,  

whore Kv(r), r > 0 is a so-cailecl Be~sel function of third kind. The Fourier  t ransform of the function Gl(x) 
is given by the fo rmula  

r* I 

d+(~) = (~ ; )  , .(t +~ l~ t ' )  - . ~ -  

The function GI(• for 1 < n h:~s a singularity of type Ix[ / -n  at the origin and for Ix[ ~ G/(x) is asymptoti-  

cally e~,~l ~6 C (i + I xl ) - - v -  e -I~l, where C = const, " 

The Besse[ potential of order  t in the space R n of the measurable function f is the function 

(Gd) (z) = I C, (+: - +)1(~) ~v. 
s ~  

Let E be any set in the space R n. We consider all nonnegativc functions f which :ire summabte on Fi n 
in degree p > 1 and such that for all xE E 

(6,I) 0:) >t t. 

The grea tes t  lower bound of the quantity (l[fH Lp) t~tken over the set of all such functions f is called 
the (l, p) capacity of the set E. 

The theory of the (l, p) c:~pacity of sets is the subject of the present paper. We res t r ic t  ourselves 
he re  to t.he case in which 0 < l <n, p > 1, and, in addition, the condition Ip ~ n is satisfied. The concept of 
(I,p)+eapacity can also be considered without these. res t r ic t ions;  however, in this ease a number of special 
features a r i se  which do not come up in our case.  

The concept of (l, p) capacity is a special case of the general concept of the p-modulus of a family of 
measures  which was introduced by B. Fuglede [1]. 
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The c lass  of se ts  in R n having ze ro  (/, p) capaci ty  coincides with the c lass  of se ts  I1 : which was ln- 
trc~luced anti studied In detail  in [3, 5]. The (1, p) capaci ty ~f a set E ~ R n is ze ro  tf and only If there exis ts  
a function f which is summablc  on R n In degree  p such that (Glf)(x) - ~ for all xE E. The c lass  lla.~,~ is 
c lose ly  re la ted to the theory of the function c lass  L. p cons t ruc ted  tn [3, 5]. A function u belongs to the c lass  
L~ if ihere  ex i s t s  a function v which is summable  o t R n in degree  p and such that u(x) = (G/v)(x) a lmost  
e v e r y w h e r e ,  The c l a s s  I P / I s  an analogue of the c l a s s  of functions with generalizc~l der iva t ives .  Indeed, if 

l is an in teger ,  then LPfR n) coincides with the well-knc~,n Sobolev c l a s s  WP(Rn) , The set  Of possible s in-  
gxdari t ies  of an a r b i t r a r y  funct!on of L ?  I s ,  as" shown;in [3], a se t  of c lass  "IV,, ; I .e. ,  a se t  of Z e r o g ,  p) 
capac i ty  in oa r  termfnolog3". 

Different genera l iza t ions  of the concept  ?of capaci ty  have a lso  been studied by a number  of other a u -  
tho r s .  We mention,  in pa r t i cu la r ,  the paper s  [6-8] in connection with boundary value p rob lems  in the theory 
of par t ia l  differential  equations.  

0.2. We now define e e r t a i n b a s i e  concepts  and introduce the terminology and notation used in the fol-  
lowing cons idera t ions .  

R n henceforth denotes  n-d imens iona l  euclidean space,  f i x  = iX1, x2 . . . . .  Xn), then we put 

t::l = ( ~ : +  z :  §  + z,')':,. 

Fur the r ,  Lp, with p ~ 1, denotes the Bana.ch space of functions which are  defined and summable  on R n 
in degree  p. The norm in Lp is defined as usual:  

~t,i I if, ~I tP (z), de) . 

g P(x)  is some proposi t ion,  then. {x6 A: P(x)} denotes the set  of all e lements  of the set A for which the p ro -  
posit ion P(x)  is t rue.  

Ii x is a point of R n, r > 0, then B(x,  r) denotes the open sphere  of radius r with center  x, i.e., 

B(x,r) ~-. {yE I1. :IY -- 'r i~.  r}. 

t~ t  A be an3: nonempty set of R n and x a point of R n. We then pat p(x,  A) = inf I x - y I .  
u~A 

I . ~ t x b e  a real  number .  W c p u t x  + = m a x ( •  0), x -  = m a x ( x ,  0). Clear ly ,  x + - x  - = x , x  + + x -  = (xI. 

tt is obvious th-~t for any function fELp 

11I~ I1~i~ < iI/II%. It/- lit+ C~ 11/U~.p. 

The support  of a function f : R  n - R  is the smal les t  closed set  A c R n such that fix) =0 f o r x ~ A .  A 
fut~efion f is said to be finite if its support  is compact .  

We say that a function f: R n - - R  belongs to the c l a s s  C ~ if it has continuous part ial  der iva t ives  of 
e v e r y  finite o r d e r .  

w 1 .  D e f i n i t i o n  o f  C a p a c i t y  

1.1. Let K(x,  y ) b e  a nonnegative function of the var iab les  x, y E R n which is def inedand lower s e m i -  
continuous on R 2n = R n x R n (the value K(x,  y) = ~ is not excluded). We assume,  moreover ,  that for any 
xE R n 

K(x, v)dy< ~ .  

B~ 

Let f be a rea l ,  nonnegative,  measu rab l e  function on R n. We put 

UK/(x) = i K(x,y) / (y)dy ,  

The quantity UKf(x )has  a definite finite or  infinite value for  all xERn.  

(i.1) 

819 



Let E c R n be any set  in R n. We cons ider  all nonnegattve, measurab le  functions f belonging to the 
c l a s s  Lp(R n) and such that for  all xE E 

V d ( . O  ~ l ,  

The g r e a t e s t  lower bound of the Integral  

t I t  (:)!  ~'d=, 

taken over  the set  of all  erach functions i s  called the p capaci ty  of the se t  E re la t ive  to the kernel  K. We de-  
note it by the symbol  Capp'(E; K). 

If no such functions f exis t ,  then we put Capp(E; K) = o~. 

The concept  of p capaci ty  is a special  e a se  of the concept  of the p modulus of a sy s t em of measu re s  
introduced by B. Fuglede [1], Indeed, fo r  x E R  n let 

~-A.4) =,~g (z. y) d y  

This  defines a f a m i l y  of m e a s u r e s / ~ x i n  R n. Let E be the subfamily consis t ing of m e a s u r e s  #x where xEE. 
Then Capp('E; K) coincides with the p modulus of the family of m e a s u r e s  E in the sense  of B. Fuglede [1]. 

1.2o We shall  hencefor th  not cons ider  the case  of an arbLtrary kernel  K. We r e s t r i c t  ourse lves  to 
t h e  case  

K(x, v) = 6dz  - v), 

where  0 < l < n, and G l is a function on R n ~ t h  Four ie r  t r a n s f o r m  

l 

~;~(~) = (l  ~ p)- T �9 

The function G 1 i t se l f  is gi~:en by 

Gl(z)= Cl,. 
K ~ (z) 

2 

~--i (i 2) 

where  Kv(r  ) is a Besse l  function of third kind and Cl, n is a cor;stant. We shall call  the kernel  G / ( x - y )  a 
Besse l  kernel  of o rde r  l .  

We recal l  the following p rope r t i e s  of the function G l. Equation (1.2) implies  that GI(x) = ;?l(IXl ), where 
t h e  function 3 l ( r )  is defined for all r > 0 and such that i l l ( r )  > 0 for  r > 0 :,,nd ill(r) is a monotone decre:ising 
functi~m. Moreavcr ,  ~/(r)  = o(e - r )  for  r ~  and ;~l(r)= c [1 + o(1)] for  r ~ 0 ,  where C > 0, C = coast .  

F r o m  thi~ it foIl~Ws that the function G l ( x - y )  sa t i s f ies  all the conditions imposed on the function K(x,  y). 

We hencefor th  denote the quantity UC, f by the symbol  G/f :rod call  it the Besse l  potential  of o rder  l of 
the function f. 

For  any E c R n we denote by St,,.~ the set  of all nonnegative functions fE Lp(P, a) such that (Glf)(x) 
l f o r  all xE E. 

The p eapaei~" re la t ive  to the ke rne l  Gl we shall  call  t h e  (l, p) capaci ty  and denote it by the symbol  
Cap(l,  p)E. 

F rom the definition of (/, p) capaci ty  we immedia te ly  obtain 

LEMSLA 1;1. Let E be any set  in R n and let fE LpfR n) be a nonnegative function such that G/f (x) > a 
> 0  for  a ! I x E E .  Then 

(1.2) 
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Proof .  It is c l e a r  that  the function g = f/ct be longs  to the c l a s s  ~.~+ +, if:), and the re fo re  

which was  requ i red  to p rove .  

1.3.  F r o m  the gene ra l  p r o p e r t i e s  of the modulus  of a s y s t e m  of m e a s u r e s  proved in [1] the re  follow 
the fol lowing p ropos i t i ons  r ega rd ing  the ( l ,  p) capac i ty .  

THEORE.M 1.1. For  any E c R n C a P ( l , p ) E  m 0. 

T H E O R E M  1.2. F'or hay two se t s  Et and E z such that E: ~ Ez 

THEORE M 1,3. Let  {Ev} , u : 1, 2 . . . . .  be  any sequenee of se t s  in R n. Then 

v 

THEOREM 1.4. Let E ~ R n.  Then in o r d e r  that the (l, p) capac i ty  of the se t  E be z e r o  it is n e c e s s a r y  
and suff ic ient  that there  exis t  a nonnegat ive  function fE Lp(Rn) such that (Glf)(x) = o~ for  all xE E. 

