INCORRECT PROBLEMS IN TOPOLOGICAL SPACES

V. K. Ivanov UDC 513.881

INTRODUCTION

1, Incorrectly formulated (strongly unstable) problems can be usually reduced to the determination of
x from the equation

Az = ¥, (l)

where x and y are elements of the metric spaces X and Y, whereas A:X —Y is a mapping of X into Y, with_
no continuous dependence of x on y. In most cases, X-and Y are endowed with a linear structure and a num-
ber of other assumptions {such as completeness and the property of being Hilbert spaces) are made; the op-
erator A is assumed to be linear and continuous, etc.

In recent years it was shown that in many cases it is possible to replace continuity by closure [1-4{;
a number of propositions, formulated at first for linear equations, were found to be valid also for nonlinear
equations [5, 6]. Anever-greater role is being plaved by weak topology, which is nonmetrizable in non-
separable spaces.

These results show that it would be useful to consider Eq. (1) under the most general assumptions, by
minimizing the requirements towards the spaces X and Y, and the operator A. This is precisely what we
are trying to do in this paper. Let us also note that incorrectly formulated problems in topological spaces
were considered by Gorbunov [7, 8] under a different aspect.

2. Our problem can be formulated as follows. Let X and Y be topological Hausdorff spaces, and A:X
=Y a mapping with a closed graph. For a y,€Y (the exact value of the right-hand side) there exists a
unique pre-image x; €X. Let {\.'5} be a filter of neighborhoods of the point y;. To each neighborhood Vg
it is required to assign a point x5 € X such that the generalized sequence {xa} converges to Xg.

In §1 we analyze the concept of a "correct® problem. Already the first rigorous approach to the
solving of incorrectly formulated problems (Tikhonov [9]) was based on a topological lemma, according to
which a continuous one-to-one mapping of a bicompact space into a separable space is 2 homeomorphism.
In §2 we extend this lemma to mappings with a closed graph (Theorems 3 and 5). A particular case of such
an extension is examined in {1]. In § 3 we present a generalized abstract analog of the method of quasi-
solutions {10]. This generalization is new also for metric spaces.

The results of § 4 can be regarded as an abstract analog of variational methods of solution of incor-
rectly formulated problems [11, 12, 6}.

In the following we shall agssume throughout that X and Y are Hausdorff spaces and that the image AX
of the space X is a set, dense in Y.

§1. Correct and Incorrect (Unstable) Problems

3. Let A:X—Y be a mapping of the Hausdorff space X into a Hausdorff space Y. We shall consider
Eq. {1} at the point y = y,. Hadamard's well-known correctness conditions,applied to Eq. (1) in local inter-
pretation, can be formulated as follows. For a given point v, the solution x,: 1) exists, 2)is unique, and 3) de-
pends continuously on y.

Condition 3 will be called the stability of the solution. Let us note that Conditions 1 and 2 are not re-
lated to the topologies in X and Y; only Condition 3 is of topological charaeter.
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Let us sharpen the concept of correctness in relation to Eq. (1),

Let {V&} be a filter of neighborhoods of the point y;. From the denseness of the AX in the space Y it
follows that any neighborhood Vg (irrespective of the existence of a solution of Eq. (1) at the point y,) has a
nonempty complete pre-image A~'Vg in X. Here & are subscripts, belonging to a partially ordered set .

Definition 1. Let {Vs} be a filter of neighborhoods of ¥4 We shall say that the problem of solving
Eq. (1)} fory = y, has been correctly formulated if;

1) the intersection {1 A"Vé of complete pre-images contains only one point xg:
3

2) a filter in X, generatedbythetotality of complete pre-image A”‘Va, converges in x;.

It follows from Condition 1 that the totality of sets A~V is a basis of the filter {A~'Vg}. Condition
1 of Definition 1 signifies the existence and uniqueness of the sp!ution of Eq. (1) for ¥ = ¥q, whereas Condi-
tion 2 amounts to the requirement that the solutionbe continuously dependent on the initial data.

In the definition of correctness it could be assumed that Y is an abstract set, by supposing that to-
gether with a topology in Y we are given a filter {Vg} with the following property: the intersection of all sets
Vg consists only of one point y,. Yet we shall assume Y to be a topological space,

Let us note that our definition of correctness is weaker than the ordinary definition even in the case of
topological spaces (sce [8]), differing in two respects:

1} It has local character.

2) We do not require that y, be an interior point of the domain of values of the mapping A. Therefore,
we can have, as closely as desired to y,, points y which do not have pre~images in X. For such y, Eq.(2) has
no solutions.

