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ALGORITHMIC DIMENSION OF NILPOTENT GROUPS 

S. S. Goncharov and B. N. Drobotun UDC 517.15 

The concept of algorithmic dimension was introduced in [i] for algebraic systems ~ . 
In the present article, we investigate the connection between the algorithmic dimension 
(dimA~) and the algebraic properties of the system ~. 

It is well known [2, 3] that constructible Abelian groups of infinite rank (Prfifer) are 
of infinite algorithmic rank. Thus, for torsion-free constructible Abelian groups, we have 
the following correlation between algorithmic and algebraic properties [3]: a group G is 
self-stable if and only if it has finite rank. The results that follow (Theorems 1-3) will 
show that for constructibel torsion-free nilpotent groups, this correlation already takes 
on a more complicated character. In Secs. 2 and 3 we will construct examples to illustrate 
this; in Sec. 3 we give some sufficient conditions for nilpotent groups to be self-stable. 

w All the necessary notation and definitions used in this article have been intro- 
duced in [4-6]. Let us recall some of them. 

A countable algebraic system ~ is said to be constructible if there exists an enumera- 
tion w: N ~ ]~] of the underlying set of the system, relative to which the fundamental pre- 
dicates and functions of the system become recursive. In this situation, the enumeration is 
called a constructivization and the pair (G, v) is said to be a constructive algebraic sys- 
tem. Two constructivizations v and ~ of an algebraic system ~ are said to be auto-equivalent 
if there exists a recursive isomorphism ~ of the constructive system (~, v) onto(~, ~); i.e., 

is an automorphism of the system ~,such that 

(vn N) (n) = 

where f is a general recursive function. The maximal number of nonequivalent constructiviza- 
tions of a system ~ is called its algorithmic dimension (dimA~). 

Suppose that a group G is given by generators X = [~/ieN} and defining relations {g~/~eN}. 
We will say that G is locally finitely presented if for every finite subset {x~o,x~ ..... xh} of 

X the subgroup G' of G generated by the elements of this subset can be presented in the form 

G' = <X~o' x~ . . . . .  x~; gjo (X~o, x~ . . . . .  x~) ..... gJ~ (X~o' G . . . . .  x~)>. ( 1 .1 ) 

The functions t=6(i0, ii, .... $), ]r=G(i0, ii .... , i~) (r=1, 2 .... , t) are called defining functions of 
the group G. 

Proposition i.i. If the group G= <{~/~N]; {gJ/j~N]> is locally finitely presented, with 

every finitely generated subgroup of G residually finite, and the defining functions of G 
are general recursive, then the word problem is solvable in G. 

Proof. We will indicate an algorithm to decide the condition G ~ ](x~o,x~ I ..... x~h ) = e, 

where ](x~o , x~1,..., x~h) is an arbitrary word in the generators {~/~N}. When we apply the hypo- 

theses to the sequence <i0, il,...,ik> we obtain a subgroup G' of G of the form (i.i). Ob- 
serve first of all that 

. . . . .  . . . .  

We now proceed to define two processes. 

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 30, pp. 
March-April, 1989. Original article submitted January 23, 1987. 

52-60, 

210 0037-4466/89/3002-0210512.50 �9 1989 Plenum Publishing Corporation 



I. By hypothesis, the relations 

~o'  ~ . . . . .  gh ( 1 . 2 )  

among t h e  g e n e r a t o r s  ~o, xi~ . . . . .  xl h can be found  e f f e c t i v e l y .  I f  G' ~ f ( x % , x q  . . . . .  x%), t h e n ,  by 

enumerating the consequences of the system of defining relations (1.2), we get to the word 
/(x%,xq ..... x~) after a finite number of steps. 

II. There can be at most countably many finite groups with generators xi0 , xi~.o.,Xik ~ 
Let G~ (i~N) be some GSdel enumeration of the groups of this set. 

If the relation G'~/(x~o,x q ..... x{k)=/=e applies, then, in light of G' being residually 

finite, there exists a homomorphism ~ of the group G' onto some group G s in the set {v{/i~N}, 
t I ! r 

such t h a t  G ~ / ( x { 0  ~ x~l . . . . .  xik )=26e, where x ~ j = ~ ( x i j )  ( ] = 0 ,  t . . . .  , k).  