T t tEOREM 1.5. If C a p g , p ) E  = 0, then for  an)" se t  E '  c E Cap( / ,p )E '  = 0. 

THEOREM 1,6. The union of an at mos t  countable set  of s e t s  ,)f z e r o  (l, p} eap-leity is a se t  of ze ro  
(I, p) capac i ty .  

THEOREM 1.7.  f fCaP( l , p )  E = 0 ,  then for  any q <p ,  q > 1 

Cal~. ~ = 0. 

THEOREM 1.8. Lf fE Lp0~n),, f ~ 0, then the Set of all x6 R n such that. G f ( x )  = ~ is a se t  of z e r o  (l, p) 
c apac i t y .  

We say  that n condi t ion C is sq t i s f ied  on a se t  E cz R n a lmos t  e v e r y w h e r e  with respec t  to the (/, p) 
e:~paeity, or ,  m o r e  b r i e f ly ,  (l. p) a lmos t  e v e r y w h e r e  on E, if the (I, p) capac i ty  of the set of x E g fo r  which 
condi t ion C is not sa t i s f ied  is z e r o .  

THEOREM 1.9. I~ t  

I t + h + . .  + & - - - .  O.a) 

b,,.+' an)" s e r i e s  in LpiR n) such that r ~ [l fvlI Lp < +r Then the s e r i e s  

(v~l,) (x) + (ad2) (z) + . + (Gj~) (x) + , . .  (1.4) 

ecmverges  (t, p) a lmos t  e v e r y w h e r e  on R n. Moreove r ,  ff f is the sum of the s e r i e s  (1.3), then the s e r i e s  
(1,,1) c o n v e r g e s  to (Glf)(x) (l, p) a lmos t  e v e r y w h e r e  on R n. 

The re  is no genera l  t h e o r e m  c o r r e s p o n d i n g  to T h e o r e m  1.9 in [ I | ,  and we shall  t he re fo re  p re sen t  its 
proof. 

"I~e hypo theses  of the t h e o r e m  imply that 

The f u n c t i o n s h  = f i  + + f ~  + . . .  + fv + + . ; .  a n d g = f , -  + f z - + . . .  + f v -  + . - .  be long to the c l a s s  Lp. Since 
the in teg rands  of the potent ia ls  G/f + and G/f v- a r e  nonnegat ive,  we have foe all x6  R n 

o o  

Gd;(x) = C, th (x), (1.5) 
~+" t 



( ;d;  (x) --- 6d  (z). (1.6) 

F r o m  this it is c lea r  that the ser ies  (1.4) conve~'ges for any x such that (Glg)(x) < ~ and (Glh)(x) < ~, and 
hence  the set of x for which the se r ies  (11.4) diverges is a set of zero ~, p) capacity,  Moreover.  If the ser ies  
(1,5) and (1,6) converge at a point x,  then the sum of the ser ies  (1.4) for this x Is equal to the difference 
(Glh)(x)-(G/g)(x) = (G/f)(x). This completes the proof of Theorem 1.9. 

THEOREM 1.10. Let fv, p = 1 , 2 , ' . . ,  be a sequence of functions tn Lp such that ~ f v - f l [ L p ~ 0  for 
v--,-*% Then there exists a sequence of indices {vie}, v! < v2 < . . .  < v k < . . . ,  such that 

((:;t I L ,  - I I) (x)  .--, 0 

(t, p) a lmost  everywhere on R n a s  k---0% 

Theorem 1.10 is a special  case o[ a general  theorem of [1]. It can also be obtained a s  a corol lary  of 
Theorem 1.9. , 

THEOREM 1.11. For  any set E G R n such that CaP(l, p)E < 0% there exists a nonnegatlve function 
fE Lp such that (G/f)(x) -> 1 (It p) almost  everywhere on E and 

Cap(t. ~)E = I [l(x)IPdz. 
R TM 

Let E b e  any set in R a. We denote bySV ,(E) the closure of t h e s e t  ~ t ,~(E)  in the space Lp. 

LEMMA 1 . 2 .  In o rder  that a function f -> 0, fE Lp belong to the set ~ ,  .~(E), it is necessary  and suf- 
ficient th:tt (G/f)(x) -> 1 (l, p) almost  cverb~'here on E. 

Proof.  The necessi ty of the condition follows in an obvious way from Theorem 1.10. We prove suf- 
ficiency. Let f > 0, f(~ Lp be such that the (l, p) capacity of the set E' of all x(~ E for which (Glf)(x) < 1 is 
equal to zero .  By Theorem 1.4, there exists a function v _> 0, vELp such that Glv(x) = ~ for all x(~ E. We 
p u t f v  = f +  (1/v)v, v ---1,2 . . . . .  Then (Glfv)(x) _ 1 f o r a l l x ( ~ E ,  andhcncefv(~$t~".r"(I ' :)foral! v. For 
v ~  fv - - f  in Lp, whence it follows that fE ~ ' .  v(E). This completes the proof of the [emma. 

THEOREM 1.12. The function Cap(/,p) is invariant under motions of the space R n, i.e., if the sets 
A and B can be obtained f rom one another by a motion of the spi~ce R n, then Cap(/,p)A = CaP(l,p)B. 

Proof.  Let B = cA, where (p is a motion of R n. We take an a rb i t ra ry  function f E ~  t . , (A) .  Then for 
all x E A  

Ct(x-- y)/iy)dv > I . 

Thin implies that for all x E B 

Ra Ra Ra 

This means that the function g: y~f ( (p - ty )  belongs to ~ ,  ~'(B). Hence, 

and since fE ~ .v(A)  is a rb i t r a ry ,  

Cal~r, p~B ~ Cap(t~ ~ t .  

The sets  A and B are equivalent, whence it follows that 

Cap~t. ~A ~< Cap(i, ~B. 

and hence Cap(l,p)A = CaP(l, p~B, which was required to prove. 
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2.  S e t s  M e a s u r a b l e  w i t h  R e s p e c t  to  t he  {(/,._p) C:2s  

Let Cbe a nonnegattve set function defined on all subsets of the space R n. The function r is said to 
be a general ized capacity [9] if it satisfies the following axioms. 

1) If A c A' ,  then r  "r .a~(A'). 

2) For  any increasing sequence of sets {At,}, v 1, 2 . . . . .  i n  R n 

�9 (U a,)= ~p~(a,). 

al ~'or any uec reasmg sequence ot compact  sets {Ku}' v = 11 2 . . . . .  in Rn 

,p(n g . ) =  nf~(~,L):. 
v ~t 

A s e t  A c R n is said to be measurable with respect  to the general ized capacity ~ ff 

qD(A} = supq~(K), 

where K is compact .  

THEOREM 2.1 [9]- Let ~be  a general ized capacity in R n. Then any analytic set in R n is measurable 
with r e spec t  to ~P. 

LEMMA 2.1. g a function vELp  is nonnegative, then its Bessel potentia! G D" is a function which is 
~ower semicontinuous 

This lemma is an obvioas corol la ry  of Fatou's  theorem on taking the limit under the sign of the Lebes- 
gue integral .  

LEM~L:(2.2. Let E c R n be any set in Rnsuch  that Cap(l,p)E < 0% Then for an)" ~ > 0 there exists an 
oIxm set U ~ E  such th,qt CaP(l,p)U < Cap(/,p)E + ~. 

Proof.  By definition, for any e > 0 there exists a nonnegative function vELp  such that GU(x) --- I for 
all xE E and 

8 
I lv(z)lPdz'(-Cap{l.r~ E+ "~'" 

R~ 

Lee r/ >0 ,  r/< 1 be arl~itrary. Let U~ bethe set of all xE Rn'such that (G/v)(x) > 1-rl. 
set Ur~ is open. Moreover ,  E c Ur~ and by Lemma 1.1, 

r t r :ap~. ~} E + a/2 

Jim 

By Lemma 2.1, the 

We suppose that r /has been chosen such that the right side of last inequality is less than CaP(l,p)E + a. 
Then U = U, 3 is the set required.  

THEOREM 2.1. For  any l and p such that l > 0, p > ! ,  lp - n, the (l, p) capacity is a generalized 
capacity.  

Progf .  By Theorem 1.1, the function Cap(/,p)E is nonnegative. By Theorem 1.2, it satisfies axiom 1) 
for a general ized capacity.  

We will show that it sat isfies axiom 2). Let {At,} , z, = 1,2 . . . . .  b e a n  arb i t rary  increasing sequence 
o f s e t s t n R  n , A  =U A v. For  each vCaP( l ,p)A ~ Cap(/,p}Au, andhence  

V 

('apt1. ~0 A ) ,  sup Cape. ~.~A,. {2.1) 

F rom (2.1) it follbws that if sup Cap(/,p)A V = ~, then the equality of axiom 2) is valid for the given sequence. 
P 

We now assume that 
u = sup Ca~t. ~,~ A, < oo. (2.2) 

~t 
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Let M v _-"-~:s. ~, (Av)" The se t s  3I v a r e  all c losed  and conw~x, and the s e ( v e n c e  of ac ts  M v is d e c r e a s -  
tag.  We put 

o o  

M :~ ,q M,. 

We show that M is noncmpty .  Indeed,  let d v -- (Cap( l ,p)Av)  t/p be the d i s tance  f r o m  the point 0 in the space 
Lp to the se t  M v. The sequence  {dr} is i nc r ea s ing ,  and dv--*d 0 = "/i/P.~ By inequali ty (2.2), d o < ~. Wee~ 
s i d e r  the sphe re  B = {u(~Lp:~.uH Lp ~ do}. F o r  each v,M v ~ B is a nonemp~ ' ,  c lo sed  convex se t  in Lp. 
B e c a u s e  of the weak c o m p a c t n e s s  of the s p h e r e  B, the i n t e r s ec t i on  

f) ( t l ,  N B) c M 
v 

is  nonempty ,  and hence  the se t  M is nonempty .  

