ONCE MORE ON THE FUNCTION $\sigma_A(M)$

A. Laurinčikas

Let, as usual,

$$\sigma_a(m) = \sum_{d|m} d^a,$$

and $\delta = \delta_T > 0$, $\delta_T \to 0$, as $T \to \infty$. In studying the remainder term of the mean square of the Riemann zeta-function $\zeta(s)$, $s = \sigma + it$, near the critical line $\sigma = 1/2$

$$\int_{0}^{T} \left| \zeta(1/2 + \delta_{T} + it) \right|^{2} dt, \qquad T \longrightarrow \infty, \tag{1}$$

it is useful to have a formula with an explicit remainder term for the sum

$$D_0 \big(x, \delta_T \big) \stackrel{\mathrm{def}}{=} \sum_{m \leqslant x} \sigma_{-\delta_T} (m).$$

Here x can be dependent on T. The mean values of the function $\sigma_a(m)$ have been studied by many authors. We note a rather complicated paper [1] where a bibliography on the identities for the sum

$$\sum_{m \leq x} \sigma_a(m)$$

also can be found. In the papers [2-5] formulas for the sums of coefficients are obtained for a wide class of Dirichlet series.

Assume q > 0, $0 < \delta < 1/2$, $\Gamma(s)$ denotes the Euler gamma function and

$$D_{q-1}(x,\delta) = \frac{1}{\Gamma(q)} \sum_{m \leqslant x} (x-m)^{q-1} \sigma_{-\delta}(m).$$

In view of the inaccessibility of [1] and further research applications of the quantity (1), in the present note we shall give a simple proof of the identity for the sum $D_{q-1}(x,\delta)$ with $q>1/2+\delta$ that is based on the ideas of the paper [7] (see also [8]). Note that in [1] only integer values of q are considered. We shall also obtain an approximate formula for the sum $D_0(x,\delta)$. Moreover, we shall suppose that x is a non-integer positive number because in applications it is unimportant whether x is an integer or not.

Vilnius University, Naugarduko 24, 2006 Vilnius, Lithuania. Translated from Lietuvos Matematikos Rinkinys, Vol. 32, No. 1, pp. 105-121, January-March, 1992. Original article submitted 10 June, 1991.

Let $J_{\nu}(z)$, $I_{\nu}(z)$, and $K_{\nu}(z)$ denote the Bessel functions, i.e.,

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m} (z/2)^{2m}}{\Gamma(m+1)\Gamma(m+\nu+1)},$$

$$I_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(z/2)^{2m}}{\Gamma(m+1)\Gamma(m+\nu+1)},$$

$$K_{\nu}(z) = \frac{\pi}{2} \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin \nu \pi}.$$

Also, we put

$$\begin{split} ^+J_{\nu}(z,\delta) &= \left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^m (z/2)^{2m}}{\Gamma(m+1+\delta)\Gamma(m+\nu+1)}, \\ ^+I_{\nu}(z,\delta) &= \left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(z/2)^{2m}}{\Gamma(m+1+\delta)\Gamma(m+\nu+1)}, \\ \lambda_{\nu}(z,\delta) &= \frac{1}{2} \left(\frac{z}{2}\right)^{-\nu-\delta} \left(I_{\nu-\delta}(z) + J_{\nu-\delta}(z)\right) \\ &\qquad \qquad - \frac{1}{2} \left(\frac{z}{2}\right)^{-\nu} \left(^+I_{\nu}(z,\delta) - ^+J_{\nu}(z,\delta)\right). \end{split}$$

THEOREM 1. For all non-integers x > 0 and $q > 1/2 + \delta$ the indentity

$$\begin{split} D_{q-1}(x,\delta) &= -\frac{1}{2}\,\zeta(\delta)\frac{x^{q-1}}{\Gamma(q)} + \frac{x^q\zeta(1+\delta)}{\Gamma(1+q)} + \frac{x^{q-\delta}\zeta(1-\delta)\Gamma(1-\delta)}{\Gamma(1+q-\delta)} \\ &\quad + \frac{x^q(2\pi)^{1+\delta}}{\sin\frac{\pi\delta}{2}}\,\sum_{m=1}^\infty \sigma_\delta(m)\lambda_q\left(4\pi\sqrt{mx},\delta\right) \end{split}$$

holds.

Let

$$\tilde{\lambda}_{1}(z,\delta) = J_{-1+\delta}(z) + J_{1-\delta}(z) - \frac{2}{\pi} \sin(\pi \delta) K_{1-\delta}(z),
\Delta_{-\delta}(x) = D_{0}(x,\delta) + \frac{1}{2} \zeta(\delta) - x \zeta(1+\delta) - \frac{x^{1-\delta} \zeta(1-\delta)}{1-\delta}.$$

From Theorem 1, when q = 1, we obtain the following assertion.

COROLLARY. For all non-integers x > 0 the identity

$$\Delta_{-\delta}(x) = \frac{x(2\pi)^{1+\delta}}{2\sin\frac{\pi\delta}{2}} \sum_{m=1}^{\infty} \sigma_{\delta}(m) (2\pi\sqrt{mx})^{-1-\delta} \tilde{\lambda}_{1}(4\pi\sqrt{mx}, \delta)$$

is valid.

In some cases it is useful to have an approximate formula for $D_0(x, \delta)$ with a finite sum of terms $\tilde{\lambda}_1(4\pi\sqrt{mx}, \delta)$. Denote by B a function (not always the same) which is bounded by a constant.