The essence of the second process is in our finding a homomorphism ~ of the group G ~ 

on to  t h e  group G, in  t h e  c l a s s  {ci/~eN}, such  t h a t  Gs~g~r x%,xq . . . .  , x ~  = e ,  ~ f  x%,x h . . . . .  ') , x~ =/= e (r = 0, 1, . . . ,  t ) ,  where x ~ =  ~ (x~) (] = 0, t, . . . ,  k). 

By imp lemen t ing  t h e  p r o c e s s e s  I and I I  in  p a r a l l e l ,  we can d e t e r m i n e  a f t e r  a f i n i t e  
number s t e p s  w he the r  o r  n o t  t h e  r e l a t i o n  G ~/(x~0,  x q . . . .  ~ x % ) =  e a p p l i e s .  

We w i l l  need t h e  f o l l o w i n g  r e s u l t  [6,  Theorem 3 2 . 2 1 ] .  

THEOREM t . 1 .  Every  f i n i t e l y  g e n e r a t e d  t o r s i o n - f r e e  n i l p o t e n t  group i s  r e s i d u a l l y  a f i -  
n i t e  p -g roup  f o r  e v e r y  pr ime p. 

We w i l l  s ay  t h a t  a group G i s  X - g e n e r a t e d  ( X ~ G ~  over  G i f  G = <G, X> and X ~ G = ~ .  
If X is finite, we say that G is finitely generated over G; if X is infinite, then G is in- 
finitely generated over G. 

w Let F=F(x, y, y~, y2 .... , y ..... ,) (n~N) be a free group in the variety of two-step 
nilpotent groups, freely generated by x, y, yz, Y~,"',Yn, .... We define H to be the minimal 
normal subgroup in F generated by the relations 

where Pi is the i-th prime. 

yVi[x ,y] - l=-e  (i 1,2 . . . . .  n . . . .  ), ( 2 . I )  

[y,, yj]=-e ( i , ] = t ,  2 . . . .  , n, . . . ) ,  ( 2 . 2 )  

ix, y~]=e ( i = 1 ,  2, . . . ,  n , . . . ) ,  ( 2 . 3 )  

[y, y~]=e ( i = i ,  2, . . . ,  n, . . . ) ,  ( 2 . 4 )  

Put  

G = F / H .  ( , )  

LEMMA 2.1. Every element of the group G is uniquely representable in the form 

e .  ~ /.. Z~ / n  n 
x ~y ~Ts *TJ ~ Y~ [X, Y] 

where el, e2, l ~ N ,  0~< l i<p i  ( i = l ,  2 , . . . ,  n). 

P r o o f .  Acco rd ing  to  [6,  Theorem 3 1 . 5 2 ] ,  

e ~ l ,  I I n g = x l y  ~Yz*y~2 . . . y~ c, c ~ [G,  G] .  

I t  f o l l o w s  from t h e  r e l a t i o n s  ( 2 . 1 ) - ( 2 . 4 )  t h a t  [g,  G] 
by [x, y]; i.e., in (2.5), c = [x, y]~ for some l~IN. 
in (2.5) that O~l(<p~ (g=i, 2 .... ,n). 

Suppose now that 

s l g x zy ~ y l * y ~ . . .  y ~  Ix, y]  z = e.  

Consider the homomorphism ~0 from g into the group 

G' Z ~ Z |  O, 

t h a t  e x t e n d s  t h e  homomorphism 

$ ( x ) = ( t ,  O, 0 , . . . ,  0), 

( 2 . 5 )  

is an infinite cyclic group generated 
As a result of (2.1), we may assume 

( 2 . 6 )  
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$ ( u ) = ( 0 ,  ~, 0 , . . . ,  0), 
(Y0=(0,  0, . . . ,  ~(modp,) . . . . .  0) ( i = l ,  2, . . . , -n) .  