4. In solving incorrectly formulated problems, the existence and uniqueness of the solution are assum-
ed known in most cases (in the absence of uniqueness we usually seek a "normal solution® in the sense of
Tikhonev). Of basic significance in such problems is usually the construction of an approximate solution xg
on the basis of an approximate right-hand side y5. According to Tikhonov {19], and approximate solution is
an element x5 € X, constructed by certain rules from the approximate right-hand side yg, such that x5 —x;
for yg *=y,;. It is not required that x5 satisfy condition (1) for y = y§.

Developing this idea, we shall extend the concept. of approximate solution of the right-hand side. More
precisely, an approximate assignment of y; is understood in the sense of assigning a neighborhood Vg of the
point y,. This can be done on the basis of the following consideration. If Y is a metric space and a point of
this space is assigned with an accuracy & > 0, this will signify that we do not distinguish between points which
are less than a distance § apart. This means that instead of a *point,* we always have a set of small diam-~
eter. In the following we shall assume that Condition 1 of Definition 1 always holds, i.e., for y = y; Eq. (1) has

- a unique solution x; € X. Our problem is as follows.

Problem Supposethat under a mapping A:X -=Y the point y, €Y has inXauniquepre-image x,. Toeachele-
ment Vgof afilter of neighborhoods of the point y, it is requiredtoassign apoint x5€ X suchthat xg—=x,. Any xg,
possessing this property, will be called an approximate solution of Eq: (1), corresponding to a neighborhood
Vg of the point y,.

5. The problem, formulated in Subsection 4, is easy to solve if it ig correct, i.e., in addition to Con~
dition 1 of Definition 1 we satisfy also Condition 2 of stability. As xg we can take any point belonging to a
complete pre-image A"Vd of a neighborhood V5. The above condition of completeness of the domain of val~-
ues R(A) of the mapping A into Y ensures the existence of such x5. Such a methad requires the determination
of x from the condition Ax € V5, which in the case of metric spaces reduces to the solving of inequalities.

With our definition of correctness, a problem will be incorrect at a point y, if it satisfies none of the
conditions of correctness. We confine ourselves here to & study of incorrect problems that do not satisfy
Condition 2 of Definitions 1. For these problems we require the fuifillment of the conditions of existence and
uniqueness of the solution of Eq. (1), but we do not require stability. This means that the set of complete
pre-image A"Vé of neighborhoods of y; has as its intersection a single point x;, and hence it is a basis of the
filter {A~!V4}, though the convergence of this filter to the point x; is not required. Such problems will be
called unstable problems.



For solving unstable problems (in the sense of Subsection 2) it {s not possible to uge directly the
method of Subsection 4. One possibility of solution Is to restrict the mapping A to a bicompact set M of the
space X, which under additional assumptions makes it pogsible to use the method of Subsection 4. We shall
show that this can be done on the agsumption that A s a mapping with a closed graph.

§2. Mappings with a Closed Graph
6. As {8 well known. a set

G = {z, Ar: 7€ X} (1a)

in the topological product X xY. is called a graph of the mapping A. In considering Eq. (1), we shall as-
sume henceforth that A is a mapping with a closed graph.. For the sake of generality, it will be assumed in
Definition 2 that the domain of definition D(A) of the mapping A may not coincide with X. For a mapping with
2 closed graph it is possible to give two equivalent deﬁmtions

Definition 2. A mapping A:X—Y is said to be a mapping with a closed graph if:
A) the graph G of the mapping A is a closed set in XxY, or

B} from the fact that the filter {Ea} on D(A) converges in X to x €X, and a filter, generated by the
gets AE4 <Y, converges to yEY, it follows that xED(A) y = AX.

" In {B) we can use generalized sequences instead of filters.
THEOREM 1. Parts A and B of Definition 2 are equivalent.

The equivalence of A and B can be proved in the same way as the equivalence of the two definitions
of a closed operator. in the theory of normed linear spaces; it is only necessary to replace denumerable
sequences by filters (see also p. 27 in [3]).

It is well known that the graph of a continuous mapping is closed ({14], p. 84); therefore closed map-~
pings are a geperalization of continuous mappings.

7. Everywhere.in the following, A will denote a mapping with a closed graph whose domain of defini~
tion D{A) coincides with X. )

THEOREM 2. In a mapping with a closed graph A:X ~—Y the image of a bicompnact set is closed.

