A CLASS OF INVERSE PROBLEMS FOR ELLIPTIC EQUATIONS

A. Xhaidarov UDC 517.95

In this paper we consider problems of determining the right-hand side and the coeffici-
ents of a second-order elliptic equation, not depending on one of the spatial variables,
where complete Cauchy data are specified on the domain boundary. Various versions have been
studied of similar formulations for parabolic equations in {1-3] and for eliiptic equations
in [4] (problem concerning the density in an inverse problem of potential theory), where
only theorems of uniqueness were obtained in an overdetermined formulation. The reader,
wishing to acquaint himself with the modern state of the theory of inverse problems, sheuld
consult [5, 6]. Preliminary results relating to this problem, as well as an existence
theorem for an unknown coefficient, may be found in [7, 8}. Part of our results in this
paper were given previously in [9].

In Sec. 1 estimates are established for a Schauder-type solution; to do this, the well-
known method of "freezing of coefficients" [10-12] is modified in an appropriate way. In
Sec. 2, under other conditions, uniqueness theorems are proved by Novikov's method [4, 13]
and an application is given to the problem of recovery of a coefficient and the right-hand
side. Finally, in Sec. 3, based on the results in Secs. 1 and 2, conditions are obtained
for the existence of a solution in Holder classes.

We denote by x a point (x;, ..., x,) of an n-dimensional euclidean space R*and by x!
the projection (%,, ..., Xp-1, 0) of this point on the hyperplane x, = 0; let |u§k+A(Q) be
the Holder norm of function u on the open subset O cRr [11]. Here, and in what follows, X
will denote a fixed number from (0, 1). We consider a linear differential operator

n n
A=— 3 o (x)0%0z;0x;, + 2 @’ (2)0/dx; + a(x)
ik=1 i=1
with coefficients a* &, a of class CA( R"), satisfying the uniform ellipticity condition

n

glEP< X M@ gk (1)

7.k=1

for all £ e R*rand x € 2. By A' we will mean operator A minus the terms containing deriva-
tives with respect to x,.

1. ESTIMATES OF SCHAUDER TYPE

Let ' be a domain in R»-! with boundary 89' of class C2tA, and let © = Qf x (—H, 0),
where H is some positive number. We fix weight functions p,, p, € CA(R" ) such that
0. (2", 0) 0 {2', 0) ,

v ’ on Q.

0 <oy et (pl(x:—m 05 (2, — H) (2)

In Theorem 1 we assume that the coefficients ¢* of operator A do not depend on x, and that
the coefficients o for j < n satisfy the following condition at corner points of the bound-
ary Q:

0=a"(z, 1)on gQ’ for =0, —H. (3)

We consider the problem of finding a triple of functions (u, q;, q,) satisfying the
following conditions:

Au =019 + pega+ f, 9¢;/0z. =0 on. Q, (4)
u=g N3JQ, du/éx,=h 20 Tyl Iy, (5)
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where I'; = @' x {—t}. In what follows we denote by C constants depending on @, the CA-

norm of coefficients of operator A and of the functions p;, p,, as well as on €,. Depend-
ence of C on other parameters will be noted separately.

THEOREM 1. There exists a constant C such that
lul?*(Q)+ 1M (Q) + 1" (Q) <
< C(If1M(Q)+ 1g124(3Q) + |h|1+*(To U Tx) + [1]9(R)) (6)

for arbitrary functions u € C2tA(Q) and q,, q, € CMQ), satisfying conditions (4) and (5).

The proof is based on a series of lemmas in which the following notation is used: Q;
denotes the layer {x € R"; —1 < x, < 0}, B.(1) is the ball {x: |x — y| < €} in R*, where
y = (0, ..., 0, —t), B."(0) is the lower half-ball B.(0) n Q;, oc(0) is the (n — 1)-dimen-
sional ball 88, n Bg(0), B.¥(1) is the upper half-ball Bc(1) n ,, and o.(1) is the (n — 1)-
dimensional ball 3Q; n Be(l). Here and elsewhere we assume that € < 1/4.

LEMMA 1. There exists a constant C such that the following estimate is valid for a

solution of problem (4), (5) with @, in place of @, A = —A, and with p,;, p, constant on
B,-(0) and on B, (1), respectively:

Lu ™ (Be (VU BS (1) + €2 g, M (e (0) + 2] g5 (05 (0) <
<C(& M (B O)UBkM) + 1 g7 (02 (0) Uoas (1) + 2| B "4 (020 (0) U 02 (1) + | [* (Boe (0) U B (1))
for arbitrary functions u € C2FA(B,.7(0) U B,.¥(1)) and q,, q, € CA(0,¢(0)).