[The homomorphism ~ ,  e x t e n d i n g  ~ ,  e x i s t s  s i n c e  ~(x) ,  ~ (y) ,  ~(~,) o b v i o u s l y  s a t i s f y  r e l a t i o n s  
(2.1)-(2.4), and generate G'.] 

By applying the map ~ to both sides of (2.6), we obtain 

(e~, e~, l l ( m o d p J ,  l~(modp2),  . . . ,  /~(modp~))=  0. (2.7) 

In  l i g h t  o f  t h e  s t r u c t u r e  o f  t h e  group  G ' ,  we deduce  f rom ( 2 . 7 )  t h a t  8~ = ~  e==0,  L ~ 0 ( m o d p 0  
( i  = 1, 2, . . . .  n ) .  S i n c e  O ~ l ~ < p ~ ,  we have  s = 0 ( i  = 1, 2 . . . . .  n ) .  By ( 2 . 6 ) ,  we t h e n  a r r i v e  
a t  t h e  e q u a t i o n  [x ,  y ] s  = e ,  which  can o n l y  be v a l i d  i f  s = 0,  t h e  group  [G, G] b e i n g  t o r s i o n  
free, as pointed out earlier. 

COROLLARY 2.1. 

LEMMA 2.2. 

Proof. Let 

The g r o u p  G is torsion free. 

Let t~G; then t----y~i[x, o~ , = . y] , where ~+~p~-----I if and only if t pi [x, y] 

Pi = ti = y$i Ix, y]ai and 6i + aipi= ~. Then t~i-- - y~i6i[x, y] aipi. By formula (2. i), t i 

~ ~ ~ ~$[x, Suppose now that t~G and t pi = [x, y]. By Lemma 2.1, t=x~y~yi~y~. . [z, y]~i+oipl = [z,  y].  
y ] s Then 

tp i -_- z ,  lpiy~viyr#pi . . .  yz$pi [x, ylZVi-h"~"i = [x, y]. 

In  v iew o f  t h e  e q u a l i t y  yl{vi'-- - Ix, g]t{, i t  f o l l o w s  f rom t h i s  t h a t  

" u9 pl [z, y]li+v~(l-h~J-~ e,: xelPtYS~Pi ~ ~3 

whence,  by Lemma 2 . 1 ,  s i p1=0 ,  82p2=0, l~p~-~O(modpj  ( ] r  l ~ + p ~ ( l - s l s J - i = O , i . e . ,  e l = 0 ,  e i =  
0, / j~0(modp~) ,  l ~ + p ~ ( 1 - s l s J =  1. In  l i g h t  o f  t h e  i n e q u a l i t i e s  0 ~ / ~ < p j ,  we c o n c l u d e  t h a t  
/ j = 0 .  T h e r e f o r e ,  t = y ~ i [ x ,  y]Si+pioi where  8~=l~, o ~ = l - e ~ e e .  

LEMMA 2.3. The map $(x)=x, ~(y)=y, $(y,)= y~[x, !l] ~, where 6,+o,p,=i (~=~, 2,...~n), ex- 
tends to an automorphism ~ of the group G. 

Proof. We will show that the elements x, y, ti=y~i[x,y] =i (i = i, 2 ..... n) generate the 
group G. To this end, we express Yi in terms of the elements x, y, t i (i = i, 2 ..... n .... ). 
Observe that the condition 6 i + ~ = i implies the equality (6i, Pi) = i; i.e., there exist 

u~, v ~ Z  such  t h a t  u i8  i + v iP  i = 1. So t~  ---- y~y~viPi [x, y] ~ S i n c e ,  by ( 2 . 1 ) ,  y ~ = [ x , y ] ,  i t  

f o l l o w s  t h a t  t~=g~[x,y]~iu~-~< From t h i s  we deduce  t h a t  y~ ---- t$~ [x, y] "~-o~u~ ( i  = i ,  2 . . . . .  n ) .  