Theorem 2. Let N be a natural number. Then for every $\varepsilon > 0$

$$\Delta_{-\delta}(x) = \frac{x(2\pi)^{1+\delta}}{\sin\frac{\pi\delta}{2}} \sum_{m \leqslant N} \sigma_{\delta}(m) (2\pi\sqrt{mx})^{-1-\delta} \tilde{\lambda}_{1} (4\pi\sqrt{mx}, \delta)$$
$$+ Bx^{\epsilon} + Bx^{\frac{1}{2}+\epsilon} N^{-\frac{1}{2}} + Bx^{-\frac{\delta}{2}} N^{\frac{\delta}{2}+\epsilon}.$$

COROLLARY. For every $\varepsilon > 0$ the estimate

$$\Delta_{-\delta}(x) = Bx^{\frac{1}{3} - \frac{\delta}{6} + \varepsilon}$$

is valid.

In the proof of Theorem 2 we shall use the following two propositions.

LEMMA 1. Let c > 0, q > 0, and the Dirichlet series

$$A(s) = \sum_{m=1}^{\infty} a_m m^{-s}$$

absolutely converge for $\sigma = c$. Then for all non-integers x > 1

$$\frac{1}{\Gamma(q+1)} \sum_{m \leqslant x} a_m (x-m)^q = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{A(s)\Gamma(s)x^{s+q}}{\Gamma(s+q+1)} ds.$$

The equation of Lemma 1 is a variant of the inversion formula for Dirichlet's series. Its proof can be found, for example, in [8, p. 487].

LEMMA 2. Let $|t| \to \infty$. Then, uniformly in σ on any finite interval,

$$|\Gamma(\sigma + it)| = e^{-\frac{1}{2}|t|} |t|^{\sigma - \frac{1}{2}} \sqrt{2\pi} (1 + o(1)).$$

The assertion of Lemma 2 is a consequence of the well-known Stirling formula. Let

$$f(s) = \frac{x^{s+q-1}}{\Gamma(s+\delta)\Gamma(s+q)\cos\frac{\pi s}{2}\cos\frac{\pi(s+\delta)}{2}}.$$

LEMMA 3. Let $\delta < c < 1/2$, $q > 3 - \delta$, and x > 0. Then

$$J := \frac{1}{2\pi i} \int_{-c-i\infty}^{-c+i\infty} f(s) \, ds = \frac{2x^q}{\pi \sin \frac{\pi \delta}{2}} \lambda_q \left(2\sqrt{x}, \delta\right).$$

Proof. The function f(s) has simple poles at the points

$$s = 2k + 1$$
 and $s = 2k + 1 - \delta$, $k = 0, 1, 2, \dots$

If $z = s - (2k + 1) \rightarrow 0$, then

$$\cos \frac{\pi s}{2} = \cos \left(\frac{(2k+1)\pi}{2} + \frac{\pi z}{2} \right) = (-1)^{k-1} \sin \frac{\pi z}{2} = (-1)^{k-1} \frac{\pi z}{2} (1 + o(1)). \tag{2}$$

Similarly, if $w = s - (2k + 1 - \delta) \rightarrow 0$, then

$$\cos \frac{\pi(s+\delta)}{2} = (-1)^{k-1} \frac{\pi w}{2} \left(1 + o(1) \right). \tag{3}$$

Let $L_1 = \{s: \ \sigma = -c, \ |t| \leq R\}$, $L_2 = \{s: \ s = -c + Re^{i\varphi}, \ |\varphi| \leq \pi/2\}$. In virtue of Lemma 2, the Stirling formula, and the well-known properties of the function cos s,

$$\lim_{R\to\infty}\int\limits_{L_2}f(s)\,ds=0.$$

Consequently,

$$\int_{-c-i\infty}^{-c+i\infty} f(s) ds = -\lim_{R \to \infty} \int_{L_1 \cup L_2} f(s) ds.$$

Since

$$\cos \frac{\pi (2k+1+\delta)}{2} = (-1)^{k-1} \frac{\sin \pi \delta}{2},$$
$$\cos \frac{\pi (2k+1-\delta)}{2} = (-1)^k \frac{\sin \pi \delta}{2},$$

we have, by the residue theorem and the Eqs. (2) and (3),

$$J = -\frac{2}{\pi \sin \frac{\pi \delta}{2}} \sum_{k=0}^{\infty} \frac{x^{2k+q}}{\Gamma(2k+1+\delta)\Gamma(2k+q+1)} + \frac{2}{\pi \sin \frac{\pi \delta}{2}} \sum_{k=0}^{\infty} \frac{x^{2k+q-\delta}}{\Gamma(2k+1)\Gamma(2k+q+1-\delta)}.$$
 (4)

Since

$$\sum_{k=0}^{\infty} \frac{(\sqrt{x})^{4k-2\delta}}{\Gamma(2k+1)\Gamma(2k+q+1-\delta)} = \frac{1}{2} (\sqrt{x})^{-q-\delta} \left(J_{q-\delta}(2\sqrt{x}) + I_{q-\delta}(2\sqrt{x}) \right),$$

$$\sum_{k=0}^{\infty} \frac{(\sqrt{x})^{4q}}{\Gamma(2k+1+\delta)\Gamma(2k+q+1)} = \frac{1}{2} (\sqrt{x})^{-q-\delta} \left({}^{+}J_{q}(2\sqrt{x}) + {}^{+}I_{q}(2\sqrt{x}) \right),$$

Lemma 3 follows from (4).

LEMMA 4. Let $q > 3 - \delta$. Then the assertion of Theorem 1 is valid.