Proof. We denote the solution of the following problem by u,:
— Auy = f on By (O)U B (1), u;=gon 02(0) Uoae(l),

the norm of which in C?tA(B,.7(0) U B,c*(1)) is estimated in terms of norms f and g, indicat-
ed in relation (6). To construct u; on B, .~ it is sufficient to go over to new variables

y = €"'x, to include domain B,.” in a wider bounded domain D; with boundary of class c2tA
such that o, = 3B,¢~ N 3D;, to extend the data f and g in the new variables onto D, with
norm estimates extended on the basis of Whitney's theorems (see, for example, [1l4, Chap. 4,
Theorems 3, 4]), to solve a Dirichlet problem in D, with the data f and g (an estimate of
the solution is given, for example, by Theorem 1.2 and estimate (1.11) from {12, pp. 147,
1481), and to then return to the variables x. Solution u; on B2€+ is constructed similarly.

Function u, = u — u, satisfies the conditions

— Aty = 03q1+ 029, o0 B (0)U Bse (1), =0 o1 05 (0) Udae (1)
If we put v = 3u,/dx,, then

—Av=00n By (0)UBL(1), v="~h— 0u/dz, on 05 (0) s (1). (7)
In addition, it follows from the equation for u, for x, = 0 and x, = —1 that
—Jv/dzx, = 0141 + p2ga N 023(0) U 025(1). (8)

Using a known estimate [10, Theorem 8.2] for the solution of the problem (7), to which
we apply the dilation x > ex, we obtain

e 0| (B (0) U Bioy (1)) < € (8] R [V (00 (0) U o2 (1) + (9)

+ 82|f|7“ (Bz(O)U B3 (1)) + lgIZH (@2 () U e (1)) + |°| (B (O)U BL(1))).
Taking condition (8) into account, we have

p1(z’, 0) @i (z") +p2(2”, 0) ge(a’) = —0v/0za (27, 0),
(2, —1) () + pa(a’, —1)qa(a") = —0v/0zn (2", —1)
for |x'| < €. In view of condition (2), we establish, in terms of the right-hand side of
inequality (9), the estimate |qj|A(03€/2(0)).
Applying a known Schauder estimate [11, p. 245) for problem (4), (5) in domains B,.7(0),

B25+(1), we arrive at the statement of Lemma 1 from the resulting estimate for gj.

We put 2, = @, N {0 < x,} and oeT(1) = o(t) n {0 < x;}, T =0, L.
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LEMMA 2. Lemma 1 remains valid if Q,, og{t) and B¢ 7(0), B.¥(1) are replaced, respec-
tively, by Q,, 0€+(T) and B.7(0) n Q,, BE+(1) nQ,.

Proof. As was done in Lemma 1 we can limit ocurselves to the case f = 0 on Q, and g =
0 onT =23Q\(ly UTyg). From Eq. (4) and the equations u =0 on T, u=g on Iy, U Ty, we

deduce that (p,q; + p,q;) (0, X,, ...y Xp-1, =) = =4'g(0, X,, ..., Xp-1, ~T). As was done
at the start of the proof of Lemma 1, we construct a function ui such that —Au, = —A'g(0, Xo,
s Xp-1s —T) on @, N B,ec*(1), u; = 0 on T, estimatable in C**A(Q, n B, ¥(7)) in terms of

the indicated norm g. We put u, = u — u; on Q, N B,c*(7t). Then su, =0 on T n T, and
since Au, does not depend on %, on B, (0) and B, .*(1), it follows that Au, = 0 on {x, =
0} N (B, (0) U B,.T(1)) also. It is obvious that on the last set u, = 0 also, so that on
this set 3%u,/8x,% = 0. Now by an odd extension with respect to x,, we reduce an estimate
of the norm of u, to Lemma 1. The required estimate of u then follows from estimates of

u; and u,. Thus we have established Lemma 2.

[

Proof of Theorem 1. By virtue of the conditions on domain Q' there exists for it a
covering {wc.} of set Q' such that if we © @', then wg is a ball of radius £ in R, but
if the intersection of wg with 3Q' is nonempty, then w. is the image of a ball under a map-
ping, which o¢ N {x, = 0} takes into 3Q' N w., while the half-ball o, maps into Q' N wg,
where the C2TA-norms of this mapping and its inverse are bounded independently of w.