Also  o b s e r v e  t h a t  t h e  e l e m e n t s  x ,  y ,  t i o b v i o u s l y  s a t i s f y  t h e  r e l a t i o n s  ( 2 . 1 ) - ( 2 . ~ ) ;  

i . e . ,  t h e  map ~ e x t e n d s  t o  a homomorphism ~ . We w i l l  now show t h a t  k e r ~ = { e } .  

e I ~ l 1 12 In L e t  g = x  y~, l  Y~ " " Y n  [x,y]~. Then 

l+~li~ i 
9(g) = x~y~Y~ ~ [x, ,]q~iy~#~[x,  y]~W, ~ "  ~ ~ l ~ ~ ~ 2 . . .  y~ ix, y ] ~  [x, y]~ = x 'y  ~y# ~y ~ ~ . . .  y ~  Ix, y] ~ = e,: 

with 

0 ~ < l , < p , ,  (6~, p , ) = i  ( i = t ,  2 . . . .  , n).  ( 2 . 8 )  

By Lemma 2.1, el=8~=0, l ~ 8 ~ O ( m o d p O  , l + ~ l ~ o i = O .  In light of (2.8), we get that~ i = 0 
i 

(i = i, 2 ..... n). It then follows from /+~/,6i=0 that /=0. 
i 

LEMMA 2.4. The group G is constructible. 

Proof. According to the definition of the system of relations (2.1)-(2.4), G is locally 
finitely presented. Moreover, by Theorem i.I, every finitely generated subgroup of G is 
residually finite. By Proposition I.i, the word problem is solvable in G, i.e., G is con- 
structible. 

LEMMA 2.5. The group G is self-stable. 

Proof. Let ~ be some fixed constructivization and v(n~)=y~ (i~N), ~;(so)=e, ~(sl)=x, 
v(s~)=y. Let U be any constructivization of the group G, and ~(t0)=e, ~t(h)-~x, ~(ti)=y. For 
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every i, we choose m i in accordance with the condition (>(mi))vi= [~(t,),>(&)l(i~N)o By 
virtue of Lemmas 2.2, 2.3, the map $(x)=x, ~(y)=y, $(y~)=>(m~) is extendable to an automor- 
phism ~ of the group G. We define a general recursive function f, satisfying Dr(n)= ~/(n), 
as follows: 

/ ( s~)  = t, (i  = o,  t ,  2 ) ,  / (n~)  = m,.  

Furthermore, if v(n)~--- (Xeiy 5i ~ ] 1 ,  then we put 
i=0 

/ (~) = ~-1 (~ (tl)) ~, (~ (t~))~ ]7  (~ (m~)/~i . 
i=0  ~=I 

THEOREM 2.1. There exists a eonstructible two-step torsion-free nilpotent group G such 
that G/[G, G] is of infinite rank, [G, G] is of finite rank and dimAG = I. 

Proof. Let G be the group defined by (*). According to Lemma 2.1, [G, G] is a group 
of rank I. By Corollary 2.1, G is torsion free. It is easy to see that the elements yr G] 
(i~N) of the quotient G/[G, G] are linearly independent (Lemma 2.1); i.e., G/[G, G] is of 
infinite rank. By Lemma 2.4, the group of G is constructible; according to Lemma 2.5 it is 
self-stable. 

Note that G/[G, G] is a torsion-free Abe!Jan group; i.e,, dim~(G/[G, G]) =~176 and G is 
finitely generated over G/[G, G]; so, we have 

THEOREM 2.2. There exist groups G and G such that 

a) G and G are torsion free, 

b) G is Abelian and dimAG=o% 

c) G is two-step nilpotent and finitely generated over G, 

d) d i m A G = t .  

w Let F-----F({xi/i~N}, {YJ/j~N}) be a free group of the generators x,, y, (i, ]~N) in the 
variety of two-step nilpotent groups, let H be the minimal normal subgroup of F determined 
by the relations 

[x=, y,~]=e (n~=m; n, m E N ) ,  ( 3 . 1 )  

[x2=, x2.+]] ----- {y2~, y~+j] = a (n ~ N),  ( 3 . 2 )  

[x2~+l ,  x2~+2]----[g~,~+l, y2,~+2]----b ( n ~ N ) .  (3.3) 

Put G = F/H. 

LEMMA 3.1. Each element g of the group G can be uniquely represented in the form g = 
h~ k 2 

Fix  ~i]-[''6ic w h e r e  c ~ [G, G]. 
~ = 0  z ~ O  

Proof. The proof is similar to that of Lemma 2.1. 