It i s  c l e a r  that  M is c lo sed  and convex .  Let u 0 be the point of M c l o s e s t  to the point 0. Then I Iu~  
-< do. The funct ion u0E M v fo r  all v and hence  fo r  any v 

(6~,,o) (z) t> t 

(/, p) a i m o s t  e v e r y w h e r e  on Av. This  impl ies  that 

(I, p) a l m o s t  e v e r y w h e r e  on A, and hence  u0~ ~!l~ ,~ (A); the re fo re  

y : : : d g ~ i i u o i L  v > l : a ~ :  ,)A . 

C o m p a r i n g  inequal i t ies  (2.2) and (2.3), we find that 

(2.3) 

Cap(~. ~).I : sup('.:,,p(,.. ~ :!. 

an(i this c o m p l e t e s  the verificati~)n of ax iom 2). 

We now sho~'n that ax iom 3) is sa t i s f i ed .  It is eas i ly  shown that the (l, p) c : tpac i ty  of any c0mp:~ct 
se t  [ n R  n is f ini te .  Let  {Kv} , v 1 ,2  . . . . .  be an 3 rb i t r : t ry  d e c r e a s i n g  sequence of compac t  se t s  

The se t  K is comp: lc t ,  w e  suppose  that ~ > 0 is given.  By Lemma _ . . ,  ') ') there  exis ts  an ()pen set  U ~ K 
such that CaP(l ,  p) U < CaP(l ,p)K + e. By the c o m p a c t n e s s  of the set  K v, there  ex i s t s  a v 0 such that fo r  
>v0, K v C U  F o r  v > v  0 w e h a v e :  

Capt~" p~K ~ Capit" p)Kv ~-~ Cap(~. piU < Capr pfi -t- e. 

Since c > 0 is a r b i t r a r y ,  it fol lows that 

Cap(l. v ~ ,  -~ Cap(,, p~K 

fro: v ~ ~  This  c o m p l e t e s  the ve r i f i ca t ion  of axiom 3). The theorem has now been proved.  

w 3 .  T h e  D u a l  D e f i n i t i o n  o f  t h e  C o n c e p t  o f  ( l ,  p )  C a p a c i t y  

3.1.  All m e a s u r e s  hence fo r th  c o n s i d e r e d  a r e  a s s u m e d  to be defined on the ( r -a lgebra  of Bore l  se t s  
in R n. 

We say  that  a m e a s u r e #  is c onc e n t r a t ed  on a se t  E c R n ff there  ex is t s  a Borel  se t  E'  ~ E such that 
fo r  any Bore l  se t  A/.qA) = ~4 ,  o E ' ) .  

We f i x l > 0  a n d p  > 1 s u c h  tha t lp- -<  n. We put q = p / ( p - 1 ) .  

F o r  a n y  m e a s u r e  ~ in R n we se t  

(G~)(x)== ~ Gt(x--y)dp(y), 
t l  n 
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The ftmction Gig ls cal led the Bcsse l  potential  of o rde r  1 of the m e a s u r e g .  The function GI# is nonnegative 
and I(r~-er semicont inuous on R n. 

t~et g ~ R n, "Ihe dual (l, p) capaci ty  of the set E is defined by 

[p (R") lr  

l l n  

(3.t) 

where  the s u p r e m u m  is taken over  the set  of all m e a s u r e s  g concentrated on the set  E. We denote the dual 
(I, p) capac i ty  by the symbol  CaP( l ,p )E.  

The function of the m e a s u r e g  standing to the right of the supremum tn (3.1) is posi t ive homogeneous 
of degree  ze ro  with r e spec t  to the m e a s u r e # ,  i .e. ,  Its value is unchanged ifta is multiplied b y a n  a r b i t r a r y  
pos i t ive  consL~nt. This  impl ies  that the dual (l, p) Capacity can a.lso be defined as  foilowgi ~ We denote by 
~ ~ (El and ~.,. v~ (E) the se t s  consis t ing of all m e a s u r e s  concentr:rted on E a n d  sat is fying the conditions in 
the ca se  of ~a.~ (E): g(R n) -< 1 and G/gELq,  and in the case  of~v,r~(E): 

i l l  

Then 

iT;apo. ,aE = sup 1 = sup [1, (R")] ~ (3.2) 

LEMSL,k 3.1. For  a:ny E l and E 2 in R n such that 

Ex c E:, Capte. p~E~ ~< Cap(t, p~E:. 

Proof ,  Indeed, ff.E I -- E,, ti~en c l ea r ly  ~e. >(E 0 ~- ~:, p ~ ) ,  whence by (3.2) the required ine(raality 
fol lows.  

LE.MSL.X 3.2. For an5" set  E c R n 

--C~ap~ z pj~ ~ Cap< ~ .  

Proof ,  We take an a r b i t r a r y  m e a s u r e #  6,~, p ~ )  and function-# E ~ ,  >(E). We have the following in- 
equal i t ies :  

I~ u ilL~ > ii u 'l,.~ li c . ~  ik,, 

> i u~y)(C,~,)(u~ay !(C,.)(~)4,(y) > ~(,r176 
.R n R a  

since G/~l(x) -> 1 b y  hypothes is  for  all xE E. Since ufi ~D:. v,(g) and> E~., p{E) a re  a r b i t r a r y ,  this  comple tes  
the proof  of tt'/e l em m a .  

LEM.\U\ 3.3, lint f be any function on R n havie, g compact  support  and belonging to the c lass  C ~. Then 
there  ex is t s  a function ue  C = such that u(x) = o(e-[Xl)  f o r [ x I ~ -  and f = Gin. 

Proof .  Let m be a natural  number  such that 2m _> I. We put 

u(z )  = (2~)~ - -  a ) " l ,  

where I is the identity ope ra to r  and A is the Laplace opera to r .  The function v = ( I -  A)mf has compact  sup-  
por t  and belongs to the c l a s s  C ~  This  impl ies  that u (~ C ~ and u(x) = o r e - Ix ! )  for  ]x l -~  ~'. The equality 

is easy  to check by cons ider ing  the F ou r i e r  t r a n s f o r m s  of the functior~ u and f.  This  comple tes  the proof  of 
the  I e m m a .  

~'HEOREM 3.1. Fo r  any compact  se t  A c R n it is t rue that Cap(/,p)A = Ca--p(/.p)A. Moreover ,  there 
ex i s t s  a measu reg0E  ~(t. re(A) such that [~(Rn)]P = Cap(l, p)A. ff the function u0E ~0~'. P~(A) is such that 
Cap(/ ,p)A = ltu0[l Lp, then the m e a s u r e g  0 ks concent ra ted  on the set  E = {xEA: Ggu0(x) -< 1} and for  all xE R a 

[Uo(X)p~' 1 
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Pro(ft ,  We begin with the fact  that by (3.2) 

Cai~,,~)(A)= ~zp [l~(R~)lp. 
aE~t, p}iA~ 

[f Cap(l~p)~;~ ~ 0, then L e m m a  3.2 impl ies  that ~ ( l , p ) A  = 0, i .e . ,  Cap( l , p )A  --C-,~a'p'(l, p)A. 

We assurrie that  Cap( l ,p )A > 0. Let u 0 be a function of ~ ,  ~ (A) such that C,~p(l,p)A = ltuo~. We put 

Since by  L e m m a  2.1 G/u 0 is l ower  semicon t inuous ,  i t  follows that the se t  E is c o m p a c t .  

The  s e r e  is nonempty .  Indeed,  if it we re  empty ,  then fo r  all  x E A  we would have (G/u0)(x) > 1. Since 
Ggu0 is l ower  s e m i c on t i nuous  a nd  the se t  A is c o m p a c t ,  the funct ion Ggu o a s s u m e s  i ts  m in imum on the se t  A 
at  s o m e  p o i n t x Q E A i  F o r  al l  x E A  (G/u0)(x) ~- (G/u0)(. ~ )  -- I + 5, whe re  ~ >0 .  T h e f u n c t i o ~  

ux = ud(t + 8 ) E ~ .  P(A). on t~  ot~cx ~n~ 

which c o n t r a d i c t s  the def in i t ion  o f u  o. The con t rad ic t ion  thus obL~ined p r o v e s  that at  l eas t  fo r  one xEA 
(Gga)(x) ~ 1, i .e . ,  E is nonempty .  

We denote  by S(E) the se t  of all funct ions r/E Lp(R n) such that the function Gtr / i s  cont inuous and for  
a l l  xEE (G/~)(x) - 0 .  

F u r t h e r ,  we put 

~o = uo,'-,/1t uo 11~'. 

It is  then obvious  that  

z,0 e L o ( n " ) ~ u l l  v0 tlL~ = I .  

We shal l  Show that for  any function tiES(E) 

! ~'o (x) TI(~) dz > 0.  
Ra 

We f i r s t  suppose  that  the function tIES(E) is such that GlT/(x) > 0 for  all xE E. Then there  ex i s t s  an 
open se t  U ~ E  such that Gl~(x) > 0  for  all x E U .  We se t  tt = A \ U .  The se t  tt is c o m p a c t  and for  all 
x E H  (G/~0)(x) > 1. Since G/u 0 is lower  semicon t inuous ,  this impl ies  that fo r  all xE H (G/u0)(x) ~ 1 + 5, 
where  ~ > 0 .  