Suppose initially that wg ¢ Q'. We introduce a function ¢.€ C,®(wg), equal to one in
a ball of half the radius and the same center as We, 0 $9:.< 1. We extend ¢, to be constant
with respect to x,. We define u. = ug,. and Qje = 9@ . Let A be the principal part of

operator A, the coefficients of which have been calculated at some fixed point (x', 0),
where x' € w.. Let Ay = A — Ac. Let pjs(-T) = pj(x', -1}, and let us introduce functions

Pje> equal to pjg(0) on @' x (=2e, 0) and to pje(~1) on @' x (=1, =1 +2¢), the norms of
which on CA( R*) are estimated in terms of the norms of pj in cA(Q). Let Pieo = P

37 Pge-

From relations (4) and (5) we have
Actle = preqie T p2:qact (Pre0g1e T 2e02e — QAo + fo. + Ar), 8gse/dz, =000 Q (10)
Ue=g@.on 0Q and du./0x, = ho, + gop./dx, on Ty U Ty, (11)

where A;¢ is a first-order operator, depending on €, the norms of whose coefficients in
CM(Q) do not exceed C(e).

Using a linear change in variables, the norms of which and their inverses are uniformly
bounded with respect to wg, and for which the halfspace Xp < 0 maps into itself, we convert
operator Ag to the Laplace operator in the above fixed points from we. Let wg+ and w.”

denote the cylinders we x (—g, 0) and we x (=1, =1 + ¢).
According to Lemma 1 and relations (10) and (11), we obtain
e gue |h (we) + € I Qe ‘7» (1e) < C (8| P1e0se + Poealos — FPe + Aseu ]?L (1;0_8 U ag&) + | ge \2+7v (weex {—1,0}) + (12)
i
+—8}h¢a+-g0¢gaan+*(u@ax{——1qOH-+quP(u%;UlU$))5§
<C (52 | 01e091¢ i}» (5& U 17&) + €[ Paeolae l}' (lNL‘Ee U 17_02) + &% | Aegle [h (12)5; U 5&)) +CE) (M + |ul (Q)),
where M is the sum of the norms of functions f, g, and h, indicated in relation (6). Noting
that Pjeo and the coefficients of A, vanish at one of the points of We, we conclude that
the sum of the norms of Pje,qje and Agouc on the right-hand side of inequality (12) does not
exceed the quantity

A _
Ce (l q1e ix(wa) + i Q2¢ ]7u (we) + | V2ue |x (wCS U U'&)) +Ce)|u |2 Q).
Here we have taken into account the fact that dje does not depend on x, and is equal to

zero outside of wg. Choosing € so that Ce? < 1/2, using the preceding inequality for an
estimate of the right-hand side of relation (12), and carrying terms with d1gs 9y¢ to the
left-hand side of relation (12), we have

o 2 A 9 A — + (13)
[ e " (we) + | gae |* (we) << Ce | 20 | (e Uwie) + C (&) (M + |u Q).
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By virtue of the definition of the Holder norms from relations (11), ]quIA(Q') < E'Alqj€|A
(wg) + C(e)|qj]°(2'), and the first norm on the right-hand side of relation (13) does not
exceed Ce?|VZug|A(Q) + C(e)|u]2(Q); therefore,

g l™(Q7) + lgaeM(Q) < Cetlul?(Q) + C(e) (M + 11 1°(Q1) + 121°(Q) + [ul?(R2)). (14)

The case in which wg intersects with 3Q' is considered analogously. Here we first "rectify"
the boundary of Q' with the aid of the change of variables indicated at the start of the
proof of Theorem 1, and we then convert operator Ac, whose coefficients coincide with the
corresponding coefficients of A at some point of 3Q' x {0}, to a Laplace operator with the
aid of linear changes in variables, leaving invariant the halfspaces 0 < x;, 0 < x, and
uniformly bounded over w. along with their derivatives. The existence of such linear
changes of variables follows from condition (3) relating to the coefficients o. Further,
the estimate (14) may be derived from Lemma 2 in exactly the same way it was derived above
from Lemma 1.

