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In this paper we consider problems of determining the right-hand side and the coeffici- 
ents of a second-order elliptic equation, not depending on one of the spatial variables, 
where complete Cauchy data are specified on the domain boundary. Various versions have been 
studied of similar formulations for parabolic equations in [1-3] and for elliptic equations 
in [4] (problem concerning the density in an inverse problem of potential theory), where 
only theorems of uniqueness were obtained in an overdetermined formulation. The reader, 
wishing to acquaint himself with the modern state of the theory of inverse problems, should 
consult [5, 6]. Preliminary results relating to this problem, as well as an existence 
theorem for an unknown coefficient, may be found in [7, 8]. Part of our results in this 
paper were given previously in [9]. 

In Sec. 1 estimates are established for a Schauder-type solution; to do this, the well- 
known method of "freezing of coefficients" [10-12] is modified in an appropriate way. In 
Sec. 2, under other conditions, uniqueness theorems are proved by Novikov's method [4, 13] 
and an application is given to the problem of recovery of a coefficient and the right-hand 
side. Finally, in Sec. 3, based on the results in Secs. 1 and 2, conditions are obtained 
for the existence of a solution in Holder classes. 

We denote by x a point (x I ..... x n) of an n-dimensional euclidean space R~and by x ~ 
the projection (x z ..... Xn_i, 0) of this point on the hyperplane x n = O; let luik+~(~) be 

the Holder norm of function u on the open subset ~ cR ~ [ii]. Here, and in what follows, k 
will denote a fixed number from (0, i). We consider a linear differential operator 

A = - -  ~ a jk (x) a~laxjOx~ + ~ a j (x) o/ax~ + a (x) 
j ,~=l j=1 

with coefficients a j~, a 5, a of class Ck(R~), satisfying the uniform ellipticity condition 

.~ (~) ~j~ ( i ) 
j , k = l  

for all ~ E R"and x ~ ~. By A' we will mean operator A minus the terms containing deriva- 
tives with respect to x n. 

i. ESTIMATES OF SCHAUDER TYPE 

Let ~' be a domain in R ~-I with boundary 8~' of class C 2+%, and let E = ~ • (--H, 0), 
where H is some positive number. We fix weight functions 01, P2 e CA( R~ ) such that 

'Pl ) Q,. O<:e o ~ d e t  ( (x',O) Pi(x',O) ~)~(x ' , - -H) p~(z ' , - -~)  o~ (2) 

In Theorem 1 we assume that the coefficients ~ of operator A do not depend on x n and that 

the coefficients a j'~ for j < n satisfy the following condition at corner points of the bound- 
ary ~: 

O = a J n ( x ,  T) ~ 0Q' for T=0 ,  --H. (3) 

We consider the problem of finding a triple of functions (u, qz, qi) satisfying the 
following conditions: 

A u  = p ,q l  + ,o2q2 -}- f ,  Oct/Ox,, = 0 on. Q, 

u = g  on 0Q, Ou/Ox,~ = h on Po U I ' . ,  

(4) 

(.5) 
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where rx = ~' x {--x}. In what follows we denote by C constants depending on ~, the C X- 

norm of coefficients of operator A and of the functions p~, P2, as well as on e 0. Depend- 
ence of C on other parameters will be noted separately. 

THEOREM i. There exists a constant C such that 

C(I/I*(O)+ Igl=+*(o~)+ Ihlt+*(s u P . ) +  luI~ (6)  

f o r  a r b i t r a r y  f u n c t i o n s  u e C2+t (~)  and q l ,  q :  ~ CX(~),  s a t i s f y i n g  c o n d i t i o n s  (4)  and ( 5 ) .  

The proof is based on a series of lemmas in which the following notation is used: ~2 
denotes the layer {x eR~; -i < x n < 0}, Be(~) is the ball {x: I x - Yl < ~} in R =, where 

y = (0 .... , 0, -~), Be-(0) is the lower half-ball Bg(0) ~ ~, o~(0) is the (n - l)-dimen- 

sional ball 3~ ~ Bs(0), Bs+(1) is the upper half-ball Bg(1) 0 ~, and o~(i) is the (n - l)- 

dimensional ball ~ ~ Be(1). Here and elsewhere we assume that ~ < 1/4. 