Proof. It is well known that for $\sigma > \max(1, \operatorname{Re} a + 1)$

$$\zeta(s)\zeta(s-a) = \sum_{m=1}^{\infty} \frac{\sigma_a(m)}{m^s}.$$
 (5)

Consequently, it follows from Lemma 1 that for c > 1

$$D_{q-1}(x,\delta) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\zeta(s)\zeta(s+\delta)\Gamma(s)x^{s+q-1} ds}{\Gamma(s+q)}.$$
 (6)

Let $\delta < b < 1/2$. Then, in virtue of Lemma 2, the estimate

$$\Gamma(s)\Gamma^{-1}(s+q) = B|t|^{-q} \tag{7}$$

is valid for sufficiently large |t| in the strip $-b \le \sigma \le c$. Furthermore, the following estimates for the Riemann zeta-function are known to hold for large |t|:

$$\zeta(s) = B |t|^{\frac{1}{2} + b} \log |t|, \quad -b \leqslant \sigma \leqslant 0,$$

$$\zeta(s) = B |t|^{\frac{1}{2}} \log |t|, \quad 0 \leqslant \sigma \leqslant 1,$$

$$\zeta(s) = B \log |t|, \quad \sigma > 1,$$

$$\zeta(s + \delta) = B |t|^{\frac{1}{2} + b - \delta} \log |t|, \quad -b \leqslant \sigma.$$

$$(8)$$

Since $q > 3 - \delta$, in virtue of estimates (7) and (8), the integrand in the formula (6) is estimated as $B|t|^{-1-\varepsilon}$, $\varepsilon > 0$, in the strip $-b \le \sigma \le c$ for large |t|. This integrand has simple poles at s = 0, s = 1, and $s = 1 - \delta$. Taking into account the equality $\zeta(0) = -1/2$, we obtain, by the residue theorem,

$$D_{q-1}(x,\delta) = -\frac{x^{q-1}\zeta(\delta)}{2\Gamma(q)} + \frac{x^q\zeta(1+\delta)}{\Gamma(1+\delta)} + \frac{x^{q-\delta}\zeta(1-\delta)\Gamma(1-\delta)}{\Gamma(1+q-\delta)} + \frac{1}{2\pi i} \int_{-b-i\infty}^{-b+i\infty} \zeta(s)\zeta(s+\delta) \frac{\Gamma(s)x^{s+q-1}}{\Gamma(s+q)} ds.$$

$$(9)$$

By means of the functional equation for the Riemann zeta-function

$$\zeta(s) = \frac{(2\pi)^s}{2\Gamma(s)\cos\frac{\pi s}{2}}\zeta(1-s) = \chi(s)\zeta(1-s)$$
(10)

and the formula (5), we find that for $\sigma = -b$

$$\zeta(s)\zeta(s+\delta) = \frac{(4\pi^2)^s(2\pi)^\delta}{4\Gamma(s)\Gamma(s+\delta)\cos\frac{\pi s}{2}\cos\frac{\pi(s+\delta)}{2}}\sum_{m=1}^\infty \frac{\sigma_\delta(m)}{m^{1-s}}.$$

Whence, and from Eq. (9), using Lemma 3, we obtain the assertion of the lemma.

In order to prove Theorem 1 it remains to prove Lemma 4 for smaller values of q. For this aim we shall need the asymptotics of the quantity $\lambda_a(z,\delta)$.

LEMMA 5. We have

$$\lambda_{q}(z,\delta) = z^{-q-\delta-\frac{1}{2}} \sin \frac{\pi \delta}{2} \left(A_{1}(q,\delta) \cos \left(z - \frac{\pi(q-\delta)}{2} - \frac{\pi}{4} \right) + A_{2}(q,\delta) \cos \left(z + \frac{\pi(q-\delta)}{2} - \frac{\pi}{4} \right) + A_{3}(q,\delta) \sin \left(z - \frac{\pi(q-\delta)}{2} - \frac{\pi}{4} \right) \right) + Bz^{-q-\delta-\frac{3}{2}} \sin \frac{\pi \delta}{2} + Bz^{-4} \sin \frac{\pi \delta}{2} \quad \text{for } z \to \infty.$$

Here the quantities $A_j(q, \delta)$, j = 1, 2, 3, are bounded for all z and q, and the constant bounding the factor B is independent of q on any finite part of the q-plane.

Proof. Let n be a sufficiently large natural number and

$$I(z) \stackrel{\text{def}}{=} -\frac{1}{2\pi i} \int_{-n+\frac{1}{2}-i\infty}^{-n+\frac{1}{2}+i\infty} \frac{(z/2)^{2s} ds}{\Gamma(s+1+\delta)\Gamma(s+q+1)\sin \pi s \sin \pi(s+\delta)}.$$

From Lemma 2 and the properties of the function $\sin s$ it follows that the integral I(z) is the sum of the residues of the integrand at the points

 $s=k, \qquad k=0,1,2,\ldots,$

$$s = k - \delta, \qquad k = 0, 1, 2, \dots,$$

$$s = -k, \qquad \begin{cases} k = 1, 2, \dots, n - 1 & \text{if } q \text{ is non-integer} \\ k = 1, 2, \dots, n - 1 & \text{if } q \text{ is non-integer} \end{cases}$$

$$s=-k, \qquad \left\{ egin{array}{lll} k=1,2,\ldots,n-1 & & ext{if} & q & ext{is non-integer}, \\ k=1,2,\ldots,q & & ext{if} & q & ext{is integer}. \end{array}
ight.$$

Consequently,

$$I_{q}(z) = \frac{1}{\pi \sin \pi \delta} \left(\left(\frac{z}{2} \right)^{-q} + I_{q}(z, \delta) - \left(\frac{z}{2} \right)^{-q-\delta} I_{q-\delta}(z) + \sum_{k=1}^{n-1} \frac{(z/2)^{-2k}}{\Gamma(-k+1+\delta)\Gamma(-k+q+1)} \right).$$
(11)

On the other hand, the definition of the integral I(z) implies the estimate

$$I(z) = Bz^{-2n}, \qquad z \to \infty.$$

Whence, and from Eq. (11), using the supplementary formula for the Γ -function, we obtain

$$\left(\frac{z}{2}\right)^{-q} + I_q(z,\delta) - \left(\frac{z}{2}\right)^{-q-\delta} I_{q-\delta}(z) = \frac{\sin \pi \delta}{\pi} \sum_{k=1}^{n-1} \frac{(z/2)^{-2k}(-1)^k \Gamma(k-\delta)}{\Gamma(-k+q+1)} + Bz^{-2n} \sin \pi \delta. \tag{12}$$