Thus, estimate (14) was obtained for all sets wg. It is now not difficult to conclude
from the definition of the covering wg and the functions qj¢ that gqjc on the left-hand side

of inequality (14) can be replaced by qj-.
By virtue of Eq. (4) the sums

pi(z’, 0)qi(z")+ p2(z’, 0)qalz’); pi(x’, —1)g1(2z")+ pa(z’, —1) e ()

may be estimated in the C°(Q') norm in terms of C(|u|2(R) + M). Using condition (2), we
also estimate, in terms of C(ju[?(Q) + M), also the quantity Iqj]O(Q‘). Then from relation

(14) we have
[g 1" (Q)+ (g2l M(Q') < CeMlue2(Q)+ C(e) (M + [ul*(Q)). (15)
Now the known Schauder estimates of solutions of the Dirichlet problem (4), (5) yield
[l 2(Q) < CeMlul®(Q)+ C(e) (A + lul2(Q)).

Selecting and fixing & so that Cer < 1/2, we rid ourselves of the first term on the right-
hand side. Applying known iterational inequalities [11, 12], [u}?(Q) can be replaced by
[ulo(Q)- Using, in addition, estimate (15), we complete the proof of Theorem 1.

COROLLARY. We assume that domain Q is bounded and that the solution of problem (4),
(5) is unique. Estimate (6) is then valid without the last term {u|°(2).

This corollary may be derived from estimate (6) using a well-known method [10] based
on compactness of the imbedding of CA(Q) in cA/2(Q) for bounded domains 9.
2. THEOREM OF UNIQUENESS

Let Q be a domain in R® with a piecewise-smooth boundary, each smooth piece of which is
a portion of the boundary of some domain of class c2tA, Similar domains are described in
more detail in [12, p. 212]. Assume, in addition, that @ is convex with respect to X, and
bounded. We assume that the coefficients of operator A do not depend on xp, a*e(? e (',
a € C», and the coefficient & and coefficient a, of the adjoint operator A* nonnegative.

THEOREM 2. Let us assume that the weight function p satisfies the condition

0 < 3p/d%, almost everywhere on @, p, 9p/3xy € cA@). (16)
If functions u € C2(%), q € CAM(R), £ € C(Q) are solutions of the problem

Au=pq + f, 8q/oz, =0, 0f/0z, =0 °" Q, (17)
u=0, gu/dz, =0 on 9, (18)

then u = 0, q =0, and £ = 0 on Q.

Let T be the interior on 38Q of a set of points x € 3R, such that <n, en> =0, ey =
(0, ..., 0, 1), v is the conormal to 3Q.
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LEMMA 3. If u satisfies conditions (17), (18), then
[ viog + fyde — { (Gusov) vdl =0 (19)
ol T
for an arbitrary function v € C2(Q) such that
A*v=0 onQ, (20)

Proof. TFrom Egs. (17) and (20) we have, according to Green's formula,
Y v(pg + fldz = (‘ (vAu — ud*v)dr = g. (v ujov — 1 Bvjov) + auv)dl = ( v {(0ujovYdr,
o ) 0

since u = 0 on 3Q by virtue of condition (18), and it follows from this very condition that
the first order derivatives of u on 30\l are equal to zero. This establishes Lemma 3.

Proof of Theorem 2. We assume that q & 0. Let q 2 0. Differentiating Eqs. (17) with
respect to x, and using conditions (16) and (17), we obtain

Adufdx, = qBp[dz, = 0 on Q, Su/dx, =0 on OQ.

According to the maximum principle, 0 < 3u/3x, on Q. Since u = 0 on 00 according to condi-
tion (18) and 0 < 3u/dx,, it follows that u = 0 on Q. Therefore, qd3p/dx, = 0 on @, which
contradicts our assumption and condition (16). The case q < 0 is similarly not possible.

Let Q' be the projection of Q@ on the hyperplane {x,; = 0}. Let 94' = {x € Q': 0 <
q(x)}, 9. = {x € @'t q(x) < 0}. 1In view of what was presented above, we can assume that

Q. #*d; Q' +0J (21)

Since the coefficients of A do not depend on x,, then along with v we will have, as a solu-
tion of Eq. (20),_also the function 8v/6x,. By Lemma 3, for an arbitrary such function v
with 8v/3x, € C?(Q), we have

g (0v/0,) (pg + f)dx — i‘ (Ou/ov) dvjdx, dT' = 0. (22)

Q T

We integrate Eq. (22) by parts. Then

n

S v(pg + f) npdl — Y(Op/ax”) vg dx + (,' vdp =0 (23)
T

a2 Q

for an arbitrary indicated function v, where p is a measure on I which is constructed on T
and the function u.

