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ONCE MORE ON THE F U N C T I O N  act(M) 

A. Lau r inS ikas  

Let, as usual, 

Ca(m) = E da' 
aim 

and ~f = ~i r > 0, di T ~ 0, as T ~ ~ .  In studying the remainder term of the mean square of the Riemann 
zeta-function if(s), s = a + it, near the critical line a = 1/2 

T 

/ 1 4 ( 1 / 2  + 5 T + it)12 dt, 
o 

(1) 

it  is useful to have a formula with an explicit remainder term for the sum 

Do(x,6T) a~=f E a-aT(m)' 
m~x 

Here x can be dependent on T. The mean values of the function aa(m) have been studied by many authors. 
We note a rather complicated paper [I] where a bibliography on the identities for the sum 

 a(m) 
m~x 

also can be found. In the papers [2-5] formulas for the sums of coefficients are obtained for a wide class of 
Dirichlet series. 

Assume q > 0, 0 < / i  < 1/2, F(s) denotes the Euler gamma function and 

1 
Dq_,(x ,5)  = ~ E ( x -  m)q-la_~(m). 

rn~x 

In view of the inaccessibility of [1] and further research applications of the quantity (1), in the present note we 

shall give a simple proof of the identity for the sum Dq_l(z, 5) with q > 1/2 + / f  that  is based on the ideas of 

the paper  [7] (see also [8]). Note that  in [1] only integer values of q are considered. We shall also obtain an 

approximate formula for the sum D0(x, 6). Moreover, we shall suppose that  x is a non-integer positive number 
because in applications it is unimportant  whether z is an integer or not. 
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82 A. Laurineikas 

Let J,,(z), I,,(z), and K,,(z) denote the Bessel functions, i.e., 

J~,(z) = ( -1 )m(z /2 ) :m 
m=o F(m+ l)F(m + u + i)' 

~(~) = (z /~)  ~m 

m=0 r (m + 1)r(m + ~ + 1)' 

~r l_.(z) - I.(z) 
K . ( z ) -  ~ ": 

s in  /]11" 

Also, we put 
( 2 ) "  ~-~ (-1)re(z/2) 'm 

+Y,(z, 6) = r(m + 1 + ~)r(m + ~ + 1)' 
rn----0 

+l~(z,6) = F ( m +  l + 6 ) F ( m + v +  1)' 
m----O 

l ( z ~ - . - ,  
~(z ,~)  = ~ (~_,(z)  + s~_,(~)) 

1 

THEOREM 1. For all non-integers x > 0 and q > 1/2 + 8 the indentity 

1 ~q-1 zq((1 + 6) zq-~((1 - ~)r(l - 8) 

Dq-~ (z' 8) = - 2 ~(6) r--(-~ + r(l+ q) + r(1+q- ~) 

xq(27i')l 'b6 ~ O'6(!rr/)*~q (4rrx/-m-x , (~) 
+ 7 7"g 

s in  2 rn--1 

holds. 

Let 
~I (Z ,  (~) = J - l - t - ~ ( z )  "l- Y l - 6 ( z )  - ~ sin (lrS)Kl_~(z), 

A_~(z) = D0(z, ~) + ~((6) - x((1 + 6) - 
xl-~((1 8) 

1 - 6  
From Theorem 1, when q = 1, we obtain the following assertion. 

COROLLARY. For all non-integers x > 0 the identity 

A_,(x) - ~ 7 ~  ~ c , ( m ) ( 2 r x / ~ - ~ - ~ A l ( 4 7 r ~ , 6 )  
s in  -~- m = l  

is valid. 

In some cases it is useful to have an approximate formula for D0(z,/~) with a finite sum of terms i l  (4~rv/-m-~, 6). 
Denote by B a function (not always the same) which is bounded by a constant. 

THEOREM 2. Let N be a natural number. Then for every e > 0 

A_~(x)-- 7 ~- B ~ ( m l ( 2 7 r f f - ~ - l - ~ A l (  47r ~ff-~-~'8) 
s in  - -  

2 m<~N 

+ Bx" + Bx~+ 'N -2 + B z - ~ N  ~+'. 
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COROLLARY. For every e > 0 the es t imate  

1 5 

A _ 5 ( z )  = B z 3  6 

is valid. 