When q is a natural number we can obtain an exact formula for the left-hand side of (12). We have

$$\sum_{k=q}^{\infty} \frac{(z/2)^{2k-2q}}{\Gamma(k+1)\Gamma(k-q+1+\delta)} - \left(\frac{z}{2}\right)^{-q-\delta} I_{q-\delta}(z)$$

$$= \left(\frac{z}{2}\right)^{-q-\delta} I_{-q+\delta}(z) - \left(\frac{z}{2}\right)^{-q-\delta} I_{q-\delta}(z) - \left(\frac{z}{2}\right)^{-2q} \sum_{k=0}^{q-1} \frac{(z/2)^{2k}}{\Gamma(k+1)\Gamma(k-q+1-\delta)}.$$

In particular, when q = 1, the identity

$$\left(\frac{z}{2}\right)^{-1} + I_1(z,\delta) - \left(\frac{z}{2}\right)^{-1-\delta} I_{1-\delta}(z) = \left(\frac{z}{2}\right)^{-1-\delta} \left(I_{-1+\delta}(z) - I_{1-\delta}(z)\right) - \left(\frac{z}{2}\right)^{-2} \frac{1}{\Gamma(\delta)}$$

$$= \frac{2}{\pi} \sin \pi \delta K_{1-\delta}(z) \left(\frac{z}{2}\right)^{-1-\delta} - \left(\frac{z}{2}\right)^{-2} \frac{1}{\Gamma(\delta)}$$
(13)

follows.

Now we shall consider the integral

$$J(z) \stackrel{\text{def}}{=} -\frac{1}{2\pi i} \int_{-n+\frac{1}{2}-i\infty}^{-n+\frac{1}{2}+i\infty} \frac{(z/2)^{2s-2} ds}{\Gamma(s+\delta)\Gamma(q+s)\sin \pi (q+s)\sin \pi s \sin \pi (s+\delta)}.$$

First, let the numbers q and $q-\delta$ be non-integers. Then the integral J(z) is equal to the sum of the residues of the integrand at its simple poles

$$s = k,$$
 $k = 1, 2, ...,$
 $s = k - \delta,$ $k = 1, 2, ...,$
 $s = k - q,$ $k = 1, 2, ...,$
 $s = -k,$ $k = 0, 1, ...,$ $n - 1.$

Reasoning as in the case of the integral I(z), we find that

$$-\frac{1}{\pi \sin \pi q \sin \pi \delta} \left(\frac{z}{2}\right)^{-q} + J_{q}(z,\delta) + \frac{1}{\pi \sin \pi \delta \sin \pi (q-\delta)} \left(\frac{z}{2}\right)^{-q-\delta} J_{q-\delta}(z)$$

$$-\frac{1}{\pi \sin \pi q \sin \pi (q-\delta)} \left(\frac{z}{2}\right)^{-q-\delta} J_{-q+\delta}(z)$$

$$+\frac{1}{\pi \sin \pi \delta \sin \pi q} \sum_{k=0}^{n-1} \frac{(z/2)^{2k-2}(-1)^{k}}{\Gamma(-k+\delta)\Gamma(-k+q)} = Bz^{-2n-2}.$$

From this we find that

$$\left(\frac{z}{2}\right)^{-q} + J_{q}(z,\delta) - \left(\frac{z}{2}\right)^{-q-\delta} J_{q-\delta}(z)
= \left(\frac{\sin \pi q}{\sin \pi (q-\delta)} - 1\right) \left(\frac{z}{2}\right)^{-q-\delta} J_{q-\delta}(z) - \frac{\sin \pi \delta}{\sin \pi (q-\delta)} \left(\frac{z}{2}\right)^{-q-\delta} J_{-q+\delta}(z)
+ \frac{\sin \pi \delta}{\pi} \sum_{k=1}^{n} \frac{(z/2)^{-2k} \Gamma(k-\delta)}{\Gamma(-k+q+1)} + \frac{B \sin \pi \delta |\sin \pi q|}{z^{2n+2}}.$$
(14)

It is easy to see that Eq. (14) also remains true when q is an integer.

Let m be an integer. Below we shall need the Bessel function $Y_m(z)$ that is defined as

$$Y_m(z) = \frac{1}{\pi} \left(\frac{\partial J_{\nu}(z)}{\partial \nu} - (-1)^m \frac{\partial J_{-\nu}(z)}{\partial \nu} \right) \Big|_{\nu=m}.$$

If $q - \delta$ is an integer, then taking into account continuity and using L'Hospital's rule, we deduce from Eq. (14) that

$$\left(\frac{z}{2}\right)^{-q} + J(z,\delta) - \left(\frac{z}{2}\right)^{-q-\delta} J_{q-\delta}(z)
= \left(\frac{z}{2}\right)^{-q-\delta} (\cos \pi\delta - 1) J_{q-\delta}(z) + \left(\frac{z}{2}\right)^{-q-\delta} Y_{q-\delta}(z)
+ \frac{\sin \pi\delta}{\pi} \sum_{k=1}^{n} \frac{(z/2)^{-2k} \Gamma(k-\delta)}{\Gamma(-k+q+1)} + \frac{B\sin \pi\delta |\sin \pi q|}{z^{2n+2}}.$$
(15)

It is well known (see [9]) that as $z \to \infty$

$$J_{\nu}(z) = \frac{C_1(\nu)}{\sqrt{z}} \cos\left(z - \frac{\pi\nu}{2} - \frac{\pi}{4}\right) + Bz^{-3/2},$$

$$J_{-\nu}(z) = \frac{C_2(\nu)}{\sqrt{z}} \cos\left(z + \frac{\pi\nu}{2} - \frac{\pi}{4}\right) + Bz^{-3/2},$$

$$Y_{\nu}(z) = \frac{C_3(\nu)}{\sqrt{z}} \sin\left(z - \frac{\pi\nu}{2} - \frac{\pi}{4}\right) + Bz^{-3/2}.$$

Here $C_1(\nu)$, $C_2(\nu)$, and $C_3(\nu)$ are bounded for all values of z and ν , and a constant, bounding the factor B, is independent of ν on any finite region of the ν -plane.