LEMMA 3.2_~. The commutator subgroup [G, G] of G is torsion free. 

Proof. It follows from (3.1)-(3.3) that the group [G, G] is freely generated by the 
elements [x,, y~] (n~N), a, b, [x~, yj] (]>i+I), [y~, y~ (k>/+1). 

COROLL@ARY 3.1. The group [G, G] is Abelian of infinite rank. 

COROLLARY 3.2. The group G is torsion free. 

LEMMA 3.3._ Let tonG (iEN,]~{I, 2}). Then 

(a) t~l----&+lC~b c~1 ~[G, G] if and only if 

l [&l, g~] = e, 
a, if 

[ [x~ ,  t~l] = b, i f  

(b) t~2---- y~+Ic~2, c~  ~ [G, G] if and only if 

tn2] ~ b, i f  

n is even, 

n is odd; 

is even, 

n is odd. 

(3 .4)  

(3 ,5 )  
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that every solution of (3.4) is of the form Xn+~C, with c~[G, G]. 
satisfies (3.4). By Lemma 3.1, 

Proof. Because of the symmetry, we will only carry out the proof of (a). 

It is obvious that if t = Xn+~C and c~ [G, G], then t satisfies (3.4). We will now show 
Suppose that t~G and t 

It follows from this that 

h I h~. 

i ~ O  i~O 

[t, y~] = H [x~, y,]'~ I I  [Y~, Y-]~ = e. ( 3 . 6 )  
~ 0  i=O 

By ( 3 . 6 ) ,  t a k i n g  i n t o  a c c o u n t  t h e  r e l a t i o n s  ( 3 . 1 ) - ( 3 . 3 )  and C o r o l l a r y  3 . 1 ,  e~=0 ,  ~ =  0 
(ivan, i~{O, 1, . . . ,  k~}). Thus,  

h I 

t 

By s u b s t i t u t i n g  t h i s  e x p r e s s i o n  f o r  t i n t o  t h e  second  e q u a t i o n  of  t h e  s y s t e m ( 3 . 4 ) ,  we may 
write 

~1 I [xzh' X2h+l]' if n = 2k, 
[Xn, t] ---- H [Zn, Xi] ei [Xn, yn] 6n ----- [ [:~2k+1, X2h+2],' if n = 2k + 1. ( 3 . 7 )  

i ~ n  

By (3.7), taking into account the relations (3.1)-(3.3) and Corollary 3.1, we get si = 0 
( i ~ n + t ) ,  ~ = 0 ,  e n + l = L  Thus,  t = Xn+lC. 

LEMMA 3.4. The map ~(zo)=z0, $(y0)=Y0, $(x~)=z~r $(y~)=y,c~2 (i=I, 2 .... ) extends to an 
automorphism ~ of the group G. 

Proof. The proof is analogous to the proof of Lemma 2.3. 

LEMMA 3.5. The group G is constructible. 

Proof. The proof is analogous to that of Lemma 2.4. 

LEMMA 3.6. The group G is self-stable. 

Proof. Let v be some fixed constructivization of the group G, with ~(n~)=x~, ~(m~)=y~ 
( i ~ N ) ,  v(s0)= e, ~(s0 = a ,  ~(s2)= b, v ( r 0 =  x0, v(r2)=yo. 

Let ~ be an arbitrary constructivization of the group G with ~(s'0)=e , ~(s'1)=a , ~(s~)=b, 

~(r'1)=z0, p(r~)= Y0- We will now show how one can effectively find the ~-number of the elements 
x~c~l and y~c~ (ckl, c~2~[G, G], k = l ,  2, . . . ) .  Suppose t h a t  ~t(n~)=xicil, ~t(m~)=yic~2. Co n s ide r  t h e  
sys t ems  

! 

[t, ~ (m'~)] = ~ (~0), ( 3 . 4 , )  
! 

l 
[~ (.~), t] -- ~ (~)', ~ i i~ e ~ ,  

(S2) , if i is odd; 

! 