We extend Eq. (23) to solutions of Eq. (20) continuous on . We extend v from 3Q onto
R® by a continuous function v. We approximate domain § by a monotonically decreasing se-

quence of bounded domains Q(k) of class C2tA, so that 1 (k) = Q. Let v(k) be the solution
k

of a Dirichlet problem for Eq. (20) on Q(k) with boundary data v on 8Q(k). It is known that
the v(k) exist and belong to C2(%l). Since the coefficients of A do not depend on X, then
also 9v/dx, € C*(Q) [12, Theorems 10.1, 12.1]. It is obvious that Eq. (23) is valid for
v(k). As is well-known from the theory of the stability of a Dirichlet problem solution
[15, 16], the functions v(k) converge pointwise on § to the function v. Since v(k), by the
maximum principle, is uniformly bounded, then using Lebesgue's theorem on passage to the
limit under the integral sign, we obtain from Eq. (23) for v(k) as k > 4= this equation for
arbitrary solutions of Eq. (20) continuocus on Q.

Let ¢ be a function, measurable on Q, constant with respect to Xp on Q U (3q\T), equal
to zero on I' for x € 3Q\T, x' € Q.', and to one for x € 3Q\T, x' € '\0y'.

We select a sequence of functions ¢y € C(3Q) so that 0 < v < 1, ¥y € ¥, ¥ > ¥ in

L,(30), v =0, yy =0 on T, k=0, 1, ... . Let vip be a solution of the following Diri-
chlet problem:

A*vp, =0 on Q, v,=1;, on 0Q.
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According to the maximum principle, from the inequalities 0 yo=<t{,<1%, $o70, it follows that
O<pyp<sv, <1 on Q. (24)

Putting v = vi in Eq. (23), letting 9+ = {x € Q: x' € 04'}, and taking inequalities (24)
into account, we write

0= g vROgRy, I — Y g {8p; 0,y dx— g‘ U, (0p6zy) dx + j. Upfh dL. (25)
oQ\T e Q_ 8G\T

Passing to the limit for k - +» in relations (24) and introducing the notation Ty = {x € 3Q:
x' € Q4, np(x) # 0}, we obtain

0= “ Py dl' — j‘ q(30/0x,) dx — S‘ v,q (0p/0z,) dx + g Pin, dl. (26)
A ] T

Q. Q_ [Z°AN

By virtue of the integration by parts formula, the difference of the first integrals is
zero. The last integral is equal to the integral over 30 since ny = 0 on I'. Again, accord-
ing to the integral by parts formula, this integral is equal to the integral of 3(¥vf)/ax,
over §, i.e., is equal to zero. Relation (26) now leads to a contradiction since 0 < 3p/
3%, almost everywhere on Q, 0 < v, on Q. in view of relation (24), and q < 0 on Q. by
virtue of the choice of the set Q. # § according to assumption (21). The contradiction
establishes that q = 0.

We show that f = 0 also. Let f # 0. We can consider f > 0 in some neighborhood w of
point x € 30 with ny(x) > 0. Let ¢ € Cy™(w), ® # 0 and 0 < ¢. Selecting as v a solution
of the Dirichlet problem for Eq. (20) with boundary data v = ¢ on 32, and using relation
(23), we obtain

0= y vfng, dl' = s‘ vin, dl >0

OON\T aQ

according to the choice of ¢. Thus, f = 0. Hence, u=0, £ =0, q =0, which completes
the proof of Theorem 2.

Remark. Theorem 2 can be proved with the condition of convexity of Q@ with respect to
X, replaced by the condition 3Q = 3Q. In this connection, we need to modify only the
choice of function .

As an application of Theorem 2 we consider the problem of finding a triple of functions
(u, g, f) satisfying the following conditions:

Au+qu=f, 8q/0z, = 3f/0x,=0, 0<< gon Q, (27)
u=g on gQ, (28)
Ou/0x, = h on JO\T,
(29)
where @ is the cylindrical domaip Q' x (H, 0) considered in Theorem 1. As for operator A,
we assume, in addition, that 4™ = 0 and ¢* = 0 on Q for j < n, o™= 1.

We also introduce the conditions:

g = (™, 0gloz, =0, dg/oz, %0 on T, heC*(Q), fe C*(Q), (30)
0<A4'g+qg—f onTy Agt+gz—f<0 0Ty Ag=f on3QxX{—H, 0},

(31)

0<h, 0g/ox, =hon QX {—H, O} (32)

Using the well-known theory of the solvability and regularity for second-order elliptic
equations [12, Secs. 4, 5, 10, 12] and also symmetric extensions relative to the hyperplanes
X, = 0 and x, = —H, where additional conditions are needed on the coefficients of A, we can
prove existence of a solution u of problem (30), (31) of class c2HA().