LEMMA 6. Let $q > 3/2 + \delta$. Then the assertion of Theorem 1 is valid.

Proof. If $q>3/2+\delta$, it follows from Lemma 5 that the series in the formula for $D_{q-1}(x,\delta)$ converges absolutely and uniformly with respect to x on any closed interval which does not contain 0. Moreover, for a fixed x, the convergence is uniform with respect to q on any finite region of the half-plane $\operatorname{Re} q \geqslant 3/2 + \delta + \varepsilon$, $\varepsilon > 0$. Consequently, both sides of the equation of Theorem 1 are analytic functions of q in such a half-plane. Thus, the assertion of the lemma follows from Lemma 4 by analytic continuation.

LEMMA 7. Let $0 < \sigma_0 \leqslant \sigma < 2$. Then for all y > 1

$$\zeta(\sigma) = \sum_{m \leqslant y} \frac{1}{m^{\sigma}} + \frac{y^{1-\sigma}}{\sigma - 1} + By^{-\sigma}.$$

A constant bounding the factor B depends only on σ_0 .

The proof of the lemma can be found, for example, in [10].

LEMMA 8. Let x > 1. Then

$$\sum_{m \leqslant x} \sigma_{-\delta}(m) = \frac{x^{1-\delta}\zeta(1-\delta)}{1-\delta} + x\zeta(1+\delta) + Bx^{\frac{1}{2}-\frac{\delta}{2}}.$$

Proof. It is easy to see that

$$\sum_{m \leqslant x} \sigma_{-\delta}(m) = \sum_{mn \leqslant x} \sum_{m \leqslant \sqrt{x}} m^{-\delta} = \sum_{n \leqslant \sqrt{x}} \sum_{m \leqslant \sqrt{x}} m^{-\delta} + \sum_{m \leqslant \sqrt{x}} m^{-\delta} \sum_{\sqrt{x} < n \leqslant x/m} 1 + \sum_{n \leqslant \sqrt{x}} \sum_{\sqrt{x} < m \leqslant x/m} m^{-\delta} \stackrel{\text{def}}{=} S_1 + S_2 + S_3.$$

$$(16)$$

Let [u] denote the fractional part of u. Then we have

$$S_{1} = \left[\sqrt{x}\right] \sum_{m \leqslant \sqrt{x}} m^{-\delta},$$

$$S_{2} = \sum_{m \leqslant \sqrt{x}} m^{-\delta} \left(\left[\frac{x}{m}\right] - \left[\sqrt{x}\right]\right),$$

and consequently, in virtue of Lemma 7,

$$S_{1} + S_{2} = \sum_{m \leqslant \sqrt{x}} m^{-\delta} \left[\frac{x}{m} \right] = x \sum_{m \leqslant \sqrt{x}} \frac{1}{m^{1+\delta}} + B \sum_{m \leqslant \sqrt{x}} m^{-\delta}$$

$$= x \left(\zeta (1+\delta) - \frac{(\sqrt{x})^{-\delta}}{\delta} + Bx^{-\frac{1}{2} - \frac{\delta}{2}} \right) + Bx^{\frac{1}{2} - \frac{\delta}{2}}.$$
(17)

Since

$$\sum_{m \le x} m^{-\delta} = \frac{x^{1-\delta}}{1-\delta} + A + Bx^{-\delta},$$

where A is some constant, we obtain, using Lemma 7,

$$S_{3} = \sum_{n \leqslant \sqrt{x}} \left(\left(\frac{x}{n} \right)^{1-\delta} \frac{1}{1-\delta} - \left(\sqrt{x} \right)^{1-\delta} \frac{1}{1-\delta} + Bx^{-\delta} n^{\delta} + Bx^{-\frac{\delta}{2}} \right)$$
$$= \frac{x^{1-\delta}}{1-\delta} \zeta(1-\delta) + \frac{x^{1-\frac{\delta}{2}}}{\delta} + Bx^{\frac{1}{2}-\frac{\delta}{2}}.$$

Whence, and from (16) and (17), the assertion of the lemma follows easily.

LEMMA 9. We have

$$\lambda'_{\nu}(z,\delta) = -\nu \left(\frac{z}{2}\right)^{-1} \lambda_{\nu}(z,\delta) + \left(\frac{z}{2}\right)^{-1} \lambda_{\nu-1}(z,\delta).$$

Proof. It is known [9] that

$$J_{\nu}'(z) = J_{\nu-1}(z) - \frac{\nu}{2} \left(\frac{z}{2}\right)^{-1} J_{\nu}(z),\tag{18}$$

$$I_{\nu}'(z) = I_{\nu-1}(z) - \frac{\nu}{2} \left(\frac{z}{2}\right)^{-1} J_{\nu}(z). \tag{19}$$

In a similar manner we find also that

$${}^{+}J'_{\nu}(z,\delta) = {}^{+}J_{\nu-1}(z,\delta) - \frac{\nu}{2} \left(\frac{z}{2}\right)^{-1} {}^{+}J_{\nu}(z,\delta), \tag{20}$$

$${}^{+}I'_{\nu}(z,\delta) = {}^{+}I_{\nu-1}(z,\delta) - \frac{\nu}{2} \left(\frac{z}{2}\right)^{-1} {}^{+}I_{\nu}(z,\delta). \tag{21}$$

From Eqs. (18)-(21) and from the definition of the quantity $\lambda_{\nu}(z,\delta)$ we deduce the equality of the lemma.

