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ONCE MORE ON THE FUNCTION o 4(M)

A. Laurinéikas

Let, as usual,

ga{m) = E d*,

dim

and § = ép > 0, &p — 0, as T' — oo. In studying the remainder term of the mean square of the Riemann
zeta-function ((s), s = o + it, near the critical line 0 = 1/2

T
/!((1/2+6T+it)]2dt, T — o0, (1)
]

it is useful to have a formula with an explicit remainder term for the sum

Dyo(z, ;) oo Z o5, (m).

mgz

Here z can be dependent on T. The mean values of the function 64(m) have been studied by many authors.
We note a rather complicated paper [1] where a bibliography on the identities for the sum

Z 7a(m)

mgsx

also can be found. In the papers [2-5] formulas for the sums of coefficients are obtained for a wide class of
Dirichlet series.

Assume ¢ > 0, 0 < § < 1/2, I'(s) denotes the Euler gamma function and

Dy_1(z,68) = L E(z ~m)"~lo_ (m).
I'(g)

mgz

In view of the inaccessibility of [1] and further research applications of the quantity (1), in the present note we
shall give a simple proof of the identity for the sum D,_;(z,6) with ¢ > 1/2+ & that is based on the ideas of
the paper [7] (see also [8]). Note that in [1] only integer values of ¢ are considered. We shall also obtain an
approximate formula for the sum Dy(z, §). Moreover, we shall suppose that z is a non-integer positive number
because in applications it is unimportant whether z is an integer or not.
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82 A. Laurinéikas
Let J,(z), I,(z), and K,(z) denote the Bessel functions, i.e.,
INEAYE S U G2 Vi €70 ) i
@)= (3) 2 T T 7 7T’
m=0

— (3% (z/2)*"
I(z) = (2) E I‘(m+l)r(m+V+1)’
“L,iz_)__I_(zl

KV( ) Slﬂ vT
Also, we put
’ he = 2 (-1)m (/2
(z,8) = {3 ZI‘(m+1+6)I‘(m+V+1)’
z (z/2)*™
L(z6) = (5) Z « T(m+ 1+ 8T (m+v+1)’
M) =5 (2 )'” (L=s(2) + Ju-s(2))

B Ly - ).

THEOREM 1. For all non-integers ¢ > 0 and ¢ > 1/2 4+ é the indentity

2l 2I((146) 21— 8)I(1-§)

Dy i(z,6) = C(‘S) T(q ) T'(l+¢) [(1+q-96)

£1(2m)1t &
T an 2 o5, (4ny/mz, 8)
2 m=1
holds.
Let 2
5\1(2, 8y = J_148(2) + J1-s(2) - p sin (m6)K_5(z),
1-4 -
A_s(z) = Do(z,6) + %C(5) —a((1+8) - f&s 23

From Theorem 1, when ¢ = 1, we obtain the following assertion.

CoROLLARY. For all non-integers ¢ > 0 the identity
:c(27r)
A_s(z) = =——"— N Z a,(m)(2rymz) " 7'}, (4nv/mz, 6)
2sin =

Is valid.

In some cases it is useful to have an approximate formula for Do(x, §) with a finite sum of terms A (47\/mz, §).
Denote by B a function (not always the same) which is bounded by a constant.

THEOREM 2. Let N be a natural number. Then for every £ > 0

A_s(= )—-z—(-?I)TZa'& (m) 27r\/m_z) 47r\/51_1_:6)

2 mgN

1 1
+Bzf+Bz2 N2 4+ Be 3N
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COROLLARY. For every £ > 0 the estimate

18
A_s(z) = Bz3 e

is valid.
In the proof of Theorem 2 we shall use the following two propositions.
LEMMA 1. Let ¢ > 0, ¢ > 0, and the Dirichlet series
o
A(s) = Z amm™*
m=1

absolutely converge for ¢ = ¢. Then for all non-integers z > |

mgz S+Q+1

~

+
1 1 A(s)T(s)a*+e
D 2 ™ = g / o
—100

The equation of Lemma 1 is a variant of the inversion formula for Dirichlet’s series. Its proof can be found,
for example, in [8, p. 487].

LEMMA 2. Let |t]| — oo. Then, uniformly in o on any finite interval,

1
Shel

Do +it)|=e 2 [¢]"" 2v2x(1 + o(1)).