LEMMA 4. If function u € C2tA(Q) satisfies conditions (27), (29), where g and h satis-
fy either the conditions (30), (32) or conditions (30), (31), then 3u/dx, > 0 on Q.
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Proof. Consider the case of conditions (30) and (31). Denoting 23u/dx, by v and differ-
entiating Eq. (27) and boundary conditions (28) on [, we obtain

Av+qu=0on Q, v=20q¢/dz,on T.
By virtue of Eq. (27),
/0, = Puf(0z,) =A'utgu—f=A'g+qg—fon [oUTln

in view of boundary condition (28). Thus, 0 < 9v/8x, on T, and 3v/8x, < 0 on I'y. By the
extremum principle a negative minimum cannot be attained on I'y U I'y. It can therefore be
attained only on T or v is constant. Therefore, by virtue of condition (30) v is nonnega-
tive. If v were to vanish at at least one point of @, it would then be constant, which
would contradict one of the conditions (30). Thus, 0 < v on Q. A statement relating to v
under conditions (30) and (32) follows directly from the maximum principle. This establish-
es Lemma 4.

THEOREM 3. When conditions (30), (31) or £30), (33) are satisfied, problem (27)-{29)
has at most one solution of class C2FtA(Q) x CA(S) x CA(%).

Proof. Suppose the problem has two solutions, {u;, q,, f,) and (v,, g,, f,). Letting
u=u, —uy, g=q; —g,, £ =f, — £, and subtracting from Egqs. (27)-(29) for the second
solution the same equations for the first solution, we obtain

Au+ g = 1yg+ 1, 8g/0z, =0, 6f/02, =0 on Q,
u=90 on9Q  Ju/dz, =0 on Q.

By Lemma 4, 0 < 3u/9x, on Q. Putting p = u;, we find from Theorem 2 that ¢ = 0, f = 0 and
u = 0. Thus, u, =u,, q; = q,, f, = £f,, and Theorem 3 is thereby established.

3. THEOREM OF UNIQUENESS OF A SOLUTION

By the method of continuation with respect to a parameter [10; 11; 12, p. 149] we can
deduce from Schauder estimates and a uniqueness theorem a theorem for the existence of a
solution of the problem concerning finding a triple of functions (u, q,, q,) satisfying the
conditions (4), (5). In Theorem 4, presented below, we consider a cylindrical domain @,
described in Sec. 1, and we assume that operator A satisfies the same conditions as in
Theorem 2, in particular, that its coefficients do not depend on Xy and that ccefficients
a, a, are nonnegative, a™ = 1,

THEOREM 4. Let the weight functions p;, p, satisfy the condition

0<eo<<dpi/0zn, p2=1 on . (33)

Then for arbitrary functions f € CA(T), g e ¢?tA(3Q), satisfying the compatibility condi-
tions

Ag =1 on 0 X{=H, 0}, 0g/dxs=h on Q' X {—H, O}, (34)

there exists a unique solution of problem (4), (5) of class CZTA(T) x CA(T) = CA(T).

We note that by subtracting from u the solution of the Dirichlet problem with the data

f, g, we can reduce the general case to the case of zero f, g; we will consider this case
later.

We preface the proof of Theorem 4 with two lemmas concerning solvability of the prob-
lem in the simplest case and concerning the approximation of functions from Holder classes.
LEMMA 5. Theorem &4 is true for the case A = —A, p, = xp, h & CX(T, U Ty).

Proof. Let {vi} be a complete orthonormalized set of characteristic functions of the
Dirichlet problem for the operator —a" = —37/8x,2 — 52/32x,2 ~ ... — 32/3x,.,2% in 9'; we
denote the corresponding characteristic values by A2, 0 < Ag. It is known that in the
given case such a system exists and that Vi € CZtA(Q') [12, Theorems 17.1, 12.1, 10.1]. We

N
introduce the class of functions Wy = {h =. 3 hyvy, where N, hy are some numbers}. We show
E=1

that the functions
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N
MpXg —hp(%p+H -
u(z) = hgl (Clke B Core W ) + A (Zag1e + 5’2k)) vy (),