LEMMA 10. We have

$$\lambda_{\nu}^{\prime\prime}(z,\delta) = \left(\frac{\nu}{2} + \nu^2\right) \left(\frac{z}{2}\right)^{-2} \lambda_{\nu}(z,\delta) + \left(\frac{1}{2} - 2\nu\right) \left(\frac{z}{2}\right)^{-2} \lambda_{\nu-1}(z,\delta) + \left(\frac{z}{2}\right)^{-2} \lambda_{\nu-2}(z,\delta).$$

Lemma 10 follows from Lemma 9.

Proof of Theorem 1. Let

$$\begin{split} r_0(x) &= \Delta_{-\delta}(x), \\ r_1(x) &= \int\limits_0^x r_0(t) \, dt = \sum_{m \leqslant x} (x - m) \sigma_{-\delta}(m) \\ &- \frac{x^2}{2} \zeta(1 + \delta) - \frac{x^{2 - \delta} \zeta(1 - \delta)}{(2 - \delta)(1 - \delta)} + \frac{x}{2} \zeta(\delta). \end{split}$$

If M and N, M < N are natural numbers and f(x) is a function having a continuous second derivative in [M, N], then

$$\sum_{m=M+1}^{N} f(m)\sigma_{-\delta}(m) = \int_{M}^{N} f(t) dD_{0}(t,\delta)$$

$$= \int_{M}^{N} f(t) dr_{0}(t) + \int_{M}^{N} f(t) (\zeta(1+\delta) + t^{-\delta}\zeta(1-\delta)) dt$$

$$= f(t)r_{0}(t) \Big|_{M}^{N} - f'(t)r_{1}(t) \Big|_{M}^{N} + \int_{M}^{N} f''(t)r_{1}(t) dt$$

$$+ \int_{M}^{N} f(t) (\zeta(1+\delta) + t^{-\delta}\zeta(1-\delta)) dt.$$
(22)

Since $0 < \delta < 1/2$, the estimate

$$r_0(x) = Bx^{\frac{1}{2} - \frac{\delta}{2}} \tag{23}$$

follows from Lemma 8 for large x. Applying Lemma 6 with q=2 and Lemma 5, we find that for sufficiently large x

$$r_1(x) = Bx^{\frac{3}{4} - \frac{\delta}{2}}. (24)$$

Now let $f(t) = t^{\delta} \lambda_q (4\pi \sqrt{xt}, \delta)$. Then in virtue of the estimates (23) and (24), and Lemmas 9 and 5 we have, for large M and $x \in [x_0, X_0]$, where x_0 and X_0 are fixed positive numbers,

$$\left(f(t)r_0(t) - f'(t)r_1(t) \right) \Big|_M^N = BM^{-\frac{q}{2} + \frac{1}{4}} \sin \frac{\pi \delta}{2}, \tag{25}$$

$$\int_{M}^{N} f(t) (\zeta(1+\delta) + t^{-\delta} \zeta(1-\delta)) dt = BM^{-\frac{q}{2} + \frac{\delta}{2} + \frac{1}{4}}.$$
 (26)

In view of Lemma 6,

$$r_1(t) = \frac{t^2(2\pi)^{1+\delta}}{\sin\frac{\pi\delta}{2}} \sum_{m=1}^{\infty} \sigma_{\delta}(m) \lambda_2(4\pi\sqrt{mt}, \delta).$$

By Lemma 5 the series above converges absolutely and uniformly with respect to t on the interval [M, N]. Thus,

$$\int_{M}^{N} r_1(t) f''(t) dt = \frac{(2\pi)^{1+\delta}}{\sin \frac{\pi \delta}{2}} \sum_{m=1}^{\infty} \sigma_{\delta}(m) \int_{M}^{N} t^2 \lambda_2 (4\pi \sqrt{mt}, \delta) dt.$$
 (27)

By Lemmas 9, 10, and 5, we find that

$$f''(t) = x^{-\frac{q}{2} - \frac{\delta}{2} + \frac{3}{4}t^{-\frac{q}{2} + \frac{\delta}{2} - \frac{5}{4}} \sin \frac{\pi \delta}{2} \left(C_1(t, x, q, \delta) \times \cos \left(4\pi \sqrt{tx} - \frac{\pi(q - 2 - \delta)}{2} - \frac{\pi}{4} \right) \right.$$

$$+ C_2(t, x, q, \delta) \cos \left(4\pi \sqrt{tx} + \frac{\pi(q - 2 - \delta)}{2} - \frac{\pi}{4} \right)$$

$$+ C_3(t, x, q, \delta) \sin \left(4\pi \sqrt{tx} - \frac{\pi(q - 2 - \delta)}{2} - \frac{\pi}{4} \right) + Bx^{-\frac{q}{2} - \frac{\delta}{2} + \frac{1}{4}t^{-\frac{q}{2} + \frac{\delta}{2} - \frac{7}{4}} \sin \frac{\pi \delta}{2} + Bx^{-2}t^{\delta - 4} \sin \frac{\pi \delta}{2}.$$

Here the quantities $C_j(t, x, q, \delta)$, j = 1, 2, 3, are bounded for all t, x, and q, and a constant bounding the factor B is independent of q on any finite region of the q-plane. Since x is non-integer and $0 < \delta < 1/2$, whence and from (22), (25)-(27), by Lemma 5, we find that if $q > 1/2 + \delta$, then the series

$$\sum_{m=1}^{\infty} \sigma_{\delta}(m) \lambda_{q} \left(4\pi \sqrt{mx}, \delta \right)$$

converges uniformly with respect to $x \in [x_0, X_0]$. Moreover, for fixed x this convergence is uniform with respect to q on any finite part of the half-plane $\text{Re } q \ge 1/2 + \delta + \varepsilon$. Thus, by analytic continuation and Lemma 6, the theorem follows.