The assertion of Lemma 2 is a consequence of the well-known Stirling formula.

Let
xs+q-—1

I'(s 4+ 6)T'(s + q) cos 5 cos ﬁ-’zﬁl .

f(s) =

LEMMA 3. Let §<e<1/2, ¢ >3-4, and 2> 0. Then

—c+100

1 27
J T o
2mi / fs)ds 7 sin —zi

), (2V7,9).

Froof . The function f(s) has simple poles at the points
s=2k+1 and s=2k+1-46, E=0,1,2,....
fz=5-(2k+1) — 0, then

s

2k +1
oS — = cos (-(———LE +2Z) = (~1)*tsin KL (1)~ 12 (1 +0(1)). (2)
2 2 2 2
Similarly, f w =5~ (2k+ 1~ 8) — 0, then

7r(s+5) W
0 - (1 T (1 o). Q

Cco
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Let Ly = {s: 0 = —c, [t| < R}, Ly = {s: s=—c+ Re*?, || < 7/2}. In virtue of Lemma 2, the Stirling
formula, and the well-known properties of the function cos s,

}%gr;o/f(s) ds = 0.
Ly

Consequently,
—c4io0
/ f(s)ds = — lim / f(s)ds.
R—x
—c=1i00 L]ULQ
Since
cos ©(2k + 1+ 68) - (_1)k_1sm 7r5,
2 2
cos 7(2k + 1 - 6) = (=1)* sin 7r6,
2 2
we have, by the residue theorem and the Egs. (2) and (3},
9 ad p2k+g
J=- . w6 Z
Tsin - 12 P(2k+ 14602k +q+1)
9 o z2k+q—5 (4)
+ .
msin % Z; T(2k+ T2k + ¢+ 1 - 6)
Since
oo -2
(\/—z—)‘“’ 25 _ l —gm
kgé TEE T TR 718 = 3V Ueme@Ve) + [p-s(2V/2)),
3 (vz) e ;
;;0 T+ i+ oT@E s gr D) — 2V (h2ve) + T L (2vR)),
Lemma 3 follows from (4).
LEMMA 4. Let ¢ > 3 — 6. Then the assertion of Theorem 1 is valid.
Proof . It is well known that for ¢ > max(1,Rea + 1)
_ = %a(m)
(H(s—a)= 3 == ()
m=1
Consequently, it follows from Lemma 1 that for ¢ > 1
L gt + r(e)etmd
s)((s s)x 8
D‘I"l(xvé):% . F(S+q) ' (6)
cC—10Q

Let 6§ < b < 1/2. Then, in virtue of Lemma 2, the estimate

I(s)I (s +q) = BJt|™* Q)
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is valid for sufficiently large |¢| in the strip —b < o < ¢. Furthermore, the following estimates for the Riemann
zeta-function are known to hold for large |¢|:

1ys
()= Btz log t], -b<o <0,
1
¢(s) = B|t|2log ||, 0o, (8)
((s) = Blogt], o>1,
1.,
(s+8)=Blt|2" logli], -b<o

Since ¢ > 3 — §, in virtue of estimates (7) and (8), the integrand in the formula (6) is estimated as B|¢|™17¢
€ > 0, in the strip —b < o < ¢ for large [t|. This integrand has simple poles at s =0, s =1,and s = 1 — §,
Taking into account the equality ((0) = —1/2, we obtain, by the residue theorem,

2I(8) | 2(L48) | =t0¢(1— §)T(1 - 6)

Do-s(=) = =5+ TaT 9 T(itq-9)
—-b4i00
b [ et Y
omi s T(s +9)
—b—500
By means of the functional equation for the Riemann zeta-function
__ Q@ny — v(s)(1 —
C(s) - 2F(S) cos %C(l S) - X(S,C(l S) (10)

and the formula (5), we find that for o = —b

72)(27)¢ =, o, (m

4T (s)L'(s + 8) cos %~ cos 7{(5;6) mli=e

Whence, and from Eq. (9), using Lemma 3, we obtain the assertion of the lemma.

In order to prove Theorem 1 it remains to prove Lemma 4 for smaller values of ¢. For this aim we shall
need the asymptotics of the quantity A q(z, ).