We now show that  the re  ex i s t s  a t o >0  such that 0 < t < t0 (G/u0)(x) + t(G/r/)(x) ~ 1 (l, p) a lmos t  e v e r y -  
where  o n A .  Indeed, f o r x E A  N U a n d a l l  t > 0  

( 6 ~ )  (x) + t(Gcq) (z) .>I (G, uo) (x) >i I 

(/, p) a lmos t  e v e r y w h e r e  on A rl U. Let x Et t  = A \ U. We se t  M = man [ (G/r/)(x)[. Then for  0 < t < t 0 = 6/M 

( G d u . +  tn))(x) > 1 

f o r  a l l x E H .  This  impl ies  that fo r  0 < t  < t  o 

(l, p) a lmos t  everb,where on A. 

Let 0 < t  < t  o . C l e a r l y  

(G(uo + tn)) (x) t> t 

(C,,.,lu. + tnl) (~) i> (Cduo + in)) (z) 

f o r  all x. This  impl ies  that fo r  0 < t < t o [u 0 + O?I E~i~ z. p~(A). Since the function u s g ives  the min imum value 
of the funct ion tlull p on the se t  ~ t .  v} (A), this m e a n s  that fo r  any tE (0, 5) 
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! i.ol ) ! > i i"0 *)i 
/ in /~n 

This implies that 

andhence 

vo (z) n (z) ,I.r > 0 .  (3.3) 
R �9 

Thi s p roves  inequality (3.3)under the assumption that (G/~)(x) > 0 fo r all xE E. Let r~ES(E) be such 
~hat (Glr~)(x) > 0 on E. Let ~E C ~ be an a rb i t r a ry  nonnegative function with compact  support which is not 
identically z e r o .  Then ( G l ~ ( x ) >  0 for all x E R  n and Glw E C ~ .  The function 7/ + rCES(E) for any r > 0 and 
{Gt(~ + r,p)] (x) > 0 for  all xE E. Thus ,  by what has been shown 

f vo(z)Irl(*) + ~ (x ) l  dz > 0 
lil'" 

f o r a a y  r >0 .  Letting r tend to zero,  we obtain in the limit 

f vQ ix) vl ix) dx :> O, 
R n 

which was required to p r o v e .  

Let r/E Lp �9 such that the function (Girl)ix) is continuous and for all xEE (Glr])(x) = O. Then 

f ro  (z) q ix) dz = o . (3.4) 
Rn 

~[ndeed, the func,tions ~(x)and-q(x)be long to S(E), and hence 

dz > O, 
R n R n 

which implies (3.4). 

We denote by C(E) the set of nil conti'nuo~s real-valued functions defined on the set E. Let C~(E) be 
the set of all those functions of C(E), each of which is the res t r ic t ion to E of some function ~EC~ffr n) with 
compact  support .  For fEC(E) we put IIf]IC(E) = max lf(x)[ .  It is obvious that C~(E) is a dense linear sub- 
set of the Banach space C(E). 

We now define a cer tain linear functional L on C(E). The functional L will f i rs t  be defined on the set 
C~(E).  LetuEC~~ Then there exists a function ~EC~(R n) such that ~ x )  =u(x)  for allx{~E. By Lemma 
3.3, there exists  a function ~?E Lp0R n) such that ~(x) = (Glr/)(x). We put 

Rn 

The quantity L(u)does not depend on the choice of the extension <Pof the function u. Indeed, let q~t and ~ be 
two functions with compact  support in C ~ such that ~l(x) = ~o~(x) = u(x) for all xE E. Then +)1 = GlTh,Vz = GP?2. 
We set ~7 = ~z-~h. The function G/~? is continuous, and Gl~7(x) = 0 for all xEE. By what has been proved, this 
means that 

O= t vo(x)n(x)dx= I v . ( z ) lH , (x ) - -~(z ) ld~ ,  
Rn Ra 

whence 
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! ~'~ ( : )  ' '  (z) dz ~ i ~'~ O')q, (t) dz. 
1r n IC* 

This proves that the quantity L(u) does not depend on the choice of the extension ~ of the function u. 

It'tS c lea r  that L is a l inear functional on the l inear  subset C*~(E) of the space C(E). By the prop- 
e r t ies  of the fu~ctiqn s of the c lass  s .~)  proved above, it follows that for any nonnegative function u fi C*C~) 
Lqu) >_ 0. Thus,  .Lt~ n nonnegattve functional on C~CE). This implies that the functional L is bounded, and 
hence continuous on'C*~(E), We extend L by continuity to the entire space CfE). Such an extension exists 
uniquely and represents  a l inear functional on C(E). 

By the well-kriown theorem on the representat ion of a normegative l inear functional on the space of 
continuous ~nc t ions  on a compact  metr ic  space, there exists a measure/% concentrated on the set E such 
that for  all u ~ C rE) 

We extend the m e a s u r e g  0 to the entire space R n by definingg0(B) =/~0(B (t E) for any Borel set  B. 

Let r/E C ~ be an), function with compact  support,  and let u be the res t r ic t ion of the function (Gu/) to 
the set E. uE C~(E). We then have 

f L. = I 
f~n Rr~ R~ R~ 

by Fubini 's  theorem. We thus see that for any function ~E C~(R n) with compact support in Rn 

f v~ = I (Gzi~)(z)rl(z)dz 
R rt Rn 

Since rl is urbi trarT,  this implies that for almost all xE R n 

vote) = (a,t~) (z) .  (3.5) 

The measure  ~ is concentrated on the set A and 

i 'I = H ro[ILq l ,  

whence it follows that #o ~- ~,.,. S&). 

The proof of the :heorem is now completed as follows. By the definition of the function u0, 

\ R  n 

From this and equality (3.5) we conclude that 

R n lr 

By the definition o( the set  E (G/u0)(y) -< 1 for all yE E, whence it follows that 

Rtt 

......... p)Ali/P. As was shown above, the measure #0E ~e. ~ (A), and this means that#00Rn) -< [Cap(/, We thus obtain 
the i.necgfa lity 

Cap~. p)A ~ Capq. r)A. 

By Lemma 3.2, this implies that Cap(/, p)A = Cal'(l, p)A. 
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It Is a l so  easy  to see that the m eas u re  ~ sa t i s f ies  all the conditions required.  This  comple tes  the 
proof  of the t heo rem.  

TI tEOREM 3.2. For  any set  A ~ R n which is measu rab le  with r e spec t  to the g, p) capaci ty ,  the (l, p) 
c a p a c i t y  and ~.kml (l, p) capaci ty  coincide.  

Proof .  Let  A be any set  which is measurab le  with r e spec t  to the (1, p) capaci ty .  Then for any c o m -  
pact  se t  K ~ A we have:  

Since  

this impl ies  tlmt 

(7~Nc =~A ~>, CAN,. ~,~ A 1> Capq. alK = C-~I~. ~ K. 

Captr ~A == sup Cal~t" ~,:tK, 
~CA 

Calif, ~ A = Cap~, ~) A, 

~Zaich was requi red  to p rove .  

3.2. In the case  p = 2 the (l, p) capaci ty coincides with the concept of capaci ty  with respec t  to the 
Besse l  potential  which was introduced in the work of Aronszajn and Smith [2]. 

Let A be any se t  in Rn and l e t a b e a  r e a l n u m b e r  suah that 0 < 2 a - <  n. W e d e n o ~ e b y  l~(A)the set  
of all m e a s u r e s p  concent ra tcd  on A such that ~(A) >_ 1. Fo rpE  I~(A) we set  

1,~(,) = ~ I v : . ( ~ -  y)d~,(~)e~(y). 
R n X R n 

We put 

i 
C,~(A)--= sup (L.,,(~)),~ . 

~EIi ~ (A) 

The (~lantity C ~ ( A )  is the (2c 0 capaci ty  of the se t  A in the sense of Aronszajn  and Smith [2]. 

THEOREM 3.3. For  any set  A c R n 

C~ (A) =- Cap;=, ..) A. 

Proof .  By (3.2) 

�9 Cap~,.. :)A := sup . i _ _  

We t r a n s f o r m  the express ion  in the denominator  off the r ight-hand side: 

l[ c . ~  " t ! L ,  == 

/ In Rn Rn / in 

~t n i t  n R n 

b y  Fubin i ' s  t heo rem.  

But s ince,  

I G,(Z -- y ) G . ( z -  z)dx = G~,(z - y), 
Rn 

(3.6) 

this  means  that ,  



which c o m p l e t e s  the  p r o o f  of the t h e o r e m .  

II a ,~  ItL ~- I , ,  (~) 

| 4 .  C a p a c i t y  a n d  t h e  H n u s d o r f f  M e a s u r e  

4 .1 .  We r e c a l l  the  concep t  of a Hausdo r f f  h - m e a s u r e .  Let  h( r ) .  0 :~ r <  ~ ,  be  a n o n d e c r e a s i n g  func-  
t ion such  tha t  h(O) -- 0 and h( r )  - -  ~. fo r  r - - ~ .  