LEMMA i. There exists a constant C such that the following estimate is valid for a 
solution of problem (4), (5) with ~ in place of ~, A = -A, and with p~, P2 constant on 

B2e(0) and on B2~(1), respectively: 

I u t ~+~ ( B :  (0) U B$ (a)) + ~1 q, I ~ (~o (0)) + ~1 q~ I ~ ( ~  (0)) < 

<~ C (8~1/I x (B~ (0) U B~ (1)) + i g I e+~ (a~ (0) U ae~ (1)) + 8 lh  11+~ ( ~  (0) U ~ (1) + I u 11 (B~ (0) U B~ (1))) 

for arbitrary functions u e C2+~(B2~-(0 ) U B2s+(1)) and qz, q2 ~ CX(~ 0))" 

Proof. We denote the solution of the following problem by u1: 

- - ~ = 1  on B ~ ( 0 )  U B ~ ( t ) ,  u~=gon ~ ( 0 )  U~(1) ,  

t h e  norm o f  which  in  C 2 + t ( B 2 e - ( 0 )  U B2E+(1))  i s  e s t i m a t e d  in  t e rm s  o f  norms f and g, i n d i c a t -  
ed in  r e l a t i o n  ( 6 ) .  To c o n s t r u c t  u z on B2~- i t  i s  s u f f i c i e n t  t o  go o v e r  t o  new v a r i a b l e s  
y = E - i x ,  t o  i n c l u d e  domain B2e-  i n  a w i d e r  bounded domain D 3 w i t h  b o u n d a ry  o f  c l a s s  C ~+t 
such  t h a t  o : z  = 3B:~-  ~ 3Da, be e x t e n d  t h e  d a t a  f and g in  t h e  new v a r i a b l e s  o n t o  D~ w i t h  
norm e s t i m a t e s  e x t e n d e d  ,on t h e  b a s i s  o f  W h i t n e y ' s  t h e o r e m s  ( s e e ,  f o r  example ,  [14,  Chap. 4, 
Theorems 3, 4 ] ) ,  t o  s o l v e  a D i r i c h l e t  p rob lem in  D~ w i t h  t h e  d a t a  f and g ( an  e s t i m a t e  o f  
t h e  s o l u t i o n  i s  g i v e n ,  f o r  example ,  by Theorem 1.2  and e s t i m a t e  ( 1 . 1 1 )  f rom [12 ,  pp.  I47 ,  
148]), and to then return to the variables x. Solution u~ on B2~ + is constructed similarly. 

Function u 2 = u - u z satisfies the conditions 

- -  Au~ = P~ql+  P=q, on B ~  (0) U B +  (1), us = 0 on ~=8 (0) U (~28 (1). 

If we put v = 8u2/Sx n, then 

- -  AU = 0 on B~(O)U B+(I) ,  u = h -  oul/Ox, on (r~(O)U ~=~(t). (7) 

In addition, it follows from the equation for u 2 for x n = 0 and x n = -i that 

--63V/OX,~ = p l q l  -~ p2q2 on o2~(0) U ~2~(1). (8 )  

Using  a known e s t i m a t e  [10,  Theorem 8 .2 ]  f o r  t h e  s o l u t i o n  o f  t h e  p rob lem ( 7 ) ,  t o  which 
we a p p l y  t h e  d i l a t i o n  x § sx ,  we o b t a i n  

B + '1'~ (81 h 11+~ (~8 81 v 11+~ (B~/~ (0) U 3~/~ ~ . <~ c (0) U ~ (t)) + (9 )  
+ 8~111 ~ (B~ (0) U B~% (t)) + I g I ~+~ ( ~  (0) U ~ (1)) + I ~~ (B;~ (0) U 8~ (l))). 