LEMMA 5. We have

—g—b-L -6
)\q(Z,é):z q—¢ 2 gin %(Z(Al(q,é)COS (z-—-ﬂ.—(qQ——)-_f_)

4
m(g—6) =« [ mg-6 =«
+ Ax(g, 6) cos <z+——-—2 4)+A3(q,6)sm (z —5 1
g3
+ Bz -’ 2 sin 7r7‘s+Bz"4$in”r—(S for 2z — oo.

Here the quantities A;(q,8), j = 1,2,3, are bounded for all z and ¢, and the constant bounding the factor B
is independent of q on any finite part of the g-plane.

Proof. Let n be a sufficiently large natural number and

—n+%+ioo

-t 2 i
271 F(s+1+8)(s+q+ 1)sin wssin 7(s+8)

-n+4=—foo
+2
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From Lemma 2 and the properties of the function sin s it follows that the integral I(z) is the sum of the
residues of the integrand at the points

s =k, kE=0,1,2,...,
s=k-90, kE=0,1,2,...,

- —k k=1,2,...,n-1 if ¢ is non-integer,
§==6 £t=1,2

,2,...,9 if ¢ is integer.
Consequently,
1 z\—¢ z\—9-4
— z + —_ 2
L) = g () e - (5) 7 hei)
N "z-:l (z/2)"2k ) (11)
S T(=k+1+80(-k+q+1)/"
On the other hand, the definition of the integral I(z) implies the estimate
I(z) = Bz~%, z = 00.
Whence, and from Eq. (11), using the supplementary formula for the I'-function, we obtain
- —g- : n-1 ~2k k
N ey (B)7 § __sin wé (2/2)"**(~1)"T(k — §) —on .
(2) (2, 8) (2> I s(2) = - ’; Tk tqt 1) + Bz7*" sin #é. (12)
When ¢ is a natural number we can obtain an exact formula for the left-hand side of (12). We have
st (2/2)2k—2q f_ ~q-95
; T(k+ DIk —q+ 1+ 6) (2) l-5(2)
2\ —1-8 2\ -6 oy 20 2 (z/2)%
== I. -z - -{= .
(2) 0+5(2) (2) Io-s(2) (2) :A_; T(k+ O)I(k—q+1—-10)
In particular, when ¢ = 1, the identity
2\ —1 o\ ~1=8 o\ ~1-8 =2 1
Z + —{Z - (Z _ N el -
(2) 11(276) (2) 11_5(2) (2) (I_1+5(Z) 11_5(2)) (2) F(é) (13)

= —?;sin 775K1—5(z)(3>_1‘6 h (%)-Zf—({a

follows.
Now we shall consider the integral

-—n+—§-+ioo
1 / (z/2)%~2 ds
2mi ['(s + 6)['(g + s) sin 7(g + s)sin 7ssin 7(s + 6)

1 .
~Nn+4=—i00
+2

J(z) ¥ -

First, let the numbers ¢ and ¢ — § be non-integers. Then the integral J(z) is equal to the sum of the residues
of the integrand at its simple poles

s =k, k=1,2,...,
s=k-—2§, k=1,2,...,
s=k—gq, k=12,...,
s = —k, k=0,1,..., n—1.
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Reasoning as in the case of the mtegral I(2), we find that

) 0+ e ()t

wsin wgsin w6 \2 wsin 76 sin w(q — 6
z

1 —g=9
- J_
7sin wgsin 7(g — §) (2) o+5(2)

' L . § (z/2)2(~1)F — By~
7sin 7ésin 7g T(—k+ 8)'(=k +9q)

.+-
k=0

From this we find that

() o= ()

_ sin 7¢g z\~9-8 _ sin wé AN
B (sin m(g—9) 1) <2) Ji-4(2) sin (g — 8) (2> T-oril2) (14)
sin 76 z": (2/2)"%(k - &)  Bsin w6]sin mq|
+ T ~ P(—k _+_q + 1) z2n+2 .