In the proof of Theorem 2 we shall use the following two propositions. 

LEMMA 1. Let c > O, q > O, and the Dirichlet series 

A(s) = ~ atom -~ 
rn= l 

absolutely con verge for ~r = c. Then for all non-integers x > 1 

c + i 0 0  
1 1 / A(s )C(s ) z '+q  

r(q + i) E am(x  - m)  q - 27ri r ( s  + q + i) ds. 
m~<x c - J o e  

The equation of Lemma 1 is a variant of the inversion fornmla for Dirichlet's series. Its proof can be found, 
for example, in [8, p. 487]. 

LEMMA 2. Let It [ ---* oz. Then, uniformly in ~r on any finite intervd,  

_ 1_ i t [  I 
I F ( ~ + i t ) l = e  2 [tl~'-Sv~(l+o(1)). 

The assertion of Lemma 2 is a consequence of the well-known Stirling formula. 
Let 

x s + q - 1  

f(s)  : 
r(s + 6)r(s + q) cos :~ cos ~ s-CaY-:) ' 2  

LEMMA 3. Let 5 < c < 1/2, q > 3 - 6, and z > O. Then 

J : =  

- c+ioo  1 / 2 x  q 
2~i f (s)  ds - -  ~ ,  a, ( 2 ~ ,  5). 

7i" s i n  - -  
- c - i o o  2 

Proof .  The function f ( s )  has simple poles at the points 

s = 2 k + l  and s = 2 k + l - 5 ,  k = 0 , 1 , 2 , . . . .  

If z = s -  (2k + 1) ~ 0, then 

cos T = cos 2 + = (-1) '~-I sin --g = (-1) ~-' I + o(:)). 

Similarly, if w = s - (2k + 1 - 5) ~ 0, then 

~r(s + 6) ~rw (1 + o(1)).  
COS 7 - -  (--I)k-1 Y 

(2) 

(3) 



84 A. Laurineika.s 

Let L1 = {s: cr = - c ,  It I ~< R}, L2 = {s: s = - c  + Re i~', t ~ I <~ rr/2}. In virtue of Lemma 2, the Stirling 
formula, and the well-known properties of the function cos s, 

f 
lim I f t s )  ds = O. 

R-..* oo j - -  
L~ 

Consequently, 
- c + i o o  

-c - i~  L1UL2 

f ( s )  ds. 

Since 
lr(2k + 1 + 5) = ( _ l ) k _ i s i n  7r6 

cos 2 2 

~(2k + 1 - 6) = (_1) ~ sin ~5 
cos 2 2 ' 

we have, by the residue theorem and the Eqs. (2) and (3), 

J _ 

_ _  

2 ~~176 x2k+ q 
7r ~ r(2]c + 1 + 5)r (2k  + q + 1) r sin -7 = 

2 ~ X 2k+q-6 

~ r(2k + 1)r(2k + q + 1 - 6)' sin -E k=0 

(4) 

Since 

(v~) 4~--~ 1 
r(2~ + 1)r(2k + q + i - 5) = ~ (v~)-q-~(Jq-~(2~)  + Iq_~(2~)),  

k=O 

~=0 F(2k + 1 + 5)F(2k + q + 1) = (V~)-q-~ (+Jq(2V~) + +Iq(2x/~)) ,  

Lemma 3 follows from (4). 

LEMMA 4. Let  q > 3 - 5. Then the assertion o f  Theorem 1 is valid. 

Proof.  It is well known that for c~ > m a x ( l ,  Rea + 1) 

r162 - a) = Z ~o(m) 
rrt s 

m = l  
(5) 

Consequently, it follows from Lemma 1 that for c > 1 

c+ioo 
1 / ~(~)~(~+or(s)x ,+ , - lds  

U a _ l ( X , 5 )  : ~ /  F ( s  -4- q) 
c-lot 

(6) 

Let 6 < b <: 1/2. Then, in virtue of Lemma 2, the estimate 

r ( ~ ) r - l ( s  + q) = Bi t  I -q (7) 
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is valid for sufficiently large It [ in the strip - b  ~< ~ ~< c. Furthermore, the following estimates for the Riemann 
zeta-function are known to hold for large It [: 

~(s) = Blt l �89 l t l ,  - b  <~ ,r <~ O, 
1 

((s) = B[tl= log [t I, 0 ~ < ~ < 1 ,  
~(8) = B log It I, ~ > 1, 

l+b-a 
/ ( s + a )  = B l t l  2 log It l ,  -b .< , r .  