N
g;(x) = hz_?ul Ginvn (&), 7=1,2,

are a solution of the inverse problem (4), (5) if h, (h on T,) and hy (h on Tg) belong to
the class Wy and

an = b (1 — ) (on + ) [ (— 1 (14 %) 4 2450 (1 — 725,
am =W (1 — & M) (5 — B) — (57 4 H) ¢ ) by +
Ot —e ) poHe M Y h) [ (— B (1 4 &™) 20 (1 — ),

where C,i, C,ix are defined in terms of q,y, g,k as solutions of the following system of
linear equations:

—apH —apH
Cin+ Care ¥ + A %q0n =0, Cpphp — Cordpe * + 43 % qup = hgp. (35)

Here hgy, hyg are coefficients in the expansion of h, and hy with respect to the basis {vy}.

Actually, validity of the equation —Au = x,q, + q, may be verified by a direct substi-
tution. The boundary conditions on T follow from the definition of characteristic functions.
The remaining boundary conditions (5) are equivalent, by virtue of the definition of u and
qj, to Egs. (35) (conditions u = 0 on I'; and 3u/dxy = 0 on ;) and to the equations

—ApH _
Cuwe " + Cop+ M (—Hgm+ g) =0 (w=0 on Ty),

—ApH —
C’lkhhe - lhczk + Afk quk = th (au/axn =0 on FH),
which result from the formulas for q,x and g,; of Eqs. (35). Thus the problem is solvable
for arbitrary data hy, hg € W,.
We approximate functions h;, hg of class C?, equal to zero on 3Ty, 9Ty, by functions
from W, according to C'*A-norm. Let p > n(1 — A). Since 3Q' € C?*A, the characteristic

functions are then dense in L,(Q'); therefore there exists a sequence of functions f(k) from
W,, converging in LP(Q') to —A'h,. We note that if f € W,, then the solution of the Dirich-

let problem —A'h = f on @', h = 0 on 3Q"' also belongs to Wp. Therefore the solution h(k)
of the Dirichlet problem with the data f(k) belongs to W,. By virtue of known Schauder
Lp~estimates of solutions of elliptic boundary value problems [10, Chap. 5], we have

1) = Rl SCLF () + Ay gy 0

as k » +». By a Sobolev imbedding theorem [11, p. 230], taking the choice of p into ac-
account, we obtain

B (8) = B P2 @) S CLR () = B 5,

Thus, h(k) converges to h, in C'TA(Q'). We consider hyg similarly.

Lemma 5 is then a consequence of the Schauder estimate {(6), the corollaries to Theorems
1 and 2, the possibility of the indicated approximation, and the solvability of the problem
with data from W,.

LEMMA 6. Let h € C**A(R') and h = 0 on 3Q'. Then there exists a sequence of functions
h(k) € C2(Q'), h(k) = 0 on 3Q' such that h(k) converges to h in C*tA(Q') and |h(k)|1+A(Q')s
c(h).

Proof. By virtue of the conditions on domain Q' there exists a finite set of balls
Wy, «+.s Wy in R*! such that their union contains the closure of @', and if 3Q' n w3 is
nonempty, then a diffeomorphism y(x; j) of class C?tA(%;) may be found, which maps wj onto
a domain vy of class C2*A, such that its inverse belongs to C2+A(Vj), while Q' n Vis Q' n
wj are mapped, respectively, onto {0 < y;} N Vi, {0 =y;} Nvy. Let ®; be a C*-partition of
unity corresponding to the covering LR We have h = kg, +...+hp, on @', the supports of
ho; lie in Wi, and h ¢; satisfy the conditions of the lemma with respect to h; it is there-
for sufficient to approximate each h ¢,
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Initially, let ﬁj c @'. We introduce the standard averaging kernel Y (x) = y{|x|/e),
where ¢ € COW(R?“U,S pdx = 1, 0 < p and suppy = {x: |x| < 1} (see, for example, [12, p.
68]). Then the functions (A¢;). , which are convolutions of hg; with Ve, belong to C*H(R™),
their supports belong to wjy for sufficiently small ¢, and (kg hg; in C'(Q') as

e > 0. We extend h g, through zero on Iv—l\wj. It is not hard to see that if the Holder
constant [u]? is not larger than C,, then also [ug]* < C,: therefore, [{hg;). '+ < C. Thus
(hg,). approach h g, as € + 0.