It is easy to see that Eq. (14} also remains true when g is an integer.
Let m be an integer. Below we shall need the Bessel function Y,,,(z) that is defined as

e L (B _ 2t

7\ o Jdv l=m

If ¢ — 6 is an integer, then taking into account continuity and using L’Hospital’s rule, we deduce from Eq. {14)

that 5
N ()
(5) - (5) 1)
zy =48 ANt .
= <—):) (COS 76— I)Jq_é(Z) + (E) Yg_.[;(zj (15}
L sin 7é i (2/2)"2*T(k — &)  Bsin 76|sin 7g|
T X T(Eaern T e

It is well known (see [9]) that as z — o0

JV(Z) = C\l/(;) cos (Z - z—g-j- — E) -+ BZ-S/,&,
J-—V(Z) o Cj/(;/) cos (Z + %If- —_ %) + BZ*‘S/E

Here C1(v), C2(v), and Cs(v) are bounded for all values of z and v, and a constant, bounding the factor B, is
independent of v on any finite region of the v-plane.

LEMMA 6. Let ¢ > 3/2+ 6. Then the assertion of Theorem 1 is valid.

Proof . If ¢ > 3/2+ 4, it follows from Lemma 5 that the series in the formula for Dy_1(z,0) converges abso-
lutely and uniformly with respect to £ on any closed interval which does not contain 0. Moreover, for a fixed z,
the convergence is uniform with respect to ¢ on any finite region of the half-plane Reg > 3/246+¢, e>0.
Consequently, both sides of the equation of Theorem 1 are analytic functions of g in such a half-plane. Thus,
the assertion of the lemma follows from Lemma 4 by analytic continuation.
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LEMMA 7. Let 0 < 0p <0 < 2. Then forall y > 1

1o

1 ¥ s
)= ety B

mgy

A constant bounding the factor B depends only on ay.

The proof of the lemma can be found, for example, in [10].

LEMMA 8. Let ¢ > 1. Then

=61 -6 1.9
3 o_s(m) = ?—1—<£—t5———) +2¢(1+6)+ B2 2.
mg<s
Proof. Tt is easy to see that
Doosm=3] Yomt= 3 > m
mge mngz ngvrT m&/x . (16)
+ 5w Y 1+ Y Y Tt Es s+ S
mgV/zT Ve<ngz/m ngy/r Jr<mgz/m
Let [u] denote the fractional part of u. Then we have
Sl = [\/E] Z m_éa
mgVe
- r
si= 3 mef([2] - A,
mgVe
and consequently, in virtue of Lemma 7,
_ AR 1 5
S+ Sy = E m [-n:] =z Z W-}-B Z m
mgVe mgyz m<V/T (17)

- 16 i
= z(((l-}-é)— L-\Z-—-a;—)—g+B:r-§_5> +Bz? 2,

Since

where A is some constant, we obtain, using Lemma 7,

16 1 5 1 _ _é
si= 3 ()" - v peta B3

ngvE S
[
zl—é zl——i l_é
= —_ Bx2 2,
1—-66(1 oY+ 5 + Bz

Whence, and from (16) and (17), the assertion of the lemma follows easily.

LEMMA 9. We have . .
/ AN AN
N (z2,6) = V(Q) )\,,(z,ﬁ)-t—(?) Ayoi(z,6).
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Proof . 1t is known [9] that

frn vyzy-l
@) = dea(0) - 5(5) 2, (18)
T\ = _pa\!
L@ =L@ -2 () @), (19)
In a similar manner we find alsc that
~1
TI8) = (58 - 2(2) A0, (20)
~1
I (2,6) = T1,1(z, 5)-—(%) *1,(2,6). (1)

From Eqgs. (18)-(21) and from the definition of the quantity A,(z,6) we deduce the equality of the lemuma.

LeMMA 10. We have
N(z,6) = (g + VZ) (%) Tz 6) + (% _ 21/) (%)”2)‘%1(2, §) + (%) T ha(z6).

Lemma 10 follows from Lemma 9.
Proof of Theorem 1. Let

ro(z) = A_s(2),

E

ri{z) :/rg(t ydt = Z(x—m)o s(m)

0 mgz
275(1-5)
(2-68)(1-6) " 2

.’l’z PPN
- Tc+9) - ().