(8) 

Since q > 3 - 5, in virtue of estimates (7) and (8), the integrand in the formula (6) is estimated as B] t  ]-1- , ,  
e > 0, in the strip - b  <~ ~r ~< C for large It [. This integrand has simple poles at s = 0, 8 = 1.; and s = 1 - 6. 
Taking into account the equality ~(0) = - 1 / 2 ,  we obtain, by the residue theorem, 

Dq_ 1 (z, 6) = 
xq- : ( (5)  xq((1  + ~) x q - * i ( 1  - a ) r ( 1  - 5) + - -  + 

2r(q) V(1 + 5 / r(1 + q - 6) 
-b+ioo 

1 / F(s)* *+q-1 
+ ~ i  C(8)C(s + 5) r(8 + q) d,. 

- b - i o o  

(9) 

By means of the functional equation for the Riemann zeta-function 

(2~)' . , C ( 1 - s )  = X ( s ) ( ( 1 -  8) ( lo) 

and the formula (5), we find that for cr = - b  

(47r2)~ (27r) * s o'a (m) 
~rs rr(s+~) r r t l -  s " r + 5) = 4r ( s )r ( s  + 5) cos ~- cos - 7  m_-, 

Whence, and from Eq. (9), using Lemma 3, we obtain the assertion of the lemma. 
In order to prove Theorem 1 it remains to prove Lemma 4 for smaller values of q. For this aim we shall 

need the asymptotics of the quantity Aq(z, 5). 

L E M M A  5.  W e  have 

' 7r5(Al(q, 5)cos( z rr(q-5) 4) Aq(z,6) = z -q-*-~ sin ~ 2 

+ Z2(q,')cos ( z  + zr(q-5) ( z  

3 7r5 71"5 
+Bz-q -~ -2s in  - ~ + B z - 4 s i n  --~ for z---*oo. 

Here the quantities Aj(q, 5), j = 1, 2, 3, are bounded for all z and q, and the constant bounding the factor B 
is independent of q on any finite part of the q-plane. 

Proof.  Let n be a sufficiently large natural number and 

I ( z )  def_ 

- n +  l +io~ 

1 [ (~/2) ~' d~ 
27ri J r(8 + 1 + 6)r(s  + q + 1) sin 7rs sin ~r(s + 5)" 

- n +  l--ioo 
2 
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From Lemma 2 and the properties of the function sin s it follows that the integral I(z) is the sum of the 
residues of the integrand at the points 

s = k ,  k = 0,1,2, . . .  , 

s = k - 8 ,  k = 0,1,2 , . . .  , 

Consequently, 

k = l , 2 , . . . , n - 1  if q isnon-integer, 
s = - k ,  k = l , 2 , . . . , q  if q is integer. 

7rsin re6 ~ Iq_,(z) 

,,-~ (~/2)-~ ) 
+ Z F ( _ k + l + 6 ) r ( _ k + q + l )  " 

k = l  

On the other hand, the definition of the integral I(z) implies the estimate 

(11) 

I(z) = Bz -2", z --+ oo. 

Whence, and f r o m  Eq. (11), using the supplementary formula for the F-function, we obtain 

k= l  

+ Bz -2n sin rr6. (12) 

When q is a natural number we can obtain an exact formula for the left-hand side of (12). We have 

k=q P(k + 1)r(k - q + 1 + 8) - /q_a(z )  

= s_~+,(z)- s~_,(~)- ~ r@ + 1)F~mq+ l - 8 )  
k=0 

In particular, when q = l, the identity 

z - I  - I - ~  - I - ,5  - 2  1 
(~)  + I , ( z , 6 ) -  (2)  Ii-a(z) = (2)  ( l - l + , ( z ) -  II-a(z)) - ( 2 )  P(6) 

= --2si n . , K l _ , ( z ) ( 2 )  - 1 - '  _ (Z~ -2 i ~2J r(8) 
Oz) 

follows. 
Now we shall consider the integral 

J(z) dog _ 

- n +  l +icx~ 

1 f (z/2) 2~-2 ds 
2~i J r(s  + 6)r(q + s) sin 7r(q + s) sin rrssin 7r(s + 6)" 