Le t  A b e  any s e t  in R n. Le t  ~ > 0  be g iven ,  and s u p p o s e  that  BI,  B , ,  B u, . i s  a s e q u e n c e  ot 
o p e n s p h e r e s  Such that  A c  U By,  and the r a d i i  r l ,  r 2 . . . . .  r V . . . .  of the s p h e r e s  d o e s  not e x c e e d  e .  The  

g r e a t e s t  l o w e r  bound of the s u m  

Y, a 0"& 
$ 

t aken~over  the  s e t  of a l l  s e q u e n c e s  of s p h e r e s  with the p r e s c r i b e d  p r o p e r t i e s  is  deno ted  b y / ~ ( A ,  e ) .  The  
~ lan t i tYPh(A . r  i s  a n o n i n c r e a s i n g  funct ion of e .  The l i m i t  lira/~hf~a., e )  = / ~ ( A )  is  c a l l e d  the Hausdo r f f  h -  

m e a s u r e  of the  s e t  A.  In the  c a s e  h(r)  = r a ,  ce > 0 , / ~ ( A )  is  c a l l e d  the t~ -d tmens iona t  Hausdor f f  m e a s u r e  
and i s  d e n o t e d  by  the symbol/~c~r The m e a s u r e # l ( A  ) is  a l s o  c a l l e d  the l i n e a r  Hausdo r f f  m e a s u r e .  

ff the  func t ions  h l ( r  ) and ha(r) a r e  such  that  h i ( r )  = ha{r) fo r  0 -< r -< r0, r 0 > 0, then the c o r r e s p o n d i n g  
H a u s d o r f f  m e a s u r e s / z  hi  and/2hz c o i n c i d e .  F o r  t h i s  r e a s o n ,  in the  de f in i t ion  of a Hausdor f f  h - m e a s u r e  it may  
b e  a s s u m e d  that  the funct ion i s  def ined  i n i t i a l l y  only on s o m e  i n t e r v a l  [0, r0], w h e r e  r 0 > 0, and  i s  e x t e n d e d  
beyond  th i s  i n t e r v a l  in an a r b i t r a r y  m a n n e r .  The f inal  r e s u l t  does  not depend  on how the funct ion is  e x -  
t ended .  

In add i t i on  to the Hausdo r f f  m e a s u r e ,  we need one m o r e  p r o p e r t y  of a s e t .  Let  h(r)  be a monotone  
n o n d e e r e a s i n g  funct ion  def ined  fo r  a l l  r --- O and such that  h ( 0 ) -  0 and h ( r ) ~ r  for  r ~ .  We c o n s i d e r  al l  
s e q u e n c e s  of open s p h e r e s  {By} , v = 1, 2 . . . . .  which c o v e r  a g iven  s e t  A. The g r e a t e s t  l ower  bound of the 
s u m  

oo 

w h e r e  r• is  the r a d i u s  of the s p h e r e  By, ~ = 1 ,2  . . . . .  taken ove r  a l l  such s e q u e n c e s  of s p h e r e s ,  is  c a l l e d  
the h - c o n t e n t  of the s e t  and is  deno ted  by the s y m b o l  Yh(A). In the e a s e  h(r)  = r a in p l ace  of yh(A)  we w r i t e  
~/a(A) .  

We note  that  if A and B a r e  a r b i t r a r y  s e t s  in R n, then the i nc lus ion  A c B i m p l i e s  Yh(A) ~ ?h (B) .  

The h - c o n t e n t  is  a s i m p l e r  p r o p e r t y  of a s e t ;  b e c a u s e  of th is ,  it  wi l l  be m o r e  conven ien t  to obta in  s u b -  
s equen t  e s t i m a t e s  for  it  r a t h e r  than for  the t t ausdo r f f  m e a s u r e .  A c t u a l l y ,  ti~e h - con t en t  is  equ iva l en t  in the 
Hausdo r f f  h - m e a s u r e  in a c e r t a i n  s e n s e ,  a s  is  ev iden t  f r o m  the fo l lowing l e m m a .  

LEMMA 4.1.  In o r d e r  that  the Hausdo r f f  h - m e a s u r e  of a s e t  A ~- R n be equal  to z e r o ,  it  is  n e c e s s a r y  
and su f f i c i en t  that  i t s  h - c o n t e n t  b e  z e r o .  

We l e a v e  the  p r o o f  of th i s  l e m m a  to the r e a d e r .  

L E M M A  4.2.  L e t / ~ b e a n  a r b i t r a r  T m e a s u r e o n R  n s u c h  tha t# (R  n) < % and l e t h ( r ) , 0 - <  r < % b e  a 
n o n d e c r e a s i n g  func t ion  such that  h 0 )  = 0 and h(r)  ~ fo r  r - m  We denote  by Ah, w h e r e  ,~. > 9, the s e t  of " 
a l l  x E R  n such  that  fo r  any  r -> 0 it i s  t rue  t h a t # [ B ( x ,  r)]  - h ( r ) A .  T h e n t h e  fo l lowing e s t i m a t e  ho ld s :  

Vh(R ~ \ A~) <~ C,,~.~,(n~) 

T h i s  i s  the w e l l - k n m ~  l e m m a  of C a r t a n .  F o r  a p r o o f  in the t w o - d i m e n s i o n a l  c a s e  s e e ,  fo r  e x a m p l e ,  
[10]. F o r  the e a s e  of a r b i t r a r y  n a p r o o f  i s  g iven  in [11]. 

We now e s t a b l i s h  a f o r m u l a  f o r  the t r a n s f o r m a t i o n  of i t e r a t e d  i n t e g r a l s .  

LEM~,L& 4.3 .  Let  F ( r ) ,  0 -~ r < ~ ,  be  a nonnega t ive ,  d e c r e a s i n g  funct ion  such  that  F ( r ) ~ 0  fo r  r ~ .  
Suppose  that  F ( r )  h a s  a con t inuous  d e r i v a t i v e  F ' ( r )  fo r  a l l  r > 0.  Then  fo r  any nonnega t ive ,  m e a s u r a b l e  
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functt~m u {x), x E R n, we have:  

go 

S,  ,,,- , , , .  ,,)~,~ ...... .S (. ,..., S.,,).,4 , '  , . ) , . .  

Proo f .  We put Xr(X, y) = 1 fo r  I x - y [  < r and Xr{X, y) = 0 for  [x -Yl  "- r .  Then 

i u{y)dy ~ I X~(x, y)u(y)dlr. 
J)-l=,r} R ~  

Hence 

o o  o0 

S(. ! o,,),, i(S ) F" (~) dr. ) F'(r)dr = %~(z, y)u(y)dy 
Q . } o Ra 

We apply Fubin i ' s  t h e o r e m  to the in tegra l  on the r ight .  As  a resu l t ,  we obtain 

0 o  

�9 D ~.T r)  R n  0 

It is ea sy  to see  that fo r  any x, y 

o~ 

S~ . ( z ,  y)F'(r)dr = - -  F ( [ x - -  Y l ) .  

o 

This  c o m p l e t e s  the p roof  of the l e m m a .  

4.2.  We  have Gl(x) = fll(lXl). The p r o p e r t i e s  of the function 3 l which we need a r e  given in Section 

1.2. 

THEOREM 1.1, Let h(r),  0 --- r < ~ , b e  a nondecrm~sing function such that h(0) = 0 and h(r) - ~  for  
r--- .~.  We suppose  f u r t h e r  that 

n 

f[ h(r)]~)~r ~) ]~[ (r)idr = h 0 ~  oe. 

Then for  any se t  E ~- R n the fol lowing inequali ty ho ld s :  

u ( E) ~ ~. v'tC~ho P Cap(t.p~E, (4.1) 

where  c~ a is the volume of the unit sphere  in R n and C n is the cons tan t  of L e m m a  4.2. 

P r o o f .  Let  E c R n be an a r b i t r a r y  se t .  We a s s u m e  that Cap( / ,p )E < ~,  s ince  o the rwise  inequali ty 

{4.1) is  obvious .  

We in t roduce  the fol lowing notat ion.  For  any nonnegat ive,  measu rab le  function f(x) on R n we put 

o(=,~,I)= I !(Y)d~- 
B tx , r )  

Now let uE Lpfft n) be any nonnegat ive function such tha t  G/u(x) --> 1 for  all xE E. 

Using L e m m a  4.3 to t r a n s f o r m  the in tegra l ,  we obtain 

(G,u) (.r) = ~O(z, r, u)J~t'(r)[dr. 
o 

(4.2) 

We estimate the quantity e(x, r, u) by HiSlderts inequality. This gives 

O(x, r, u ) < a .  -'~"r - -~'[0 (x, uP. r)l'l". 
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Hence 

I--m S (G~u)(z)%'t,~ ~ iO(x. r, ut)':tr"--i'l~lt'(r)[ dr. 

We suppgse that ~. > 0 is a r b i t r a r y  and denote by Ak the set  of all  xE R n for  which 

e(z, r, u~-) <~ h(r) IX.  

Applying Lemma 4.2 to the measure/~(E) = ! uPdx, we obtain 
s 

For xEA h we have 

| r 

(Gtu)(x)~Z,~ ~ [O(x. r, u~}lLVr t [[~t'(r)Idr~ k L'p o {h(r)l t r [l~t'(r)idr :..- kl, a 
o 

Now let ,X be such that A)/P > ohl"/Ph0. Then for all xEA~, we have (G/u)(x) < 1. Since for all xE E 
(G/u)(x) -~ 1, it follows that E c R a \ A k .  We thus obtain the es t imate  

yh(E) ~7 y~(R~ ~N A x) <C,L !" [u(z)lVdx" (4.3) 

Since X is here  an a r b i t r a r y  number  g rea t e r  than crP-~h~, inequality (4.3) impl ies  that 

Y~(E)~ C":"r:lh~ ! [u(x)]~d.r. 
//- 

Since u E~I~:,:~(E) was a r b i t r a l ' ,  inequaliW (4.4) implies  that 

(4.4) 

and this comple tes  the proof  of the theorem.  

COROLLARY1.  If the ( / ,p)  capaci ty of a set  E c R  n , w h e r e 0  < l  <n ,  is equal to zero ,  then for an)" 
ncmdecreasing function h(r),  0 -< r <  % such that h(0) = 0 and 

! 

o ? p  

(4.5) 

the Hausdorff  h - m e a s u r e  of the set  A is e.qual to zero .  