Taking condition (8) into account, we have 

pt (x', 0) gi (x') q-,~2 (x', 0) q2 (x') ----- --au/Ox,  (x ' ,  0), 

Pt (x', - - t )  qt (X') + p2 (x', --1) q2 (X') = --OV/Ox,, (x ' ,  -- t)  

f o r  Ix '  I < E. In  v iew o f  c o n d i t i o n  ( 2 ) ,  we e s t a b l i s h ,  in  t e rm s  o f  t h e  r i g h t - h a n d  s i d e  o f  
i n e q u a l i t y  ( 9 ) ,  t h e  e s t i m a t e  I q j l X ( o a r  

A p p l y i n g  a known S c h a u d e r  e s t i m a t e  [11 ,  p.  245] f o r  p ro b l em  ( 4 ) ,  (5 )  in  domains  B 2 s  
B2r  we a r r i v e  a t  t h e  s t a t e m e n t  o f  Lemma 1 f rom t h e  r e s u l t i n g  e s t i m a t e  f o r  q j .  

We p u t  f12 = ~1 N {0 < x l}  and or  = o r  n {0 < x l } ,  �9 = 0, 1. 
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LEMMA 2.  Lemma 1 remains valid if f iz ,  ~ and Be-(0), Be+(1) are replaced, respec- 

tively, by ~2, ~ and Be-(0) N ~2, Be +(I) n ~2. 

Proof. As was done in Lemma 1 we can limit ourselves to the case f = 0 on Q2 and g = 

0 on F = 8~\(F 0 U FH). From Eq. (4) and the equations u = 0 on F, u = g on F 0 U FH, we 

deduce that (glqz + 92q2) (0, x 2 ..... Xn_ l, -~) = -A'g(0, x2, .... Xn- I, -~). As was done 

at the start of the proof of Lemma I, we construct a function u~ such that -Au~ = --A~g(0, x2, 
., Xn_l, -z) on ~2 ~ B2g• u~ �9 2+A .. = 0 on F, estimatable in C (~2 B2e• in terms of 

the indicated norm g. We put u 4 = u - u 3 on ~2 ~ B2e• Then Au 4 = 0 on [ ~ [~ and 

since Au~ does not depend on x n on B2e-(0) and B2e+(1), it follows that Au~ = 0 on {xi = 

0} ~ (B2e-(0) U B2e+(1)) also. It is obvious that on the last set uq = 0 also, so that on 

this set 82u~/Sxz z = 0. Now by an odd extension with respect to x i, we reduce an estimate 
of the norm of u~ to Le~ma i. The required estimate of u then follows from estimates of 
u 3 and u~. Thus we have established Le~ma 2. 

Proof of Theorem I. By virtue of the conditions on domain ~' there exists for it a 
covering {we} of set ~ such that if w e c ~', then w e is a ball of radius e in R~-i, but 
if the intersection of w e with 3~' is nonempty, then w e is the image of a ball under a map- 

ping, which o~ ~ {x i = 0} takes into 3~ ~ ~ we, while the half-ball o e maps into ~ ~ w~, 

where the C2+l-norms of this mapping and its inverse are bounded independently of w e, 

Suppose initially that w e c ~' We introduce a function ~ e C0~(we), equal to one in 

a ball of half the radius and the same center as we, 0 ~ ~ ~ i. We extend ~ to be constant 

with respect to x n. We define u s = u ~ and qjg = qi~ Let A e be the principal part of 

operator A, the coefficients of which have been calculated at some fixed point (x ~ , 0), 

where x ~ e w e . Let Ag o = A - A e. Let ~jc(-z) = ~j(x', -~), and let us introduce functions 

9je, equal to pje(0) on ~' x (-2e, 0) and to pj~(-l) on ~' x (-i, --i + 2e), the norms of 

which on CI( R ~ ) are estimated in terms of the norms of pj in CI(~). Let Pjeo = Pj - 9je- 

From relations (4) and (5) we have 

A~u~ = 91~qI~ + p2~q2~+ (91~0q!~ + 92~,0q2~ - q~A~ou +/cp~ + Ainu) ,  OqJOx~, = 0 on Q, (io) 

u~ = g~on OQand Ou~/Ox~ = h%+ gO%/Ox~ on P0U F~, (ii) 

where Ale is a first-order operator, depending on e, the norms of whose coefficients in 

Cl(~) do not exceed C(e). 