It, ~ ( . ; ) ]  = ~ (s~ {, [~ (mJ ,  d - - '  ~(s0,, ~f ~i~ ~v~n, ( 3 . 5 ' )  
V" ( sO,  i f  i i~ oad. 

By Lemma 3 ,3 ,  t he  s o l u t i o n s  to  t h e s e  systems are  of  the  form t~(n;+l)----x~+lei+n, ~(m~+l)= 

yi+lCi+12 (Ci+ll, ci+12~[G, G]). By Lemma 3.4 the map ~(xo)=x0, ~(yo)=yo,~(x,)=x~c~, ~p(y,)=y~c,e ( i =  
1, 2 , . . . )  e x t e n d s  t o  an au tomorphism of  t h e  group G. We d e f i n e  a g e n e r a l  r e c u r s i v e  f u n c -  
t i o n  f(x), satisfying the condition c#v(n)=~t/(n), by the rule /(si)=s'i (i=0, 1,2), ](ri)=r'~ (i--- 

l, 2), f(n i) = nl, f(m i) = m I (i = I, 2,...). Furthermore, if v(n)= x:9 ,. then 
we put ~=~ "~=~ ~ ~=~ 

" h9 Z9 , 6i~ 

THEOREM 3.3. There exists a torsion-free two-step nilpotent group G such that G/[G, G] 
and [G, G] are of infinite rank and dim AG = I. 
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Observe that the groups G/[G, G] and [G, G] are torsion free Abelian; i.e., dima (G/[G, 
G])= ~, dimA[G, G]= ~, and the group G is infinitely generated over G/[G, G]. So, we have 
the following theorem. 

THEOREM 3.3' There exist groups G and G such that 

a) G and G are torsion free; 

b) G is Abelian and dim AG = ~, 

c) G is a two-step nilpotent group, infinitely generated over G, 

d) dimAG = i. 

w We will find some necessary conditions for constructibie nilpotent groups to be self- 
stable. 

Definition 4.1. Let G be nilpotent group, and G=GI>G2>...>G,>G,+I={e} its lower 
central series. We will say that G is strongly torsion free if G, Gi/Gi+ i (i = i, 2 ..... n) 
are torsion-free groups. 

LEMMA 4.1. Let G be a group satisfying the conditions of Definition 4.1. If the quo- 
tient GI/G 2 is of finite rank, then so is every quotient Gi/Gi+ I (i = 2, 3,...,n). 

Proof. The proof will be carried out by induction on the nilpotency degree n~ 

(a) n = 2. In this case, the lower central series of G is of the form G > [G, G] > {e}. 
Let 

g~[G, v], g~[G, ~] . . . .  , g,[c,  G] (4.1) 

be a basis for G/[G, g]. We will show that the elements [gi, gj] (i < j ~ {i, 2 ..... s}) form 
a basis for the group [G, G]. The group [G, G] is generated by the elements [x, yJ, x, y~G. 

Since the elements displayed in (4.I) form a basis for G/[G, G], we have 

x~[G,G] ~ % . . .  ~ =g~ ge g8 [G,G], (4 2) 

61 ~2 6s y~ [G, G] = g~ g2 " -  g~ [G, G]. (4 .3 )  

whence 

Let g ~ [ G ,  G]. Then 

[x~, yn] = [x, yl~ T1 = I I  [gi' gj] ( 4 . 4 )  
i , j=l 

g = [z I, yl]'~ [x2~ y2]~... [x~, yd~t (4.5) 

For each commutator ~z, y~] (i~/~t) we find, as in (4.4), that 

[xl, y~]~znl = ~ [giz ' gjl]~lS~l (4.4g) 
~l,Jl=l 

Let m be the least common multiple of the number ~ (i~l~t). When we raise both sides 
of (4.5) to the power m and perform some obvious manipulations, we get 

f i  - �9 .~ij g~ : [g~, g~] �9 
id=l 

This equality shows that the set of elements [gi, gjJ (i < j e {I, 2, .... s}) constitute a 
basis for [G, G]. 