Proof .  We redefine the function h(r) on the interval  [1, ~) by putting it equal to kr  there,  where k 
= eonst .  The Hausdorff  h - m e a s u r e  of the set  A hereby remains  unchanged. For r - . -0  

C 
][~t'(r)~ ~. ra_:.r t [| § o(r)l 

and lfll '(r) I = o(e - r )  for  r - -  ~. This  impl ies  that if inequality (4.5) is sat isf ied for  the function h, then 

h 0  - Slh(r)pp/-'~l~:(r);dr<oo. 
o 

This  means  that ff Cap(/. p)E = 0, then by Theorem 4 . i  ~'hfE) = 0, and hence Ph(E) = 0 by Lemma 4,1. 

COROLLARY 2. Let E c R n be such that Cap(/ ,p)E -- 0, where lp -~ n. Then for  any a > n ' l p # a ( E )  



For  the p r o o f i t  su f f i ces  to take h( r )  = r ~ in C o r o l l a r y  I .  

4.3.  We sh~li nov," csL-tblish s o m e  suf f i c i en t  condi t ions  In o r d e r  that the (1, p) calx~city be ze ro .  

LEMSLA. 4.4.  I ~ !  ~ ' / ,p(r)  be  the (/, p) c apac i ty  of a s p h e r e  of r ad ius  r ,  where  lp ~ n. T h e n  for  r ~ 0  

) , - , ( , )  = o(r'-'O 

if n > Ip and  

,),,,(,)= o[(i~ 
Lk r /  , i  

if lp  = n .  

P r o o f .  Let B r = B ( 0 ,  r) be a s p h e r e  of r ad iu s  r with c e n t e r  ~t ~ e  o r ig in .  We shal l  .assume that  r < 1. 
We put u ( x ) - = , I / [ x t  k, whe re  k > n / p  fo r  r -< Ixl --z ~, ==d u{x) = 0  f6e:aH o ther  x. We have 

i f k  > n / p a n d  

1 

r 

~fk =n/p .  

W e  now e s t i m a t e  the potent ia l  G/u be low on the  s p h e r e  B r . .  Fo r  xE B r we have 

(G~u)(z) = ! a z ( z -  y) dy (4.6) 

It  foI[ows f r o m  the p r o p e r t i e s  of the functior, G l that t he re  ex i s t s  a cons tan t  K t > 0 s u c h  that  fo r  ix[ -<-< 2 

G<(~) ~ ,~'~! Iz[ "-l. 

inequa l i t i e s  (4.6) and (4.7) imply  that  

(61u)(x)> Kl dy 
i :: = ~ i v  J ~ 

(4.7) 

f o r  all  x s  B r .  F o r  x6  B r and 'y  t~ B, r we obvious ly  have  

I z - - V l  < Ix[ + [Yl ~< 21~1, 

s ince  in this c a s e  Ix[ ~< IY[.  F r o m  this we find that  fo r  all •  r 

Kt i dy 16,u) (z) > 
r < l ~ l , r  

T h e  l a s t  i n t e g r a l  i s  equal  to K ' ( 1 / r k - l -  1) fo r  k ~ 1 and to K ' l n ( 1 / r )  fo r  k = 1. 

We have  the fol lowing e s t i m a t e  f o r  the (/, p) eapaei tT of the s p h e r e  q r :  

/ *  

C~pr ~ ~l [u (y)]P dy/[ rain (G~u) (x)l P. 
g. x ~ B  r 

(4.s) 

W e  a s s u m e  f i r s t  of a l l  that  n > Ip.  In this  e a s e  we put k > n / p  > I.  Inequal i~"  (4.8)  l eads  to the fo l -  

lowhag e s t i m a t e  fo r  C a p ( / , p ) B r :  

rtp-~p (r"-P ~ - -  t) = Kor  "-tp (l - -  t ap-" ) 
Cap,~.p) B, ~ K~ (l _ r~_~.)r (t _ r,.~)r 
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This  p r m ' e s  that Cap(/ ,p)B r = o ( rn - lp )  for r - - 0 ,  

In the case  n = lp we put k = n/p  = 1; Inequality (4.8) leads to the es t ima te  

C, apct.p~B, < K~ (ln '~)l"P. 

This  comple tes  the p roof  of the l em m a .  

THEOREM 4.2. Let h(r) = rn':lP ff n > lp and h(r) - - [ tn(1/ r ) ] t -P  f o r  0 < r -  < z~if  lp = n. (It is aS-~ 
sumed  that then p > 1.) f f t h e  Hausdorff  h - m e a s u r e  of the se t  E ~ R n is equal to z e r o [ t h e n  its (/. p) Chl~aCitV 
Is  equal to ze ro .  

Proof .  Let BI, B z . . . . .  By . . . .  be  any sequence of s p h e r e s  cover ing the set  E such  that th61r radii  r~, 
r~ . . . . .  rt, . . . . .  do not exceed e -< 3~. Then by Lemma 4.4 

v 

where K is  a constant .  Because  the sequence of sphe res  {By} was arbi t rary. ,  this impl ies  that 

Pass ing  to the l imit  as e ~ 0 ,  we obtain 

whence Cap(/, p)E = 0, which was required  to prove .  

w 5.  T h e  C o n c e p t  o f  (I, p) C a p a c i t y  a n d  F u n c t i o n s  H a v i n g  

G e n e r a l i z e d  D e r i v a t i v e s  

5.1. In this par t  of the pap.er we shall  i n d i c a t e s o m e  applicat ions of the concept of (/, p) capaci ty to 
the study" of functions having generali~:ed de r iva t ives .  We f i r s t  recal l  cer ta in  well-known facts f rom the 
theory of Besse l  potent ia ls .  

The set  of all  r ea l -va lued  functions u on R n which admit  the represen ta t ion  

u(x) = (G~t.)(x), (5.1) 

where vE Lp(Rn), p > 1, l > 0, we denote by LlPCRn). We in t roduce a norm in LI(P)(Rn) as folh,ws, ff uE 
L/P(R n) is r ep re sen ted  as in Eq. (5.1), where  vE Lp(Rn), then we put flail LP/(Rn) = IIv[[ Lp(Rn). The r e p r e -  

sentation of u by Eq. (5.1), if such a represen ta t ion  exis t s ,  is unique', and hence the norm is well defined. 
The space L/P(R n) is a Banach space.  

The integral  in (5.1)-is in te rpre ted  as the Lebesgue integral  G/v = Glv+-G/v  ". By Theorem 1.8, the 
se t  of x for  which G/'v(x) is undefined or equal to •  is a se t  of ze ro  (/~ p) capacitT. 

Let l > 0 be an integer .  We denote by Wpl(R n) the Sobolev c l a s s  o f  r ea l -va lued  functions defined on 
R n and which have on R n all genera l ized  de r iva t ives  of o r d e r  l summable  on R n in degree  p. For uE Wp/(R n) 
we put 

THEOREM 5,1 [3~ 5]. For  integral  l the c l a s s  WpI(R n) coincides  with the c l a s s  LlP(R n) in the follow- 
tag sense:  for  any function u E Wpl(R n) there  ex is t s  a function u*E L/P(R n) such that u(x) = u*(x) a lmos t  
eve rywhe re  on R n and 

~u llw~ ,`,~., < r  II u*l lq,R.,.  II -* II q,~R-~ < c II u 11 w~(s-~. 

where the constant  C does not depend on the choice of the function u. 
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Tt~:~)RE:~I 5.2 [,~_~.~. For lp > n each of the tunctli, ns of the c lass  L/P(R n) Is continuous and bounded, 
.More~'er ;  there  ex i s t s  a constant  C such that for  any u r L/P(R n) 

COROLLARY. If I > 0, p > I, and lp > n, then the (7, p) capacity of any nonempty set of R n is no less 
than the constant Y = C'P, where C is ~e constant of Theorem 5.2. 

Indeed. let E be an arbi t rary,  nonempty set  in R n, and let vE Lp, If ~v~ ~ p <  y. then (GD')(x) < 1 for 

all x. f rom which it follows that v e  ~ r ) (E ) i f  and only if ~v~.~p _> "/, and hence CaP(i,p)E ~_ ,~, 

THEOREM 5 . 3 ~ .  L e t l > 0 ,  p > l b e s u c h t h a t  lp-< n. a n d l e t m  <I .  T h e n  for  any q s u c h  that 

t / q - -  t/p'4- (l-- m) in ~ O, 

Lmq{Rn) ~ L/P(Rn). Moreover ,  there  ex i s t s  a constant  C = C(p,  q, l, m, n) such that for  any u q LlP(R n) 

T h e o r e m s  1,9 and 1.10 imply the following resu l t s .  

THEOREM 5.3. Let u i + u~ + . . .  § u u . + . . ,  be a s e r i e s  of functions in LlPff~ n) such ~hat the n u mer -  
ical s e r i e s  

converges~ Then the s e r i e s  

u,(z)  + u2(~) + . . .  + u~(~) + . . . .  

converges  (/, p) a lmos t  eve rywhere  on R n. 

THEORE.M 5.4, Let {uu}, u = 1, 2 , . . . ,  be an arbitrar)" sequence of functions of LlP(Rn) such that 
] luu-ul!  L~(Rn) ~ 0  for  t , ~ .  Then there exis ts  a sequence of indices ul < t'z < . . .  < ~ < . - .  such that for 

$ 
k ~  

u,, (z) -~ u (z) 

(I, p) ~Imost eve~b.ere on R n. 