Using a linear change in variables, the norms of which and their inverses are uniformly 
bounded with respect to we, and for which the halfspace x n < 0 maps into itself, we convert 
operator A e to the Laplace operator in the above fixed points from w e . Let we + and we- 

denote the cylinders w e x (-e, O) and w e • (-i, -i + e). 

According to Lemma 1 and relations (i0) and (ii), we obtain 

(12) 
+ ~ [ l ~  + ~o,~/o~,~ I1+~ ( ~  • { -  1,o}) + l ~  t ~ (,,~Z u Z&))  < 

where M is the sum of the norms of functions f, g, and h, indicated in relation (6). Noting 

that 9je0 and the coefficients of Ag o vanish at one of the points of we, we conclude that 

the sum of the norms of pje0qj c and Ae0u e on the right-hand side of inequality (12) does not 

exceed the quantity 

Here we have taken into account the fact that qje does not depend on x n and is equal to 

zero outside of w e. Choosing e so that Ca X < 1/2, using the preceding inequality for an 
estimate of the right-hand side of relation (12), and carrying terms with qle, q2e to the 
left-hand side of relation (12), we have 

(13) 
I q~l*(~u + I q=~l~(,~u c~* I v ~  l~ (~,~ u ~,~) + c (~)(~[ + I ~ P(~)). 

659 



By virtue of the definition of the Holder norms from relations (ii), lqjs[h(~ ') g E-~[qjsl% 

(w~) + C(e)lqjl~ and the first norm on the right-hand side of relation (13) does not 

exceed Ce%[V2ug[%(~) + C(e)[u[2(~); therefore, 

[q~,l~(Q')+ Iqz~[~(Q')< Ce~[ul2+~(~) + C ( e ) ( M +  [q~l~ lq21~ lul2(~)) .  (14) 

The case in which wg intersects with ~' is considered analogously. Here we first "rectify" 
the boundary of ~' with the aid of the change of variables indicated at the start of the 
proof of Theorem i, and we then convert operator Ag, whose coefficients coincide with the 
corresponding coefficients of A at some point of 8~' x {0}, to a Laplace operator with the 
aid of linear changes in variables, leaving invariant the halfspaces 0 < x~, 0 < x n and 
uniformly bounded over w~ along with their derivatives. The existence of such linear 
changes of variables follows from condition (3) relating to the coefficients a~K Further, 
the estimate (14) may be derived from Lemma 2 in exactly the same way it was derived above 
from Lemma i. 

Thus, estimate (14) was obtained for all sets w~. It is now not difficult to conclude 
from the definition of the covering w~ and the functions qjg that qj~ on the left-hand side 

of inequality (14) can be replaced by qj. 

By virtue of Eq. (4) the sums 

p~(x', O)q~(x')+D~(x', 0)q~(z'); p,(x',-i)~(z')+o~(x', -~)~(x') 

may be e s t i m a t e d  in  t h e  C~ ' )  norm in  t e r m s  o f  C ( l u l 2 ( Q )  + M). Us ing  c o n d i t i o n  ( 2 ) ,  we 
also estimate, in terms of C(lul2(Q) + M), also the quantity lqj}O(Q'). Then from relation 

(14) we have 

I~,[~(~')+ Iq~l~(~')< cEI,~I~+~(~)+ c(~)(M+ [~1~(~)). (15) 

Now the known Schauder estimates of solutions of the Dirichlet problem (4), (5) yield 

S e l e c t i n g  and f i x i n g  ~ so t h a t  CE k < 1 / 2 ,  we r i d  o u r s e l v e s  o f  t h e  f i r s t  t e r m  on t h e  r i g h t -  
hand s i d e .  A p p l y i n g  known i t e r a t i o n a l  i n e q u a l i t i e s  [11 ,  12] ,  lu12(Q) can be r e p l a c e d  by 
l u l ~  U s i n g ,  in  a d d i t i o n ,  e s t i m a t e  ( 1 5 ) ,  we c o m p l e t e  t h e  p r o o f  o f  Theorem 1. 