- n +  l - i c c  
2 

First, let the numbers q and q - 6 be non-integers. Then the integral J(z) is equal to the sum of the residues 
of the integrand at its simple poles 

s = k ,  k = l , 2 , . . . ,  

s = k - 6 ,  k = l , 2 , . . . ,  

s = k - q ,  k = l , 2 , . . . ,  

s = - k ,  k = O ,  1, . . . ,  n - 1 .  
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Reasoning as in the case of the integral I(z), we find that 

+jq(Z,6) z -q 
~sin ~qsin ,,6 ~ + ~sin ~ s i n  ~(q - 6) \2J 4-~(z )  

i (z]-~-~ 
- ~rsin rrq sin ,'r(q - 6) \2]  d_q+,(z) 

r*--i 

i ~o (z/2)2k-2(--1)k - Bz-2n-2" + 
sin ~6sin,cq = r ( - k + 6 ) r ( - k + q )  

From this we find that 

- Jq_~(z) 
_ ( sin:q ) ( z ' ) -q  -~ sin ~r6 -q-e  

\ s in  ~r(q - 6) 1 \ 2 ]  Je_e(z) sin ~-((q - 6) (2) 

+ sin_rrrr6 ~ (z/2)-2kF(kF_~_k~qTk_li- 6) + Bsin z 2"+2rr6i sin rrq} 

k = l  

(14) 

It is easy to see that Eq. (14) also remains true when q is an integer. 
Let m be an integer. Below we shall need the Bessel function Y,~(z) that is defined as 

7 <  0 .  (--1)m 0.  ] " 

If q - 6  is an integer, then taking into account continuity and using L'Hospital's rule, we deduce fl:om Eq. (14) 
that 

= ( ~ ) - q - ' ( c o s  7 r6 -1 ) Jq_~(z )+  ( 2 ) - ' - ' Y ) _ , ( z )  (15) 

+ sin_.~.~6 ~ (z/2)-2kF(kF_~_kTq_+_ii- 6) + B sin z 2"+-~r6 [ sin zcqt 

k = l  

It is well known (see [9]) that as z --, :~ 

:,(.-) : c'("---! (z M/~ COS 

J_~(z) : c~("--A (z + - - -  X/r~ COS 

v~(~) : c3(.) sin (z 

Try ~r 
+ Bz -3/~, 

2 4 
7rl] 7r + Bz -3/2, 
2 4 

2 + Bz-3/~" 

Here CI(u), C2(v), and Ca(v) are bounded for all values of z and u, and a constant, bounding the factor B, is 
independent of u on any finite region of the v-plane. 

LEMMA 6. Let q > 3/2 + 6. Then the assertion of Theorem 1 is valid. 

Proof.  If q > 3/2 + 6, it follows from Lemma 5 that the series in the formula for Dq_l (x, 6) converges abso- 
lutely and uniformly with respect to x on any closed interval which does not contain 0. Moreover, for a fixed x, 
the convergence is uniform with respect to q on any finite region of the hMf-plane Req >~ 3/2 + 6 +  c, r > 0. 
Consequently, both sides of the equation of Theorem 1 are analytic functions of q in such a half-plane. Thus, 
the assertion of the lemma follows from Lemma 4 by analytic continuation. 
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LEMMA 7. Let 0 < ~ro <~ e < 2. Then for all y > 1 

1 y l - a  
C(~) = F_, -~7 + ~ + BY - ~  

m ~ y  

A constant  bounding the factor B depends only on no. 

The proof of the lemma can be found, for example, in [10]. 

LEMMA 8. Let  x > 1. Then  

xl-e((1 - 5) 1 * 
~ - ~ ( ~ )  - 1 -  5 + < ( 1 +  5) + B ~  

m ~ x  

Proof .  It is easy to see that 

E ~-,(,-)= E E ~-'= E E m-' 

m -  6 def = S I + S 2 + S a .  