5.2. For functions of the class LIP(R n) the well-known properties of measurable functions conta/ned 
in the theorems of L~sin ~nd Egorov can be sharpened by' using the concept of (l, p) capacity. It is assumed 
that I >0, p >l, lp ~ n. 

THEOREM 5.5. Let ~ uvbe any absolutely convergent series in the Banach space LIP, lp ~ n, and 

let u be the sum of this series. Then for any c > 0 there exists an open set U c R n such that Cap(I,p)U < 

and the series ~ u v converges to u uniformly on the set R n \U. 

Proof. Let e >0 be arbitrary'. For each vwe have u u = G/v~, where vve Lp(R n) and~uvl I L~/01n) 
= n ~H LP. We ~t 

a~ = If ~, till. ,- = I. 2 ..... 

We suppose first of all that the functions v v are nonnegative. Since the series ~ llvu~ Lp converges, 
there exists a sequence of natural numbers U I < v 2 <... < ~< <... such that ~ 

! 
tJv,k -~  + % §  + % §  ~ - - - ~  �9 
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We put 

. ' .  - r~ + t 'l  + . . . +  v., ,  a = II ~-. li , . ,  

Let r > 0 bc  a r b i t r a r y ,  and let 

t 2 vt,  1 
W. = { , ~  n"  : ( a , ~ , ) m  > ~,-i-) a l '  

w .  = . , _ -  , .  = . . . . .  

The funct ions  Wk, k ffi 0, 1, 2 . . . . .  a r e  normegative,  and hence  the funct ions G/~ k a re  lower  s e m i c o n -  
tir~Jous on R n ,  This  i m p l i e s  that each  of the se t s  W k is open.  The capacRy  of the se t  W k fo r  any k is no 
g r e a t e r  t h a n  1:/2 k+2- 

We put 

k, , ,~ 

The s e t  U is open, and the capac i ty  of U does  not exceed e .  We shal l  p rove  ~ G/v~ conve rges  un i formly  on 

the se t  R n \  U. Indeed, f r o m  the cons t ruc t ion  of the se t  U it is c l e a r  that fo r  all k 

for  x~ R n ",, U, 

t 
(C,w.)(.) < 2'~',p 

We take any in tegers  u and q such that v -> ~'k, k > 1. q > 0 and cons ide r  the sum 

V,. p(z) = (C~e,+,) (z) + (C~'..~) (*) + . . .  + (Qv,+ , )  (z) .  

We suppose  tha t  m > k i s  such if.at ~,+ q <  v m.  Then 

o r :  v~l(*) + v~ : ( , )  ~- . . .  ~ ~..q(x).<. % .~{~) + v. h .~(x) + . . . . + c . = { x )  

= w,.(x) + w,.l (z) + . . .  + w. - i  (z). 

This  impl ies  that fo r  xE R n \ U 

t / l 
V ,  q (x) < (G,~,,) (z) k (g,,r,.~)(z) + . . + (G~u=~ ,) (z) < - - -  

�9 ~ !  ~p '2r, 

t t \ t 
z~a- + . . .  + ~ ) < ~ , , .  

Passing,  to the. l imi t  as  q ~ = .  we find that  fo r  a l l . xER n ' , ,  U and for  v > u k 

~,, | V . =  (*) = C~u.. (,) < e,l~e,-, ' 

whence it c l e a r l y  fol lows that the s e r i e s  ~ G/vu(x) c o n v e r g e s  un i fo rmly  on Rn \ U. 

We now cons ide r  the case  in which the functions uuE Lp(R n) have a r b i t r a r y  s ign.  For  any u = 1 , 2 , . . .  
we obviously  have v u = v u + - v u L  By what has  been proved,  there  exis t  open se t s  U 1 and U2. the (l. p) c a p a c i -  
ty of which is l e s s  than e / 2 ,  such that the s e r i e s  

oo 

F, {c,~.') ~.)~.d~ (c,v:)(~) 
~ 1  " E L  

c o n v e r g e  un i fo rmly  on the se t s  R n \ U 1 and R n \ U 2 r e s p e c t i v e l y .  Let  U = U t U U2. 

the s e r i e s  ~ Glvu(x) c o n v e r g e s  un i fo rmly  on the set  R n \ U .  

Then CaptT.p)U < e and 
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The proof  of the t he o re m  is nov," comple t e .  

T I IEOREM 5.6. last u be an)' function of the ck~ss 14Pgin), where  lp ~ n. T h e n  for  any  r > 0 there  
ex i s t s  an ~ n  se t  U ~ R n such that C a p g , p ) U  < t: and the function u is cont inuous on the set  R n \ U .  

P r o o f .  We have u = GD' , where  vE Lp(Rn), Let wv, v = 1 ,2  . . . . .  be a sequence  of funct ions with 
c o m p a c t  suppor t  in R n which belong to the c l a s s  C ~e and a r e  such that ~ v . w v ~  I. p < t,6.V for  =all v. We put 

el---'- wl, v.~--- wv--w~-!  for V~> | .  

Then�84 

and the s e r i e s  ~, 

< ~ and the s e r i e s  

Hv3 % con, rges. 

~ , =  v l + r ' : + ~ . . + v ,  + . . ,  

By T h e o r e m  5.5,  the re  ex i s t s  an open  se t  U' = R n such that Cap( l ,p )U '  

~ G ~ v ,  (z) (5.2) 

c o n v e r g e s  un i fo rmly  on the set  R n \ U ' .  

By T h e o r e m  1.9, the sum of the s e r i e s  (5.2) is equal to (G/x~(x) (I, p) a lmos t  e v e ~ a ' h e r e  on R n  t . , t  
S be the Set of those x for  which the s e r i e s  (5.2) e i ther  d i v e r g e s  o r  e lse  c o n v e r g e s  to a sum dif ferent  f r o m  
(Glv)(x),  Then Cap( / ,p)S = 0. bet  V ~ S be an open se t  such that Cap( / ,p)V < e -  Cap{/ ,p)U' .  We put U 
= V U U' .  Then 

Cap~,. vlU ~ Cap:. mV + Cape ̀  ; y ' .  

The s e r i e s  (5.2) c o n v e r g e s  un i fo rmly  on the set  R n \ , U ,  and its sum is equal  to (Glv)(x) for  all x E R n \ U .  
Since each  of the funct ions GD" v is cont inuous ,  it follows that Gtv is cont inuous on R n N.U. This comple t e s  
the p roof  of the t h e o r e m .  

5.3. L~t f : U ~ R  be any local ly  s u r ~ m b l e  function (15 is an open set  in Rn). We fL,~ a point x0E U. 
The n u m b e r  M is ca l led  the natural  value of the function f at the point x 0 ff 

ff f(x~) iS defined and 

lim ! l l(xo + h X ) -  3[ t d x = O .  
ixjr,:, 

(5.3) 

f. 
lira ~ ~ l ( x o + h X ) - - l ( x o ) I d X = O ,  t5.4) 

then we say that the function f is cont inuous  at the point x 0 in the sense  of convergence  in L 1. By a wel l -  
known theo rem of I~besg~ae [3], the re la t ion  (5.4) is sa t i s f ied  fo r  a lmos t  all x0E U, i .e. ,  the value of the func-  

t i o n  f at the point x 0 is i ts na tu ra l  value at this point fo r  a lmos t  all x 0. 

The se t  of those x for  which the na tura l  value of the function f at the point x does not exis t  is ca l led  
the except iona l  set .  The except ional  se t  of any local ly  summab le  function is a set  of measu re  z e r o .  Fo r  
funct ions  of t h e  c l a s s  LlP(R n) this p r o p e r t y  of s u m m a b l e  funct ions admi ts  cons ide rab le  sharpening .  

THEOREM 5.7 131. Fo r  any function u of the c l a s s  L/P(R n) the e rcep t iona l  set  is a set  of ze ro  (l, p) 
c a p a c i t y .  

5.4. Let E be a se t  in the space  R n. The se t  E is said to be p-except ional  with r e spec t  to k - d i m e n -  
s ional  s u r f a c e s  {more b r i e f ly ,  except ional  in the sense  [k, p ] ) i f  the p -modu lus  (see [1]) of the family  of all 
Lipschi tz  s u r f a c e s  pa $s i ng  th roagh  the points  of the set  E is equal to z e r o .  It is shown in [1] that in o r d e r  
that  E be except ional  in the sense  [k, p], whe re  kp -< n, it is n e c e s s a r y  and suff icient  that there  exis t  a func-  
t ion f ~ 0, fE 1.9, such that 
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for  all xE E., while the function Uf(x) is not identically equal to  ,~. 

TIIEOREM '5,8. The c l a s s  of se ts  which are  exeeptiom~l tn  the sense  [k, p] coincides with the c l a s s  of, 
s e t s  of ze ro  ~ ,  p) capacity*. 

Proof .  Let E be a se t  which is exceptional in the sense  [k, p | .  Then t he r e  ex is t s  a function f~ Lp 
such that Uf ~ ,o-and Uf(x) = 0~ for  all  x~  E. Since Uf ~ ~, it follcm.s that 

I t ( y ) l v l ' - " d y <  ~ 
I r i S *  I " 

and th is  means  that  

lY--!l<t I x - - Y l * - " l ( y ) d y  = 

f o r  all  xEE.  It is not difficult to see f rom this that (Glt')(x) =0~ for all x6 E, i .e . ,  CaP(l ,p)E = O. 

Converse ly .  suppose that Cap(/ ,p)E = 0 .  Let E m =  {xEE: m - I  ~ [ x [  <reX, where m = 1 , 2  . . . . .  