COROLLARY. We assume  t h a t  domain  ~ i s  bounded  and t h a t  t h e  s o l u t i o n  o f  p r o b l e m  ( 4 ) ,  
(5 )  i s  u n i T a e .  E s t i m a t e  (6 )  i s  t h e n  v a l i d  w i t h o u t  t h e  l a s t  t e r m  t u l ~  

T h i s  c o r o l l a r y  may be d e r i v e d  f rom e s t i m a t e  (6 )  u s i n g  a w e l l - k n o w n  method [10] b a s e d  
on c o m p a c t n e s s  o f  t h e  imbedd ing  o f  CA(Q) in  CA/2(D) f o r  bounded domains  ~. 

2. THEOREM OF UNIQUENESS 

Let ~ be a domain in R" with a piecewise-smooth boundary, each smooth piece of which is 
a portion of the boundary of some domain of class C 2+k. Similar domains are described in 
more detail in [12, p. 212]. Assume, in addition, that ~ is convex with respect to x n and 
bounded. We assume that the coefficients of operator A do not depend on x n, a ~ C2+X, aJ~ C I+~, 
a �9 C ~, and the coefficient a and coefficient a, of the adjoint operator A* nonnegative. 

THEOREM 2. Let us assume that the weight function p satisfies the condition 

0 < Bp/~x n almost everywhere on S, p, 3p/Bx n e Ck(~). 

If functions u e C2(~), q e C%(~), f e C(5) are solutions of the problem 

(16) 

A u  = pq + f, aq/Ox,,  = 0, O]/ax, = 0 on ~, 

u = O, Ou/Ox,~ = 0 on O~, 

(17) 

(18) 

then u = O, q = O, and f = 0 on ~. 

Let F be the interior on 8~ of a set of points x e 8~, such that <n, en> = O, e n = 
(0 ..... O, i), v is the conormal to 8~. 

660 



LEMMA 3. If u satisfies conditions (17), (18), then 

P 

J ~ (pq + / )  dx  - -  ~ (Ou/O,~) v d r  = 0 
9 

(19) 

for an arbitrary function v e C~(a) such that 

Proof. 

A*v = 0 on Q. 

From Eqs. (17) and (20) we have, according to Green's formula, 

.[ v (pq + /) dx = [ ( vAu  - -  uA*v)  dx = .[ ((v Ou/O~ - -  u Ov/Ov) + a~uv) d r  = f v (Ou/Ov) dr, 
a h oe 

(20) 

since u = 0 on 8~ by virtue of condition (18), and it follows from this very condition that 

the first order derivatives of u on 8~\F are equal to zero. This establishes Le~ma 3. 

Proof of Theorem 2. We assume that q @ O. Let q e O. Differentiating Eqs. (17) with 

respect to x n and using conditions (16) and (17), we obtain 

AOu/Ox~ = qOp/Ox,~ >~ 0 on Q, Ou/Ox~ = 0 on 0Q. 

According to themaximum principle, 0 ~ ~u/Sx n on ~. Since u = 0 on 8a according to condi- 
tion (18) and 0 ~ 8u/Sx n, it follows that u = 0 on ~. Therefore, q~p/~x n = 0 on a, which 
contradicts our assumption and condition (16). The case q ~ 0 is similarly not possible. 

Let a' be the projection of ~ on the hyperplane {x n = 0}. Let a+' = {x e ~: 0 < 
q(x)}, a_~ = {x e ~': q(x) < 0}. In view of what was presented above, we can ass~e that 

Q + ' ~ ;  Q - ' ~ .  ( 2 1 )  

Since the coefficients of A do not depend on Xn, then along with v we will have, as a solu- 
tion of Eq. (20), also the function ~v/~x n. By Lemma 3, for an arbitrary such function v 
with 8v/Sx n �9 C2(~), we have 

.[ (o tOx,) (.oq + !) d x - -  [ (ou/o,) d fOx, dr = 0. 
F 

We integrate Eq. (22) by parts. Then 

( 2 2 )  

oe a 
( 2 3 )  

for an arbitrary indicated function v, where ~ is a measure on F which is constructed on F 
and the function u. 