Proof. Let M be a bicompact set in X, let N =AM he its image in Y, and ¥ a limit point of N. Then

there exists on N a filter {F,}, convergent to §. The totality of complete pre-images A"Fa forms a basis
of the filter {A7'Fq} on M.

Let {Uy} be an ultrafilter on M that contains {A™'Fy}. Owing to the bicompactness of M, the ultra-
filter {Uy} will converge to a point X€M. The image {AU,} of the ultrafilter {Uy} is a filter that majorizes
the filter {F }; therefore AU, —¥. Since the graph of the mapping A is closed, we then have by definition
2y = Ax and since X €M, it fo!Iows that y €N,

A direct consequence of this theorem is the following:

THEOREM 3. Let A: M —Y be a one-to-one mapping of the bicompact space M into a Hausdorff space
Y that has a closed graph. Then the inverse mapping will be continuous on the image N = AM.

Theorem 3 can be also ohtained from Exercises 5 on p. 129 of {14]. This assertion is made under
stronger assumptions also in {1] (Theorem 2 on p. 834), where it is used for the solving of incorrectly for-
mulated problems. By requiring (instead of closure) the continuity of A, we obtain a well-known topological
lemma (p. 148 in [15]) that lies at the basis of the theory of incorrectly formulated problems since the ap-
pearance of Tikhonov's paper [9].

THEOREM 4. If the pre-imége M of a bicompact set N < Y is not empty under a mapping with a
closed graph A:X Y, then M will be a closed set.

The scheme of the proof of this theorem is the same as in Theorem 2.

8. In this subsection we shall consider a stronger version of Theorem 3, needed by us.
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LEMMA. Let M be a bicompact space, and [Eg} a filter on M that has a unique tangency point R. Then
. Eé .

Remark, If the bicompactness of M is not required by us, the agsertion will be false. Example: a
filter on the sét of real numbers whose basis consists of the sets F, = {0} U(n, +=},n=1,2,... ([16],p
14).

Proof. By A we shall denote a directed get of indices §. We shall assume that x is the unique point
of tangency of the filter basis, but the filter does not converge to it. This means that there exists a neigh-
borhood U(R) of the point X such that none of the sets Eg is completely contained in U{X). Then the set Ps
-=Eg U{x) is not empty for any 6€ A. The set P§ consists of the basis of a mter Indeed, et « € A and g€ A.
Then E, =E, NEg belongs to the filter {Eg} and Py = E - Ulxg) belongs to the intersection PN Pg. The
filter {Pa} defined on a bicompact space M, has a tangency point {x;}. The filter {Es} is weaker than the
filter {PG} therefore x, is also a tangency point of the filter {Es}, and in view of its uniqueness dt coincides
with X. But this is impcssible, since all the sets Pg lie outside a neighborhood U(x) of the point x,

9. THEOREM 5. Let.A:M —Y be a mapping, with a closed graph, of the bicompact space M into a
Hausdorff spac space Y, e Y, and ¥o a point of Y that has in M a unique pre-image x;. If {V5} is a filter of neighbor-
hoods of the point y,, the complete pre-images Eg = A~V will formthe basisof a filterthat converges tothe

point xg,.
Proof. It is easy to check that the set Eg5 forms the basis of a filter on M. Owing to the bxcompact-

ness of M, the filter {Eé} has on M a tangency point. It suffices to prove that every tangency point x of the
filter {Eé} coincides with x,; by virtue of the lemma it hence follows that Eg§ —~x,.

Thus let X be a tangency point of the filter {Eg}. There exists a filter {Q,} that majorizes {Eg} and
converges to X. As a basis of such a filter we can take the intersection of the sets Eg with the nelghbor-
hoods of the point X. The filter of the images {AQ,} majorizes the filter {Vs}; hence AQs ~ vy

Thus Qy —~ X, AQ — y,, and since A is a mapping with a closed graph, it follows that AX = y;. But
¥o has in M a unique pre-xmqge Xq; therefore ,c = Xg-

COROLLARY. On a bicompact space, Condition 2 in the definition of correctness (Definition 1 of
Subsection 3) is a consequence of Condition 1.

§ 3. Extension of the Method of Quasisolutions

10. In this section we consider an extension of the method of quasisolutions {10] to the problem, ex-
amined in Subsection 2. We shall assume that for a given y = y; the equation

Ar o=y

where A is a mapping with a closed graph, has a umque solution x, that belongs to a given compact set M
«X. For any neighborhood Vs, belonging to the basis of a filter of neighborhoods {V 51, it is required to
construct an x§ € X such that x5 — x.