Let [u] denote the fractional part of u. Then we have 

$ I =  [~x-] E m -*, 
m~<v~ 

and consequently, in virtue of Lemma 7, 

m <, ,/7 m <, v~ m <<, ,/7 

= x  C(1+5) ('/7)-~+B~__ 2 +B~,5-5 
5 

Since 
x l - 6  

E m-~  = ~ _ 5  + A + B x - ~ ,  
rn <~ x 

where A is some constant, we obtain, using Lemma 7, 

$3--  E ; 1 - 6  1 - 5  
,~<,/7 

1 - -  
x 1 - ~  z 2 !_*_ 

_ 1_6<(1_5)+_y__+Bx~  2 

+ Bz-~n ~ + Bx-2 

Whence, and from (16) and (17), the assertion of the lemma follows easily. 

LEMMA 9. W e  h a v e  
- 1  

(16) 

(17) 
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Proof .  It is known [9] that .(z)-, 
a;(~) = a~_~(~) - 7 7 a'(~)' (18) 

s'.(z) = s._l(~) - 7 a ' (~ )  (~9) 

In a s imi lar  manner we find also that  

+a'(z,5) = + a , _ ~ ( z , ~ ) -  7 7 +a, (z ,5 ) ,  (2o) 

+s'.(z, ~) = +s._l(z,6) - 7 +I . (z ,  5). (21) 

From Eqs. (18)-(21) and from the definition of the quantity A,(z, 5) we deduce the equality of the lemma. 

LEMMA 10. We  h a v e  

,, /u (2) -2 1 _ 2u) (2)-2 (2)-' ~'(" ~)= t7  + r ~'("~) + (7  ,',._~(z, 5) + ~ . _ , ( . ,  5). 

Lemma 10 follows from Lemma 9. 
Proof of Theorem 1. Let 

,'o(~) = A_~(.) ,  

0 m<~x 

x ~ z ~ - ~ C ( 1  - 5)  !p:~', 
- -~-~(1 § 5) § 

( 2 -  5 ) ( 1 -  5) 2 ' ~ '  

If M and N, 
[m, N], then 

M < N are natural numbers and f (x)  is a function having a continuous second derivative m 

N 

E 
re=M+1 

N 

f(rn)a_~ (m) = / f(t) dDo(t, 5) 

M 

N N 

M M 

N 

' '< j 
= - f (t)rl(t)l M + f"(t)r~(t)dt 

M 

N 

+ f s(,)(~(1 +5) + ~-~(1 - 5)) d,. 
M 

Since 0 < 5 < i /2 ,  the estimate 

(22) 

1 5 

.0(~) = B . ~  ~ (23) 

follows from Lemma 8 for large x. Applying Lemma 6 with q = 2 and Lemma 5, we find that  for sufficiently 
large x 

3 5 

.1(~) = Bx4 ~. (z4) 
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Now let f(t)  = tz$q(47rv/~, 5). Then in virtue of the estimates (23) and (24), and Lemmas 9 and 5 we have, 
for large M and x E Ix0, X0], where x0 and X0 are fixed positive numbers, 

q 1 7r5 
( f ( t )ro( t ) -  f~(t)rl(t))l N = B M  -~+~ sin -~-, 

N 
q . 6  .1 

f ( t ) ( ( (1  + 5) + t-6((1 - 6)) dt = B M - ~ * : * : .  
M 

(25) 

(26) 

In view of Lemma 6, 

r:(t) = -  : -;7 E a~(m)A2( 4~rvz~'5)" 
s i n  - -  2 m - - 1  

By Lemma 5 the series above converges absolutely and uniformiy with respect to t on the interval [M,N]. 
Thus, 

N N 

/r:(t)f"(t)dt-(2~r)1+'sin :-{ Z"(m)f 5)dr. (27) 

M 2 r n = l  M 

By Lemmas 9, 10, and 5, we find that 

q ~+3 q . :  5 ~rS(c:(t ,z ,q,5)• ~ f';(t) = x-:-: :t -:~-:- sin ~ -  

+C2(t 'x 'q '5)  c~ 4 )  
\ 2 

~-(q-2-5)2  4 )  

+ c~(t, ~, q, 5) si~ ( 4 ~ v ~  ~-(q-2-5) 4 ) )  q ,~.: ~+:__7 :~ Bx-h :-4 ~-5 -FBx - ~ - ~ t ~ t  2 2 4sin y +  s i n - ~ .  
2 