We extend Eq. (23) to solutions of Eq. (20) continuous on ~. We extend v from 8~ onto 
N 

n ~ by a continuous function v. We approximate domain ~ by a monotonically decreasing se- 
quence of bounded domains ~(k) of class C 2+X, so that N ~(k) = ~o Let v(k) be the solution 

h 

of a Dirichlet problem for Eq. (20) on a(k) with boundary data v on 8~(k). It is known that 
the v(k) exist and belong to C2(~). Since the coefficients of A do not depend on Xn, then 
also ~v/~x n e C2(~) [12, Theorems i0.I, 12.1]. It is obvious that Eq. (23) is valid for 

v(k). As is well-known from the theory of the stability of a Dirichlet problem solution 

[15, 16], the functions v(k) converge pointwise on ~ to the function v. Since v(k), by the 
maximum principle, is uniformly bounded, then using Lebesgue's theorem on passage to the 
limit under the integral sign, we obtain from Eq. (23) for v(k) as k + += this equation for 
arbitrary solutions of Eq. (20) continuous on ~. 

Let ~ be a function, measurable on a, constant with respect to x n on a U (8~\F), equal 
to zero on F for x e 3~\F, x' e ~+', and to one for x e ~\F, x' e ~'\~+'. 

We select a sequence of functions ~k e C(89) so that 0 ~ ~k ~ i, ~0 ~ ~k, ~k § ~ in 

Ll(8~), *0 ~ 0, ~k = 0 on F, k = O, I, ... . Let v k be a solution of the following Diri- 
chlet problem: 

A * v ~ = 0  on Q, v ~ = ~  on OQ. 
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According to the maximum principle, from the inequalities 0~0~@~<i, ~0~0, it follows that 

0<v0~v~l on Q. (24) 

Putting v = v k in Eq. (23), letting ~• = {x e ~: x' ~ ~• and taking inequalities (24) 
into account, we write 

@0 
oakr ~+ ~__ o~a\r 

(25) 

Passing to the limit for k § 4-oo in relations (24) and introducing the notation P+ = {x ~ 8~: 
x' e ~+, nn(X) # 0}, we obtain 

P+ ~+ ~_ O~XP 

(26)  

By virtue of the integration by parts formula, the difference of the first integrals is 
zero. The last integral is equal to the integral over 8~ since n n = 0 on P. Again, accord- 
ing to the integral by parts formula, this integral is equal to the integral of 8(~f)/Sx n 
over ~, i.e., is equal to zero. Relation (26) now leads to a contradiction since 0 < 80/ 
8x n almost everywhere on ~, 0 < v 0 on ~_ in view of relation (24), and q < 0 on ~_ by 
virtue of the choice of the set ~_ # # according to assumption (21). The contradiction 
establishes that q = 0. 

We show that f = 0 also. Let f # 0. We can consider f > 0 in some neighborhood w of 
point x e 8~ with nn(X) > 0. Let ~ e C0~(w), ~ ~ 0 and 0 ~ ~. Selecting as v a solution 
of the Dirichlet problem for Eq. (20) with boundary data v = ~ on 8~, and using relation 
(23), we obtain 

O =  ; v/,zn dP = .f v/n~ dP > O 
0~2 \ P O~! 

according to the choice of % Thus, f = 0. Hence, u = 0, f = 0, q = 0, which completes 

the proof of Theorem 2. 

Remark. Theorem 2 can be proved with the condition of convexity of ~ with respect to 
x n replaced by the condition 8~ = 8~. In this connection, we need to modify only the 
choice of function ~. 

As an application of Theorem 2 we consider the problem of finding a triple of functions 
(u, q, f) satisfying the following conditions: 

Au + qu = f, Oq/Oa& = O//O& = O, O ~ q on Q, 
u = g on 0~'~, 

Ou/Ox,~ = h on Of 2\P, 

where ~ is the cylindrical domain ~' • (-H, 0) considered in Theorem i. 
we assume, in addition, that a jn = 0 and a ~ = 0 on ~ for j < n, a ~ = i. 