Proof of Corollary. If q = 1, then we find, by (14),

$$\begin{split} & \left(\frac{z}{2}\right)^{-1} + J_1(z,\delta) - \left(\frac{z}{2}\right)^{-1-\delta} J_{1-\delta}(z) \\ & = -\left(\frac{z}{2}\right)^{-1-\delta} J_{1-\delta}(z) - \left(\frac{z}{2}\right)^{-1-\delta} J_{-1+\delta}(z) - \left(\frac{z}{2}\right)^{-2} \frac{1}{\Gamma(\delta)} \,. \end{split}$$

Whence, and from the formula (13), we deduce that

$$\lambda_1(z,\delta) = \frac{1}{2} \left(\frac{z}{2} \right)^{-1-\delta} \left(J_{1-\delta}(z) + J_{-1+\delta}(z) - \frac{2}{\pi} \sin \pi \delta K_{1-\delta}(z) \right)$$
$$= \frac{1}{2} \left(\frac{z}{2} \right)^{-1-\delta} \tilde{\lambda}_1(z,\delta).$$

Thus, it remains to use Theorem 1.

To prove Theorem 2 we shall need the following known lemma.

LEMMA 11. Let F(x) be a real differentiable function such that either $F'(x) \ge m > 0$ or $F'(x) \le -m < 0$ for $x \in [a, b]$, and let G(x) be a monotonic function for $x \in [a, b]$ such that $|G(x)| \le G$. Then

$$\left| \int_{a}^{b} G(x)e^{iF(x)} dx \right| \leqslant \frac{4G}{m}.$$

Proof of the lemma can be found, for example, in [8].

Proof of Theorem 2. We put $\sigma_x = 1 + 1/\log x$. By Eq. (5) we find that for $\sigma \to 1 + 0$

$$\zeta(\sigma)\zeta(\sigma+\delta) = \sum_{m=1}^{\infty} \frac{\sigma_{-\delta}(m)}{m^{\sigma}} = \frac{B}{(\sigma-1)(\sigma+\delta-1)} = \frac{B}{(\sigma-1)^2}.$$

Whence and from the estimate

$$\sigma_{-\delta}(m) = Bm^{\varepsilon},$$

which is valid for every fixed $\varepsilon > 0$, repeating the proof of the Perron formula (see [11, pp. 427-428]), we find that for U > 0

$$\sum_{m \leqslant x} \sigma_{-\delta}(m) = \frac{1}{2\pi i} \int_{\sigma_x - iU}^{\sigma_x + iU} \zeta(s)\zeta(s+\delta) \frac{x^s}{s} ds + \frac{Bx^{\sigma_x}}{U(\sigma_x - 1)^2} + \frac{Bx^{1+\varepsilon}}{U} + Bx^{\varepsilon}.$$
 (28)

Let c > 0. We replace the contour in the integral of Eq. (28) by the new contour joining the points $\sigma_x - iU$, -c - iU, c + iU, $\sigma_x + iU$. The union of the former and the latter contours embraces the poles of the integrand at s = 0, s = 1, and $s = 1 - \delta$. Consequently, by the residue theorem, the formula (28), and the functional equation (10), taking $g(s) = \chi(s)\chi(s+\delta)(x^s/s)$, we have

$$\Delta_{-\delta}(x) = Bx^{\varepsilon} + \frac{Bx^{1+\varepsilon}}{U} + BU^{2c-\delta}x^{-c} + \frac{1}{2\pi i} \int_{-c-iU}^{-c+iU} \zeta(s)\zeta(s+\delta) \frac{x^{s}}{s} ds$$

$$= \frac{1}{2\pi i} \sum_{m=1}^{\infty} \sigma_{\delta}(m) \int_{-c-iU}^{-c+iU} \frac{g(s) ds}{m^{1-s}} + Bx^{\varepsilon} + \frac{Bx^{1+\varepsilon}}{U} + BU^{2c-\delta}x^{-c}.$$
(29)

Let N be a natural number, $N = Bx^A$, A > 0, and $U^2/4\pi^2x = N + 1/2$. Now we shall estimate the sum

$$Z_N \stackrel{\text{def}}{=} \sum_{m>N} \sigma_{\delta}(m) \int_{-c-iU}^{-c+iU} \frac{g(s) ds}{m^{1-s}}.$$

It is well known that for the function $\chi(s)$ the following asymptotic formula holds:

$$\chi(s) = \left(\frac{2\pi}{t}\right)^{s-\frac{1}{2}} e^{i\left(t+\frac{\pi}{4}\right)} \left(1+\frac{B}{t}\right), \qquad t \geqslant t_0 > 0.$$

Consequently,

$$\chi(s)\chi(s+\delta) = \exp\left\{ (2\sigma + \delta - 1)\log 2\pi - (2\sigma + \delta - 1)\log t + \frac{\pi i}{2} + 2it\log 2\pi - 2it\log t + 2it \right\} \left(1 + \frac{B}{t}\right).$$

Thus,

$$\chi(s)\chi(s+\delta)x^{it}m^{it}s^{-1} = \exp\left\{(2\sigma+\delta-1)\log 2\pi + iF(t)\right\}t^{-2\sigma-\delta}\left(1+\frac{B}{t}\right),\,$$

where

$$F(t) = 2t \log 2\pi - 2t \log t + 2t + t \log x + t \log m.$$

We have

$$F'(t) = \log \frac{4\pi^2 xm}{t^2}.$$

Hence, applying Lemma 11, we find

$$Z_{N} = Bx^{-c} \sum_{m>N} \frac{\sigma_{\delta}(m)}{m^{1+\epsilon}} \left| \int_{1}^{U} t^{2c-\delta} e^{iF(t)} dt \right|$$

$$+ Bx^{-c} N^{-c+\delta+\epsilon} + Bx^{-c} U^{2c-\delta} N^{-c+\delta+\epsilon}$$