Here the quantities Cj(t, x, q, 5), j = 1,2, 3, are bounded for all t, x, and q, and a constant bounding the factor 
B is independent of q on any finite region of the q-plane. Since x is non-integer and 0 < 5 < I/2, whence and 
from (22), (25)-(27), by Lemma 5, we find that if q > 1/2 + 5, then the series 

OG 

E ~ ( 47rV'-~-~' 5) 
r n ~ ]  

converges uniformly with respect to x E [x0, X0]. Moreover, for fixed x this convergence is uniform with respect 
to q on any finite part of the half-plane Re q >/1/2 + 5 + :. Thus, by analytic continuation and Lemma 6, the 
theorem follows. 

Proof of Corollary. If q = 1, then we find, by (14), 

-2 1 

Whence, and from the formula (13), we deduce that 

, ) 
~ I ( Z , ~ )  : ~ g l _ 6 ( z ) - 4 - J _ l + ~ ( z )  - -sin~ ~ S I { : _ 6 ( z )  

�9 
i ~:(z,~). 
2 

Thus, it remains to use Theorem 1. 
To prove Theorem 2 we shall need the following known lemma. 
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LEMMA 11. Let F(x)  be a real differentiable function such that either F ' (z )  >t m > 0 or F ' (z )  <~ - m  < 0 
for ~ ~ [~, hi, aria let a (~)  be a mo.otonie f~.~tio,  fo~ ~: e [a, b] such that Ia(~)l <~ a .  Then 

b 

< 

( I  

Proof of the lemma can be found, for example, in [8]. 
Proof  of  Theorem 2. We put o-~ = I + 1/ log x. By Eq. (5) we find that for a ~ 1 + 0 

m=l rn~ ( ~ -  1)(c~+ 6 -  1) (~r-  1) 2.  

Whence and from the estimate 
a_~(m) = B m  ~, 

which is valid for every fixed r > O, repeating the proof of the Perron formula (see [11, pp. 427-428]), we find 
that  for U > O  

ax'-I-iU 

1 I ~_,(m) = ~ ~(~)r + 6) ~' ds 
8 

Bx ~. Bxl+~ 
+ u ( ~  - 1) 2 + ~ + B ~  

Let c > 0. We replace the contour in the integral of Eq. (28) by the new contour joining the points o-~ - 
iU, - c  - iU, c + iU, o-~ + iU. The union of the former and the latter contours embraces the poles of the 
integrand at s = 0, s = 1, and s = 1 - 6. Consequently, by the residue theorem, the formula (28), and the 
functional equation (10), taking g(s) = )f(s)x(s + 5)(x ' / s ) ,  we have 

- c + i U  

B z  1+~ B U ~ _ e z _  c I / x ~ 
A-~(z )  = Bx~ + -U + " + ~ i  ~(s)~(s + 5 ) T  ds 

- c - i U  

- e + i U  

1 ~o / g(s) ds Bx I+~ BU2C_~x_e" 
= 2~-7 ~ o-~(m) .,,----7 + B ~  + - V -  + 

m = I  -c-iU 

(29) 

Let N be a natural number, N = Bx A, A > 0, and U2/47r2x = N + 1/2. Now we shall estimate the sum 

- c + i U  

712 t _ ~ " 

m>N -c-iU 

It is well known that for the function X(S) the following asymptotic formula holds: 

t ) t 0 > 0 .  

Consequently, 

X(s)X(s + 6) = exp {(2o- + 6 - 1)log 2~r - (2o- -4- 5 - t ) log t + ~ri 
2 

+ 2it log 2rc - 2it tog t + 2it } (1 + B ) . 
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Thus, 

where 

( ' )  X(8)X(s+6)z%n%-'=exp{(2a+6-1) log27r+ }t -2~ 1+ 7 , 

F(t) = 2t log 2~r - 2t log t + 2t + t log x + t log m. 

We have 

Hence, applying Lemma 11, we find 

F'(t) = log 4 ~r~ xm 
t 2 

U 

m > N  1 

+ Bx-CN -c+~+~ + Bx-eU2C-~N -c+~+~ 

1 

+ Bz-~N -c+~+` + Bx-~I2N ~12+~ + Bx-cU2~-~N -c+~+~ 

= Bx-r -c+~+` + Bx-~/2N ~/~+'. 