Then E = Em. Let frnE Lp(Rn) be such that 
~ .*y I 

(Cd~)  {s) ~ oo 

, 1/2m .for  all •  m .  We may hereb): a s s u m e  that fro(x) =0  for Ix[ < m - 2 ~ m d I x [  > m  + 1 and t h a t [ [ f m I L p  < z �9 

We p u t f = f :  + f, + . . .  + fm + . . . . .  It is then easy t ocheck  that ~ f ( y ) I y I k - n k i y  < ~ , a n d h e n c e  Uf(x) ~ ~. 

On the other hand, it  is e a sy  to ver i fy  th0t Uf(x) = ~ for  all x~. E. This comple tes  the proof of the theorem.  

w 6 .  V a r i a t . i o n a !  C a p a c i t y  

6.1. t tvnceforth l denotes  an integer ,  l > 0, p > 1. Let :k and Bbe closed sets  in R n. We say that the 
se t s  A and B form a r egu l a r  pa i r  ff they have no common elepaents and one of them (say A) is botmded while 
the other  {say B) is such (-hat i t s  complement  is abounded set .  We denote by C~{.,\, B) the set  of nil func- 
t ioaa ~ E C  ~ s u c h t h a t  9~(x) =1  for  xEA and 4'(x) =0  for  all xEB.  

[~ t  r C~ B). We put 

D~.p (,f~) : " ..d,_ l O ~  ~ j ",Ix. 

The integral  D/ ,p  is cal led the Dir ichlet  integral of type (/, p) for the function ~'. The g rea t e s t  lower bound 
of the quantity Di, p(.~) on the set  C~~ B) is called the variat ional (l, p) capaci ty  of the pair  of se ts  A, B. 
We shall denote it by the symbol  C.V.(/ ,p)(A, B). 

We note some  p r o p e r t i e s  of the variat ional  ( / ,p)  capaci ty  which follow direct ly  f rom the definition. 

LEMMA 6.1. Let (A1, BI) and ~'kz, .Bz) be two regular  pa i r s  of se t s  such that A! ~- A~, BI c. B2. Then 

C.V,.v~(A, B~) <~ C.V~z.~;(Az B~). 

The l emma Is obvious f rom the inclusion C'~(.~z, B 2) c C'*(A,, Bt). 

LEMMA 6.2. Let q~6 C~(R n) be a function on R n with compact  support .  Then for  all x 6 R  n the fol-  
lowing integral  formula  holds: 

11 
cp(s)---- yt,, I ~ u"T 

R n | o i  . t 

( z - -  ypL~tp(y)  dy. 
I . -y l"  

where 3'l. n is a constant .  
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Proof.  L e t e b e  any unit vector .  Let r0 > 0 h e  such that for r >r~ .~(x  + re) =0 .  We take any r >r0.  
Let r = ~{x + re}, Then ~(x) = r We express  r by Tay lo r ' s  formt, la with the remainder term in 
integrat~f0rm Involving the values of the derivat ives of order  no grea te r  than l of the function r at the p,~int 
r .  We then obtain 

We integrate both sides of this equation with respect  to the unit vector e over t he sphe r  e P'n-I, and after 
some obvious r ea r rangemen t s  we obtain the required formula.  The constant gl, n is hereby equal to wn_ t 
/ t I -1 ) I ( -1 ) I -L  

THEOREM 6.1. Let (A, B) be a regular  pair  of sets in R n. We suppose that A is bounded and let d 
be the d i a ~ t e r  of U = R n \  B. Then 

Cap ,: ~A. ~< K('.V.,~. MA,/~) ,  

where K depends only on l, p, n, and d. 

Proof.  We take any function (PECk(A, B). By Lemma 6.2, 

It is easy to see that 

i 2 dg 

The express ion on ihe right side of the last inequali.~" which multiplies ! x - y ! l - n  we denote by v(-'). We have 

: - t 77f"-' 

s~nce v(y) = 0 for y~ U. From the proper t ies  ,.)f the function Gl(x) noted in Section 1.2, there exists a con- 
slant L(d) such that for Ixl ~ d lxl l-n <- L(d)Gl(x). Hence, for all xEA 

i < I,~ ( - ) i  < y,,,,L ( ,0 ~ o,  (.~ - v) ,., {~) a,j = u ( d ) )  C,, (~ - -  v) v {v)dy. 
ti n 

From this we obtain the est imate  

Cap(~,p) A ~"" K ! [v (y)l~dy :: KD,.,,, (~), 
R n 

where the constant K = 1A y(1 ' n)L(d)l p. Since ~p was an a rb i t ra ry  function in C~(A, B). this completes the 
proof of the theorem.  

For  any regular  pair  of closed sets  A, B we put 

6(A ,B)=  inf t x - -y [~>0 .  

LEM~L a- 6 ,3 .  
that for any' a 

For  any regula r  pair  of closed sets (A, B) there e• a function ~E C"(A, B) such 

for all X{~ R n, where Ka  does not depend on the sets  A and B. 

Proof .  We pu t  
t 

, ( x )  = ~-.----a fo, t*l < g ~ ,  
, ( x ) = 0  fo, I x l > V a .  
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We aet 

O(x) ~ -=  ~ ( z  -- v), (6.1) 
$ 

where v runs through the set of all vectors  with integer coordinates in R n, It Is easy to see that 0(x) > O 
for  all x. More~-er ,  for any point x there exists  a neighborhood U in which only a finite number of te rms  
on the right side of (6.1) arc  different f rom zero.  This implies that 0EC ~. 

We put r/(x) = r  Then ~EC~(Rn), r/(x) = 0 for ix[ >- d'n, and for.all  xERn 

w 

The functions ~ ( x -  u) form a partition of unity in the space R n. The support of the function r l(x-  v) 
is hereby the sphere with center  u and radius ",:n. 

N(~,' let h = (1/2.~rn)6(A, B). We Consider the system of functions ~?[(X- vh)/h],  where v is a vector 
with integer coordi, 'tates. Let u~, u2 . . . . .  Up be all the vectors  v for which the support  of the function ~[(x 
- ~h)/h] intersects  the set  A. We put 

(6.2) 

It is c lear  that i EC~(R n) and ~(x) = 1 for all xEA.  Further ,  by the choice of h each of the functions ~[(x 
- ~ h ) / h ]  is e ~ a l  to zero for xEB.  tlence l:(x) ~ 0 for xEB.  We note that for any point x there is a neigh- 
borI~ood U in which not more than k n < ~ of the ft~:nctions t?[(x- ~h)/h] are  different from zero.  It is easy 
to see that 

I ' ' o  

where M a = max[  DC~rl(x)]. This implies that 

IDa;(=) J ~ k.M~,/h!r = K , , / [ 5 ( A ,  B)] I~I. 

T h e p r o o f  of the lemma is now complete.  

LEMMA 6,4. For any compact  set A c Rn(/,  p) capqcity of A is equal to the grea tes t  lower bound of: 
ttie quantity (]lui] LIp)P taken over the set of all functions uE Cr n) belongirtg to L/P an(t such that u(x)  ~_ 1 
on the set A. 

Proof.  L e t u = G l v ,  where vE~'~ , ~ n ) , v  > _ O. Thenu(x)  >_: l f o r a l l x E A .  Le th  >Obe  arb i t ra ry ,  
and let 

A,, = {2 6/~": o(~', A) ~ h}. 

We put 1 - 5 ( h )  = inf u(x). The function u(x) is lower scmicontinuous.  From this we easily conclude that 
v E A b 

5(h )~0  for  h -*0 .  We mollify the function u with the pa ramete r  h. We obtain tt~e function 

u~ (2) = ,]th~ (z) = (GMhv) (x). 

We note that for all x E A 

Let 

u^ (x) .lily (x) 

Then ~ E  A s. r~(A), Ch--*v in Lp(Rn), and the function (PhEC ~. We thus see that the set of those vE ~'.~,~ (A) 
for  which G/vEC ~' is dense in ~ ,  ~,~ (A).  This c lear ly  implies the required result .  
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THEOREM 6.2. I,ct (A, B) be any regulr)r pair of closed sets In Rn, where the set A is bounded. Then 

C. t".~,, ~,(A, /r ~-'. K Cap~:. ,,,l, 

where K depends only on l, p, and 5(A, B). 

Pr_ ~x~f. Let ~ ( C ~ ( R  n) ~ LlP(R n) be any function such that ~*(x) ~ 1 for all x~A,  
function whose existence was demonstrated in Lemma 6.3. We put 

Now let g be  the 

* {=) = ; (=) ' r  (~ ) .  

Then r C'~(..X, B), We have: 

,, ~ l! }~," 
C, l'.( ,~)(A, B ) ~ D ~ )  (~) ~ z.J -:7.( 11-" ~,,t:)} ": ( I x :  " (6.3)  

It is easy'  to see that for ] a [ = l 

1/)~l;~(xlli~g t l  ~ iD:~(x)i .  
L;~<t 

where M = max l-D~ff(x)l This implies the inequality 

De.,(~;) "-w h'dl ~" w~' ~6.4) 

where the constant K t depends only on max ] DflC(x)l, and hence K 1 depends fin:flly onty on l, p, n, and 

5(A, B). From the equivalence of the norms [! ]IW/and 11 II L p for integral I, there exists a constant K 2 
such that P $ 

Com~)~,.ring incqunlitics (6.3), (6.4), and (6.5), we obtain 

(6.5) 

C. V.(t.) (A, B) c R i ~i' il ~" 
L[" 

Since ~(~ C~(R n) ~ L/P(R n) w:ls arbitr : l ry,  this implies the inequality 

C. Vi~ p)(A, H ) ~  KCap~. v~.l. 

The proof of the theorem is now complete. 
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