$$= Bx^{-c} U^{2c-\delta} \sum_{m>N} \frac{1}{m^{1+c-\delta-\epsilon} \log\left(m/\left(N + \frac{1}{2}\right)\right)}$$

$$+ Bx^{-c} N^{-c+\delta+\epsilon} + Bx^{-\delta/2} N^{\delta/2+\epsilon} + Bx^{-c} U^{2c-\delta} N^{-c+\delta+\epsilon}$$

$$= Bx^{-c} N^{-c+\delta+\epsilon} + Bx^{-\delta/2} N^{\delta/2+\epsilon}.$$

$$(30)$$

Now from (29) and (30) it follows that

$$\Delta_{-\delta}(x) = \frac{1}{2\pi i} \sum_{m \leqslant N} \frac{\sigma_{\delta}(m)}{m} \int_{-c-iU}^{-c+iU} m^{s} g(s) \, ds + Bx^{\epsilon} + Bx^{1/2+\epsilon} N^{-1/2}$$

$$+ BN^{c-\delta/2} x^{-\delta/2} + Bx^{-c} N^{-c+\delta+\epsilon} + Bx^{-\delta/2} N^{\delta/2+\epsilon}.$$

$$(31)$$

It is clear that

$$\int_{-c-iU}^{-c+iU} m^s g(s) ds = \int_{-i\infty}^{i\infty} m^s g(s) ds - \left(\int_{iU}^{i\infty} + \int_{-i\infty}^{-iU} + \int_{-iU}^{-c-iU} \int_{-c+iU}^{iU} \right) m^s g(s) ds.$$
 (32)

Using Lemma 11 again, we find that the two first integrals in brackets of Eq. (32) are estimated as

$$BU^{-\delta}\left(\log\frac{N+\frac{1}{2}}{m}\right)^{-1}.$$

Thus, the contribution of these two integrals to the right-hand side of Eq. (31) does not exceed the quantity

$$BU^{-\delta} \sum_{m \le N} \frac{\sigma_{\delta}(m)}{m \log \left((N+1)/m \right)} = Bx^{-\delta/2} N^{\delta/2 + \varepsilon}. \tag{33}$$

The contribution of the two other integrals in brackets of Eq. (32) is

$$B\sum_{m\leqslant N} \frac{\sigma_{\delta}(m)}{m} \int_{-\epsilon}^{0} \frac{(mx)^{\sigma}}{U^{2\sigma+\delta}} d\sigma = Bx^{-\delta/2} N^{c-\delta/2} + Bx^{-\delta/2} N^{\delta/2+\epsilon}. \tag{34}$$

Let $b = 1 - 3\delta/2$. Then

$$\int_{-i\infty}^{i\infty} m^s g(s) ds = \int_{b-i\infty}^{b+i\infty} m^s g(s) ds.$$
 (35)

Indeed, the intengrand is regular in the strip $0 \le \sigma \le b$. Moreover,

$$\lim_{U\to\infty}\left(-\int_{iU}^{b+iU}+\int_{-iU}^{b-iU}\right)m^sg(s)\,ds=0.$$

Thus, it follows from (31)-(35) that

$$\Delta_{-\delta}(x) = \frac{1}{2\pi i} \sum_{m \leqslant N} \frac{\sigma_{\delta}(m)}{m} \int_{b-i\infty}^{b+i\infty} m^{s} g(s) \, ds + Bx^{\varepsilon} + Bx^{1/2+\varepsilon} N^{-1/2}$$

$$+ BN^{c-\delta/2} x^{-\delta/2} + Bx^{-c} N^{-c+\delta+\varepsilon} + Bx^{-\delta/2} N^{\delta/2+\varepsilon}.$$

$$(36)$$

Repeating the proof of Lemma 3, we find

$$\frac{1}{2\pi i} \int_{b-i\infty}^{b+i\infty} m^s g(s) ds = \frac{1}{2\pi i} \int_{b-i\infty}^{b+i\infty} \frac{(2\pi)^{\delta} (4\pi^2 m x)^s ds}{4\Gamma(s+1)\Gamma(s+\delta) \cos\frac{\pi s}{2} \cos\frac{\pi}{2}(s+\delta)}$$
$$= \frac{xm(2\pi)^{1+\delta}}{2 \sin\frac{\pi \delta}{2}} (2\pi\sqrt{mx})^{-1-\delta} \tilde{\lambda}_1 (4\pi\sqrt{mx}, \delta).$$

Whence and from (36), choosing an appropriate number c, we obtain the assertion of the theorem.

Proof of the corollary follows from Theorem 2, taking $N = [x^{1/3 + \delta/3}]$.

The author expreses his gratitude to Professor J. Kubilius for his support during the work reported in this paper.

REFERENCES

- 1. A. Oppenheim, Some identities in the theory of numbers, Proc. London Math. Soc., 26, (2), 295-350 (1927).
- K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and arithmetical identities, Ann. Math., 74 (2), 1-23 (1961).
- 3. K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. Math., 76, (2), 93-136 (1962).
- 4. B. C. Berndt, Arithmetical identities and Hecke's functional equation, Proc. Edinburgh Math. Soc., 16, 221-226 (1969).
- 5. B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series. I, Trans. Amer. Math. Soc., 137, 345-359 (1969).
- H.-E. Richert, Über Dirichletreihen mit Funktionalgleichungen, Acad. Serbe Sc. Publ. Inst. Math., 11, 37-124 (1957).
- 7. A. L. Dixon and W. L. Ferrar, Lattice-point sumation formulae, Quart. J. Math. (Oxford), 2, 31-54 (1931).
- 8. A. Ivič, The Riemann Zeta-Function, John Wiley & Sons, New York (1985).
- 9. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge (1944).
- 10. A. A. Karatsuba, Principles in Analytic Theory of Numbers [in Russian], Nauka, Moscow (1975).
- 11. K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg (1957).