(30) 

Now from (29) and (30) it follows that 

- c + i U  

A-6(x)  = 2~ril m~N ff 6(?Tt)tll j mS g(s) ds + Bxe + Bxl/2+~N-1/2 

- c - i U  

+ BNC-6/2x -6]2 § Bx-CN -c+~+~ + Bx-e/2N ~/~+~. 

(31) 

It is clear that 

- c + i U  ice / ioo - i U  

- c - i U  - i c ~  "i - " 

- c - i U  iU 

- i U  - c + i U  

(32) 

Using Lemma 11 again, we find that the two first integrals in brackets of Eq. (32) are estimated as 

Thus, the contribution of these two integrals to the right-hand side of Eq. (31) does not exceed the quantity 

~r~(m) = B x _ ~ / 2 N ~ / 2 +  ~ 
BU- '  Z mlog ((N + 1)/m) 

m ~ N  

(33) 

The contribution of the two other integrals in brackets of Eq. (32) is 

0 

t (rex) ~ + Bx-~/2N ~/2+~, 

ra<~N - c  

(34) 



Once more on the function aa(m) 93 

Let b = 1 - 35/2. Then 
ioo b+ioa 

/ m ' g ( s ) d s =  f mSg(s)ds.  

-ic~ b-ioo 

Indeed, the intengrand is regular in the strip 0 ~ cr ~ b. Moreover, 

(35) 

(7 7) lira - + m" g(s) ds = O. 
U -.* oo 

iU -iU / 

Thus, it follows from (31)-(35) that 

b+ioo 

1 ~ff, ~r~(m) f m~g( s) d s + B x  e + Bx:/2+~N-:/2 A_~(z) 
J rn<~ N b-ioa 

+ BN~-~/~aj-~/2 + Bz-CN -~+~+~ + Bz-a/2N~/2+~. 

(36) 

Repeating the proof of Lemma 3, we find 

b+icx~ 

1 / m"g(s) ds = 
2~ri 

b-i~ 

b+ic~ 

1 f (2~)~(4~2m~) ~ d~ 
21ri 4r(s + 1)r(s + 61 cos ~ cos ~(s + e) 

b-ioo 
m(2~)1+: :-~X 
2sin '~ A (2~r~7) -  1 ( 4 ~ r ~ , a ) .  

2 

Whence and from (36), choosing an appropriate number c, we obtain the assertion of the theorem. 
Proof of the corollary follows from Theorem 2, taking N = [x:/3+~/3]. 
The author expreses his gratitude to Professor J. Kubilius for his support during the werk reported in this 

paper. 

R E F E R E N C E S  

1. A. Oppenheim, Some identities in the theory of numbers, Proc. London Math. Soc., 26, (2)~ 295-350 (1927). 
2. K. Chandrasekharan and R. Narasimhan, Hecke's functional equation and arithmetical identities, Ann. Math., 

74 (2), 1-23 (1961). 
3. K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors a~Ld the average 

order of arithmetical functions, Ann. Math., 76, (2), 93-136 (1962). 
4. B.C. Berndt, Arithmetical identities and Hecke's functional equation, Proc. Edinburgh Math. Soc., 16, 221-226 

(1969). 
5. B.C. Berndt, Identities involving the coefficients of a class of Dirichlet series. I, Trans. Amer. Math. Soc,, 137, 

345-359 (1969)_ 
6. H.-E. Pdchert, Uber Dirichletreihen mit Funktionalgleichungen, Acad. Serbe Sc. Publ. Inst. Math., 11, 37-124 

(1957). 
7. A.L. Dixon and W. L. Perrar, Lattice-point sumation formulae, Quart. J. Math. (Oxford), 2, 31-54 (1931). 
8. A. Ivid, The R/emann Zeta-Function, John Wiley & Sons, New York (1985). 
9. G.N. Watson, A Treatise on the Theory of Bessd Functions, Cambridge University Press, Cambrs (1944). 

10. A.A. Karatsuba, Principles in AnMytic Theory of Numbers [in Russian], Nauka, Moscow (1975). 
11. K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin-GSttingen-Heidelberg (1957). 

(Translated by A. Laurin~ika.~) 