Let us denote by Eg a complete pre-image of the set Vg in AM:
Ey = M N A“’Vo.

The sets Eg are not empty; each of them contains the point x,, and they form the basis of a filter {Eé}, which
according to Theorem 5 converges to the point x,. In each set Eg let us select a point x5. By virtue of
the corollary of Theorem 5 we then have x5 — Xy, and the generalized sequence {’(5} ig that sougtit,

11. Let us consider the case that X and Y are metric spaces. As the indices & we usually take posi~
tive numbers (0 < & =§,), and for each § we assign a yg such that ply,, yé) < 5 {the approximate value of y,}.
The elements of the basis of a filter of neighborhoods of the point y; are taken in the form of spheres

Ve == {y: oy, ye) <o}, 2

each of which contains y; and ys. Usually, the bicompact set M is likewise assigned with the aid of a sys-
tem of inequalities. Then the selection of x5 reduces to the solving of a system of inequalities that ensure
the fulfilment of the relations

€M, Az €V, )



In {10] it is proposed to tnke xg in the form of an x in M that minimizes p{Ax, y§). This xg satisfics
inequalities (2}, yet the incqualities (2} offer greater possibilities for the selection of xg. On the other hand
the accuracy of qunsisolutions inthe sense of order of mognitude does not exceed the accuracy of the ele-
ments, satisfying (2).

Forn> 0, let
w{n; 2o} == sup px(z,7e) for 2 €M, p(Az, Axe) < .
"From Theorem § it follows that
limo(n.z,) = 0
-
If Vg is defined by (2) and x5 is any element, satisfying (3), it follows from the fact that Axg and yg
belong to Vg that
p(Azs, yo) = p{Azs, ye) + plye, yo} < 28,
hence
o (18, 7o) < w{26; o). 4

If y5 has a pre-image ;(5 in M, this pre-image will be a quasisolution, since p(A.\-cé, ¥g) = 0. On the other
hand, as can be seen from the definition of the quantity w{n; x,), it may happen that

o (Zs, 20) == w(5; xo), {5)

i.e., we cannot guarantee that the quasisolution deviates from the exact solution by less than w(8; x;). The
only advantage in using a quasisolution X instead of x5, satisfying (3), consists in the coefficient 2 of §,
which does not affect the order of the deviation for § — 0.

§4. Variational Method

12. To topological spaces it is possible to extend a type of variational method {11, 12, 6] that was
rigorously formulated for the first time by A. N. Tikhonov. In Hilbert spaces and (as is shown in [17]) in
Efimov-Stechkin spaces {18] this method is b3~ed on weak compactness. We shall describe an abstract
analog of this method.

Definition 3. In a space X let us define a nonnegative numerical functional Q(x) with the following prop-
erties: 1) For any positive ¢ the set

M. = {2: Q{z) < ¢}
is nonempty and bicompact;
2} for any ¢ = 0 there exists a point x € X such that Q(x) = c.

Under these conditions, X = U M.

Such a functional is said to be stabilizing.
Example. Let X be a Hilbert space with a weak topology, Q(x) = [[x||.

In applications it is often assumed that S = ” ' Mg is the intrinsic part of the space X, but Condition 2
does not reduce the generality, since the space X Can be aiways taken in the form of the set S.

Cwing to Property 2 of Definition 3, there exists for any nonempty set E < X a point xg in X at which
§1{x) reaches its exact infimum on E: Q(xg) = mf Q{x), yet this point may not belong to E. We shall say that

a function ©2(x) has the property of minimality if for sets E whose closure E is bicompact we always have
Xgp€E.

13. In this and the following subsections we shall assume that in Eq. (1) the quantity A is a mapping
with a closed graph, and for y = y, this equation has in X a unique solution xg. We shall show that in the
presence of a stabilizing functional the assumption of existence of a solution and the condition 2(x;) > 0 are
sufficient for solving the problem, posed in Subsection 2. In the present subsection we additionally assume

789



that the minimizing functional has the property of minimallty. In Subsection 14 we do not make any ad-
ditional assumptions.

The construction of a generalized sequence {xd}, convergent to x,, 18 based on the following reagon--
ing.

Let Q(x,) = ¢y and ¢4 > 0.
The set
Mo = {2: Q{z) < ca} {8)

is nonempty and bicompact. As in Subsection 10, there exists here a filter {Es}, convergent to x;, such that
Eg = M;N ATV, but the selection of the elements xg from each Eg is more difficult here.in view of the fact
that the set M, is not given, since the element x; is unknown. This difficulty can be overcome by taking X§
ini the form of an element that minimizes Q2(x) on the closure Eé of the set E5. Then Q(xz) = ¢, and xz€M,.