(b) Suppose that for all groups of nilpotency degree less than n the lemma has been 
proved, and let G be a group of nilpotency degree n, satisfying the conditions of the lemma. 
Then G/G n is a nilpotent group of degree no greater than n - i. The lower central series of 
G/G n looks as follows: 

G/G. = GI/G~ > G~/G~ > . . .  > G._~/G. > G./G~ = {e}. 

Each quotient in this series is torsion free, since 

(G,/G,)I(Gr G,/G~+: (i = t ,  2, . . . ,  n - -  I). 

The first of these factors is isomorphic to GIIG2, which, by hypothesis, 
of finite rank. 

(4.6) 

is an Abelian group 
Therefore, all the conditions of the lemma are met by the group G/Gn, and 
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it follows from the induction hypothesis that all its quotients are of finite rank. In light 
of the isomorphisms (4.6), we conclude that the quotients 

G2/G~, GJG4 . . . .  , G,~-I/G,, 

are of finite rank. It only remains to note that the group G n also has this property, which 
can be proved in a similar way to part (a). 

LEMMA 4.2. If a group G satisfies the conditions of Definition 4.1, and gi~G~+~, giG~+~ ..... 

g~siGi+~ is a basis for the group Gi/Gi+ ~ (i = i, 2, .... n), then for each element g~G we can 

find a unique sequence 

(l~, r~ ,  r~2 . . . . .  r~,~; l~, r~ ,  r ~  . . . . .  rz~; l~, r~l, rn~ . . . .  , r~,n), ( 4 . 7 )  

with 

f g~i grl~gr~2 rlS 
- -  glslJC2, C2 ~ G2, 

ii 12 " " " 

cZ2 gr2~gr~ 7"2s~ 
2 1  2 2  " " " g 2 s 2  z c 3 '  C3 ~ G3' 

. . . . . . . . . . . . . . . . . . . . . .  (4.8) I Cln--I --- s rn--]~n--1 c 
n - - 1  o n - - l l  o n - - 1 2  . �9 �9 g n _ l S n _  1 n~ Cn ~ Gn~ 

t 

P r o o f .  A c c o r d i n g  t o  Lemma 4 . 2 ,  t h e  s y s t e m  o f  e q u a t i o n s  ( 4 . 8 )  e x i s t s  and i s  u n i q u e l y  
d e f i n e d ;  t h e  s e q u e n c e  ( 4 . 7 )  i s  d e r i v e d  f r o m  t h i s  s y s t e m .  

THEOREM 4 . 1 .  I f  G i s  a c o n s t r u c t i b l e  n i l p o t e n t  g r o u p ,  w i t h  G~/G 2 o f  f i n i t e  r a n k ,  and G 
strongly torsion free, then G is self-stable. 

Proof. Let ~ be some fixed constructivization of the group G, with v(nij) = gij (i = 
i, 2 .... ,n; j = i, 2, .... si), where g~iGi+1, gi2G~+1, .... g~iGi+1 is a basis for the group Gi/Gi+ I 
( i  = 1, 2 . . . . .  n ) .  

Let ~ be any other constructivization of the group G, with ~(mij) = gij (i = I, 2 ..... n; 
j = i, 2 ..... si). We define as follows a general recursive function f(x), satisfying the 
condition ~v(n)-----~f(n), where T is an automorphism of the group G. We put f(nij) = mij (i = 
i, 2 ..... n; j = i, 2 ..... si). Let n~N. According to Lemma 4.2, there is a unique sequence 
of type (4.7) associated with the element v(n). Note that, in light of the existence and 
uniqueness of the system of equations (4.8), this sequence can be found effectively in terms 
of the number n of the element v(n) and the number nij of gij (i = i, 2 ..... n; j = i, 2 ..... 
si). Having defined the sequence of type (4.7) corresponding to v(n), we consider the system 

(~ (x)) ~ = (~ (-hO)h~ (~ (,h2))'~ ~ . . .  (~ ( ,h ,O) '~ '~  ~ (x~), 

([~ ( x n _ l ) / n - 1  = ([t(ran_n))rn_11 ([~ (mn_ l , ) ) rn_n  . . . ( 4 . 8 ' )  

�9 . .  

= . . .  