Consider now the case in which the intersection of wy with 3Q' is nonempty. Going
over to variable y, we reduce the procblem to the case of the halfspace 0 < y,. We denote
hp; in the variables y by g5~ We extend 8j through zero onto {0 < yl}XVj. It is gbvicus
that gj € CI*A({0 < y,}) and that gy = 0 for y; = 0. We define gj(—yl, Vas cevs Yp-1) =
*gj(yl, Y25 s»vs Ypn-1) for 0 < y,. Averages of gje are equal to zero for y, = 0 by virtue
of symmetry (oddness) of the extension and choice of the averaging kernel. As was the case
above, for small £ we have: (suppgjg) N {0 < y,} belongs to Vi, and as above 81 approach-
es gy as € > 0. Returning to the variables x and extending the function in variables x
through zero onto Q’\wj, we obtain the required approximations of function hg; This com-~
pletes the proof of Lemma 6.

Proof of Theorem 4. We note, by virtue of Theorems ! and 2 and also the corollary to
Theorem 1, that estimate (6) is valid without the term |u|°(Q) on the right-hand side. We
introduce a one-parameter family of inverse problems (4), (5), where in place of A we take the
operator At = —A + t(A + 4}, and in place of p, and p, we take the weights p;y = (1 — t)x,+
€0y Pyt T 1.

The set t of values of parameter t for which the problem is solvable is nonempty since,
by Lemmas 5 and 6, it contains t = 0. Proof that t' is closed proceeds according to the
known scheme [11, 12} with use of estimate (6) without the term iu}o(ﬂ) and the usual pro-
perties of Holder norms.

We show that t is open in [0, 1]. Let t, € 1. We denote by By the linear operator
which to the pair of functions (q;, q,) from C,A(R) x C,A(T') makes correspond the pair of
functions au/axn on T'y, and éu/axn on I'y, where u is the solution of the Dirichlet problem
(4), (5) with A = Ay (without the conditions du/3x, = h on T, U I'y). In view of the Schaud-
er estimates of solutionsof the Dirichlet problem and the compatibility conditions (34) the
operator By is continuous from X = C,AMQ') x C,A@') into Y = (C*A(T,) n Co(ry)) x (C1HA
(TH) n Co(Ty)), where CA(R'), Co(T,), Co(Ty) are sets of Holder or continuous functions,
equal to zero on the boundary of the indicated sets. According to the definition of the
set 1, for an arbitrary h € Y there exists a solution u, q;, q, of the inverse problem with
t = t,. By the remark made at the beginning of the proof, operator Bto has a continuous
inverse from Y to X. Since operators, which are close in the uniform operator norm to in-

vertible in Banach spaces, are alsc invertible, operator By will be invertible for t close
to ty. Thus the set 1 is open.

By virtue of the principle of continuity t = [0, 1]; therefore, the initial problem
corresponding to T = 1 is solvable. Uniqueness of its solutionis a consequence of Theorem
2. This concludes the proocf of Theorem 4.
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PERIODIC GROUPS WITH THE PRIMARY MINIMALITY CONDITION
FOR CERTAIN SYSTEMS OF SUBGROUPS

A. A. Shafiro UDC 519.45

The primary minimality condition was introduced by Chernikov [1]. Polovitskii [2]
described the periodic, locally solvable groups satisfying the primary minimality condition
[1]. Pavlyuk, Shafiro, and Shunkov [3] proved that locally finite groups with the primary
minimality condition for locally solvable subgroups are almost locally solvable. Later an
analogous result was obtained for binary-finite groups: Sedova [4] considered groups with-
out involutions, and Pavlyuk [5] treated the general case. In the present paper we study
extensions of binary-finite groups by binary-finite groups in which certain systems of
locally solvable subgroups satisfy the primary minimality condition.

Notation and Definitions

Definition 1 (Chernikov). A group G satsifies the p-minimality condition for some
p € 7(G) if any descending chain of subgroups H; > H, > ... 2 Hg = ... in which H; — Hy4,
(i =1, 2, ...) contains at least one p-element is finite. A group G satisfies the primary
minimality condition if G satisfies the p-minimality condition for each p € w(G) [1].

Definition 2. If in a periodic group G all divisible® Abelian subgroups (divisible
Abelian p-subgroups) generate a divisible Abelian subgroup T (divisible Abelian p-subgroup
T) and the factor group G/T contains no infinite divisible Abelian subgroup (infinite divi-

*The author uses the term complete, but divisible is more common in English, and more sug-
gestive — Translator.

Krasnoyarsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 31, No. 4, pp.
160-165, July-August, 1990. Original article submitted November 19, 1987.
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