This idea is formulated in the following theorem.

THEOREM 6. Let us assume that in Eq. (1), A: X —Y is a mapping with a closed graph, the point Ya
has in X 2 unique pre-image x,, Q(x) is a stabilizing funct;o»mi and there exists a point at which 2{x) reaches
its exact infimum under the condition Ax €V, where Vg is an element of the basis of a filter of neighbor~
hoods of the point y,. If Q(x) has the property of minimality, then xg — x;.

Proof. Let M, be defined by (6), and let Eg = I, t’?A”Vé be complete pre-image (in M,) of elements
of the basis of a filter of neighborhoods of the point ¥5. By Theorem 5 the sets E form the basis of a filter,
convergent to x,.  Since M, is regular in a relative topology (as a compact space), it follows that a filter
{Eé} generated by the closures of the sets Eg, will also converge to x;. Each Eg is a closed subset of a-
bicompact set M, being therefore bicompact, too. By the property of minimality weé have x5 € Eé and there~
fore xg — x;. The minimality condition for £(x} can be relaxed, but with eur method it cannot be completely
dropped. This can be seen from the following example.

Let X =Y = [0, 2] be a segment of the number interval with a natural topology, and A an identity map-
ping such that Eq. (1) has the form
z == y.
Let us write y, = 2; hence x; = 2. Here the problem is even correct.

. Let us define the stabilizing functional as follows: Q) =1 ~-xfor 0 =x <1; Qx) = /2 - (1/2)" for
2/ ex =2~(1/2%, n=1,2,...; Q@) =1.
Q{x) is a function, continuous from the left. It is easy to see that the conditions of Definition 2 are

satisfied. For neighborhoods Vg(yy) = [2 ~ 6, 2] and & = (1/2)"77, n = 2, 3, we have inf Q(x) = 1 — (1/2)271,

But this infimum is reached at the point Xg = (1/2)8~! and for 6 — 0 the convergence xg — X, docs not oceur.

14. It is possible to give another method of construction of a sequence {\:6} convergent to x,, that
is based only on the properties of the stabilizing functional Q(x), contained in Definition 2, without requiring
the fulfillmentof the minimality property.

Let A be a set of indices, defining the basis of a filter of neighborhoods {Vg} of the point y;. We shall
assume that on A, a positive bounded numerical function n{d) (0 < 7{8) = #,) is defined, with the following
properties:

a} for 8, = 6; we always have 7{8,) = (6;) (monotonicity);
b} lim n(8) = 0

THEOREM 7. Let us assume that in Eq. (1), A:X—Y is a mapping with a closed graph, the point y, has
in X a unique pre-image x;, and Q(x) is a stabilizing functional. For any 6€ 4, let the element xg be con-
structed such that Axs €V and it satisfies the inequality ¥ = Q(xg) < y5 + 15, where y5 = inf Q(x) for Ax€ Vs.
Hence x§ —* x4

Proof. From the definition of an exact infimum follows that for any 4€ A, there exist xg, satisfying (7).

Liet us introduce the set
My = {£:Q(z} < co+ to}, @ = Q(20).
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This set {3 bicompact and x€ My By Theorem § the sets Eg = M, ﬂA"Vd form a basis of a {ilter on

M, convergent to x,.

From the Incqualities
Yo < Q(xs) andys + {8} < o+ Mo

and inequality (7) follows that x5 € M,. Since Ax€ Vg, we conclude that xg€ Eg. But in this case x5 = x,,
which completes the proof of the theoremi. With the use of this theorem, the determination of xg for a given’
neighborhood Vg of the point y, reduces to the determination of y5 = inf Q(x) for Ax €V, and of xg from the
relations

Yo < Q(x) Syot e, AzE€Vy

as in § 3, In the case of metric spaces this normally reduces to the solving of systems of simultaneous in-
equalities.

CONCLUSIONS

15. According to the methods of § 3 and § 4, we are considering the solution on a bicompact set M,

taking as approximate solutions the elements of this set; i.e., we restrict X to a bicompact space M. .

vBy virtue of the corollary of Theorem 5, this re-establishes the stabilitv of the problem. Thus by

using blcompact sets and the related additional information about the solution, it s possible to go over {rom
an incorrect problem to a problem which is correct in the sense of Tikhonov {see [19], p. 4).
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