If M and N, M < N are natural numbers and f(z) is a function having a continuocus second derivative in
[M, N], then

N N
> sme_ym) = [ 1) dDu(e,0

m=M+1 M
N

N
:/f dro(t) +/f (CL+8)+t7%¢(1 - 8)) dt
M

" . @
= FOro(t) 3 = F OO + j/ (e (t) de
M
N
+ [ 106 +8)+ 71 - 9) a
M
Since 0 < & < 1/2, the estimate
1_4

ro(z) = Bz? 2 (23)

follows from Lemma 8 for large z. Applying Lemma 6 with ¢ = 2 and Lemma 5, we find that for sufficiently
large z
3_3

ri(z) = Bzt 2. (24)
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Now let f(t) = t*A,(47/zt,8). Then in virtue of the estimates (23) and (24), and Lemmas 9 and 5 we have,
for large M and z € [zg, X;], where 2y and X, are fixed positive numbers,

TSR
(f®)ro(t) — f’(t)rl(t)) Iﬁ =BM 27a sin ?6, (25)

+24

g1
274, (26)

N
/f(t)(C(l +6)+17°¢(1 - 8)) dt = BM 2
M

In view of Lemma 6,

2 71'1 § >®
@) = "L S ot o).

2 m=1

By Lemma 5 the series above converges absolutely and uniformiy with respect to t on the interval [M, N].
Thus,

N . N
f () f(t)dt = @ﬂm / t2 X5 (d7v/mt, 8) dt (27)
M 1 M

By Lemmas 9, 10, and 5, we find that

¢ 6,3 4,8 5
-4 2482 —-2-4
ffty=zc 2 APTEEAES Asm—(Cl(t z,q,6) X cos (417\/t;~7r—(122——2——§>
-2=-8 =
Cy(t Atz meg=2-98) 7
+ 2( yzaq: (ﬂ’\/ + 9 4)
g 6.1 4.8 T
, -2 I = U 1
+ Cs(t,z,q,6)sin (4#\/t;—7r—q~—22——§-2—%>>+31 2721 2 2 T a gy —5+Bz’2t°§'4sin -712(2

Here the quantities C;(?,z,9,6), j = 1,2,3, are bounded for all {, z, and ¢, and a constant bounding the factor
B is independent of ¢ on any finite region of the g-plane. Since z is non-integer and 0 < § < 1/2, whence and
from (22), (25)—(27), by Lemma 5, we find that if ¢ > 1/2 4 §, then the series

Z as(m)A, (4my/mz, §)

m=1

converges uniformly with respect to z € [zg, Xo]. Moreover, for fixed « this convergence is uniform with respect
to ¢ on any finite part of the half-plane Reg > 1/2+ 6 + €. Thus, by analytic continuation and Lemma 6, the

theorem follows.
Proof of Corollary. If ¢ = 1, then we find, by (14),

2\ -1 2\ —1-8
z + ~{Z
(2) N1(z,9) (2) J1-5(2)
2\ ~1-6 2\ —1-6 2\=2_1
==(3)  =-(3) aw)-(3) NGE
Whence, and from the formula (13), we deduce that
1 -1-4 2 . .,
M(z,8) = 3(3) (Jl_,s(z) + J-v4s(z) — ~sin mml_é(z))
1

=2 (%)"1'5&(;,5).

Thus, it remains to use Theorem 1.
To prove Theorem 2 we shall need the following known lemma.
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LEMMA 11. Let F(z) be a real differentiable function such that either F'(z) > m >0 or F'(z) < ~m <0
for z € [a,b], and let G(z) be a monotonic function for z € [a,b] such that |G(z)| < G. Then

4G
S

b
I/G(m)em(”) dz

Proof of the lemma can be found, for example, in [8].
Proof of Theorem 2. We put o, =1+ 1/log z. By Eq. {(5) we find that fore — 140
(ot + =3 = b S
cTy= me  (o-L(o+s-1) (o-1)2

m=1

Whence and from the estimate
o_s(m) = Bm®,

which is valid for every fixed ¢ > 0, repeating the proof of the Perron formula (see [11, pp. 427-428]), we find

that for U > 0
o 4iU

1 z’
Yom=gn [ (Ot ds
mse 0o =il (28)
Bz= Balte

+ Bst.