By Lemma 4.2, the elements ~(x~), ~(x~-~), . . . ,  ~(x2), ~ (x )  exist, and, since G is a torsion- 
free nilpotent group, they are uniquely determined by (4.8'). From (4.8') we can effectively 
find the ~-number m of an element x. We then put f(n) = m. 

COROLLARY 4.1. If G is a constructible full nilpotent group of degree 2, with G and 
[G, G] torsion free and G/[G, G] of finite rank, then G is self-stable. 

Proof. All the conditions of Theorem 4.1 will be fulfilled if we can establish that 
G/[G,  G] i s  t o r s i o n  f r e e .  L e t  g ~ G  , g ' ~ [ G , G ]  ( n > ~ ) ,  g n = [ x t ,  y~]~[x~,y~] ~ . . .  [x~,y~] ~ .  I f  z i 
s a t i s f i e s  t h e  e q u a t i o n  z n = x i ( i  = 1, 2 . . . . .  k ) ,  t h e n  

g" = [Zl,  y ~ l ~  [z'~, y . , l~  . . . [ zL  y~ ]~ .  ( 4 . 9 )  

Since G is a torsion-free two-step nilpotent group, we deduce from (4.9) that 

g" ~ ([z~, y~le~ [za, y~]~ . . .  [zn, y~l~) ~, 
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i.e., g =  [z~,y~]%[z2, y~]%...[zk, yk] sk. This shows at the same time that if g~ ~[G, G] then g~{G, G]. 
Thus, G/[G, G] is torsion free. 
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PLESIOCOMPACT HOMOGENEOUS SPACES 

V. V. Gorbatsevich UDC 519.4 

One can consider this paper as a continuation of [i, 2]. Some results on the study of 
compact homogeneous spaces with the help of the concept of decomposition of Lie groups (con- 
sidered in detail in [I]) are given in [2, 3]. However the methods used turned out to be ap- 
plicable also (after some refinement) to some classes of not necessarily compact homogeneous 
spaces. One such class, the plesiocompact homogeneous spaces, is studied in this paper. 
In particular, all compact homogeneous spaces and also all homogeneous spaces having a fi- 
nite invariant measure are plesiocompact. 

In Sec. 1 we introduce and study the concept of plesiocompact homogeneous space and also 
the concept of plesiouniform subgroup of a Lie group which is connected with it. Some prop- 
erties of subgroups equivalent with plesiouniformity and also properties of plesiocompact 
homogeneous spaces are considered, approximating them with compact homogeneous spaces. 

In Sec. 2 we consider regular transitive actions of Lie groups (an action of a Lie group 
G on a homogeneous space M = G/H of it is called regular, if NG(H0)S = G, where S is a Levy 
subgroup of the Lie group G). 

In Sec. 3 we consider some modifications of transitive actions of Lie groups, i.e., 
transitions to actions whose properties are in some sense simpler than the properties of the 
original actions. The basic result of Sec. 3 is Theorem 3.3. 

In the present paper we give only the foundations of the general theory of plesiocompact 
homogeneous spaces. By analogy with the case of compact homogeneous spaces (for which, cf., 
e.g., [2, 3]) subsequent study of plesiocompact homogeneous spaces should contain, in par- 
ticular, a construction of natural and structural fibrations, the isolation and study of 
separate classes of plesiocompact homogeneous spaces. 

We shall denote Lie groups by upper case Latin letters, their Lie algebras by the cor- 
responding lower case German ones. If G is a Lie group, then G o is its connected component 
of the identity, and v0(G) = (G/G0) is its group of connected components. We denote by Z(G) 
the center of the Lie group G, by ~(G) (if G is connected) its linearizer (i.e., the smallest 
normal subgroup for which the quotient group is linear), by NG(H) the normalizer of the sub- 
group H in the group G. The Levy decomposition of a connected Lie group G is usually written 
as follows: G = SR, where R is the radical and S is the Levy subgroup (i.e., a maximal semi- 
simple Lie subgroup of G). By M' + M § M" we denote a smooth locally trivial fibration of 
the smooth manifold M over the base M" with fiber M' 
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