T 12T T

Let ¢ > 0. We replace the contour in the integral of Eq. (28) by the new contour joining the points o, —
iU, —c — iU, ¢+ iU, o, +:U. The union of the former and the latter contours embraces the poles of the
integrand at s = 0, s = 1, and s = 1 — 6. Consequently, by the residue theorem, the formula (28), and the
functional equation (10), taking g(s) = x(s)x(s + 8}(z*/s), we have

—eilU

Bzlte 1 ,
As(e)= B S B g [ ke e
—e—tU
—e+iU (29}
1 > 1+4¢
= 2_7;; E U&(m) J/ gr(:l)-({s + Bz® + BJ»‘U + BU2e8g-¢,
m=t —emiU

Let N be a natural number, N = Bz#, A > 0, and U%?/47%z = N + 1/2. Now we shall estimate the sum

—c4+iU ( )d
def gis)ds
ZN :e Z dé(m) / F.
m>N il

It is well known that for the function x(s) the following asymptotic formula holds:

x(s) = (%E)’—%e‘(t+§) (1 + ?) t>te> 0.

Consequently,

x(s)x(s +§) :exp{(20’+6— log 27 — (20 4+ 6 — 1)log ¢t + -7;

+ 2itlog 27  2itlog ¢ + 2it } (1 + ?)
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Thus,

i, it —1 . 2§ B

x(s)x(s + 8)z'm*'s™! = exp {(20 + & — 1)log 27 + iF(t) }t (1 + _t.) ,

where

F(t) = 2tlog 2m — 2tlog t + 2t + tlog = + tlog m.
We have

4r?zm
F'(t) = log v

Hence, applying Lemma 11, we find

U
/t2c—6eiF(t) di

1
+ BI—CN—C+6+E + BZ—CUZC—EN—c+6+.«:
1 (30)

- Bx—cUZc—é
Lo (71 3))
+ B:li_cN_c+5+€ + Bz—6/2N5/2+e + Bz—cU2c—éAr-c+6+s
— Bx—CN—C+5+E + Bx~6/2N6/2+€.

_ —-c Ué(m)
ZN = Bz Z Tnﬁ:
m>N

Now from (29) and (30) it follows that

—c+iU
1
As(@)=5—= 3 ) / m*g(s)ds + Bzt + Bz!/**eN-1/2
271 ey ™ . 31)

+BNC—6/2:C—6/2 +Bx—cN—c+6+e + BJ}-6/2N5/2+‘.

It is clear that

ioco  —iU —c-iU U

—Tvmg(s)ds-/mg(s)ds—(// + [+ j>mg<>ds (32)

—c~iU —i00 —i00 —iU —e4iU

Using Lemma 11 again, we find that the two first integrals in brackets of Eq. (32) are estimated as

N+
BU""(log 2) .
m

Thus, the contribution of these two integrals to the right-hand side of Eq. (31) does not exceed the quantity

os(m) -
B 8 =B 6/2]\/6/2+5‘
vt Z < mlog (N +1)/m) ‘ (33)

The contribution of the two other integrals in brackets of Eq. (32) is

g (m) mz _ e~ -
B Z - EJ%L do = Be~t2N°=2 4 g2 NP2 (34)
mgN

-



Once more on the function o.(m) 93

Let b= 1 — 36/2. Then

b4ico
/ m’g(s)ds = / m’g(s)d (35)
—ico b—~ioco
Indeed, the intengrand is regular in the strip 0 < ¢ < b. Moreover,
b+iU b=l
lim | - / + / m’g(s)ds = 0.
Uooo
iU —iU
Thus, it follows from (31)-(35) that
( ) b4+ico
"6 m 1246 pr—1/2
= — d
A_s(z) = 27” Z / m®g(s)ds + Bz* + Bz N (36)
mgN b—ioco

+ BNC—-5/21:—5/2 + B:B—CN—C+5+E + Bx——&/ZNIS/Q-{'-S.
Repeating the proof of Lemma 3, we find
b+ico
(s)ds = —— / (27)%(47°mz)* ds
27rz m'g(s) ds = 7ri AL(s + 1)T'(s + 6) cos 5> cos Z(s + )

b~io0 b—ico
146
= :cm(27r) (277'\/7719:) 2 {4nv/mz, 6).
2sin = -—2—

Whence and from (36), choosing an appropriate number ¢, we obtain the assertion of the theorem.

Proof of the corollary follows from Theorem 2, taking N = [z1/3+6/3),

The author expreses his gratitude to Professor J. Kubilius for his support during the work reported in this
paper.
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