We also introduce the conditions: 

g ~ C 2+~, OglOz. ) O, OglOx. ~ O on P, h ~ C l + ~ ( ~ ) ,  f ~ C ~ ( ~ ) ,  

'0 ~ A 'g  + q g - - f  o n  P 0 ,  A'g  + q g - f  ~ 0 ~ P.,  Ag = /  on OQ X { - H ,  0}, 

O<~h, Og/O&=h~ O f l X { - H ,  0}. 

(27) 

(28) 

(29)  

As for operator A, 

(30) 

(31) 

(32) 

Using the well-known theory of the solvability and regularity for second-order elliptic 
equations [12, Secs. 4, 5, I0, 12] and also symmetric extensions relative to the hyperplanes 
x n = 0 and x n = -H, where additional conditions are needed on the coefficients of A, we can 
prove existence of a solution u of problem (30), (31) of class C2+X(~). 

LEMMA 4. If function u e C2+k(~) satisfies conditions (27), (29), where g and h satis- 
fy either the conditions (30), (32) or conditions (30), (31), then 8u/Sx n > 0 on E. 
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Proof. Consider the case of conditions (30) and ~3~) Denoting ~ulSx n by v and differ- 
entiating Eq. (27) and boundary conditions (28) on F, we obtain 

By virtue of Eq. (27), 

Av+qu=O on f~, v=Oq/Ox~on F. 

dv/Ox,~ = O2u/ (Ox~) 2 = A ' u  + qu - / = A ' g  + qg - / on F0 U F~ 

in view of boundary condition (28). Thus, 0 ~ 8v/~x n on F 0 and 8v/Sx n ~ 0 on F H. By the 
extremum principle a negative minimum cannot be attained on F 0 O F H. It can therefore be 
attained only on F or v is constant. Therefore, by virtue of condition (30) v is nonnega- 
rive. If v were to vanish at at least one point of a, it would then be constant, which 
would contradict one of the conditions (30). Thus, 0 < v on a. A statement relating to v 
under conditions (30) and (32) follows directly from the maximum principle. This establish- 
es Lemma 4. 

THEOREM 3. When conditions (30), (31) or (30), (32) are satisfied, problem (27)-(29) 
has at most one solution of class C2+I(~) x CI(~) • CI(~). 

Proof. Suppose the problem has two solutions, (ul, ql, fl) and (u2, q~, f~). Letting 

u = u 2 - ul, q = ql - q2, f = f2 - fl and subtracting from Eqso (27)-(29) for the second 
solution the same equations for the first solution, we obtain 

A u  + q2~ = ~,q + f, Oq/Ox~ = O, 8~Ox~ = 0 on Q, 

u = 0 oa 0~, Ou~/~x~ = 0 on O~. 

By Lemma 4,  0 < 8 u / S x  n on e .  P u t t i n g  0 = u a ,  we f i n d  f r o m  T h e o r e m  2 t h a t  q = O, f = 0 and 
u = 0.  T h u s ,  u 1 = u 2 ,  q l  = q 2 ,  f a  = f 2 ,  and T h e o r e m  3 i s  t h e r e b y  e s t a b l i s h e d .  

3. THEOREM OF UNIQUENESS OF A SOLUTION 

By the method of continuation with respect to a parameter [I0; Ii; 12, po 149] we can 
deduce from Schauder estimates and a uniqueness theorem a theorem for the existence of a 
solution of the problem concerning finding a triple of functions (u, ql, q2) satisfying the 
conditions (4), (5). In Theorem 4, presented below, we consider a cylindrical domain ~ 
described in Sec. I, and we assume that operator A satisfies the same conditions as in 
Theorem 2, in particular, that its coefficients do not depend on x n and that coefficients 
a, a, are nonnegative, a ~ = I. 

THEOREM 4. Let the weight functions Pi, 02 satisfy the condition 

0 < 80 < Opl/OZ~, p2 = I on ~). ( 3 3 )  

Then f o r  a r b i t r a r y  f u n c t i o n s  f e C Z ( ~ ) ,  g ~ C 2 + X ( ~ a ) ,  s a t i s f y i n g  t h e  c o m p a t i b i l i t y  c o n d i -  
t i o n s  

A g = /  on d ~ ' X { - - H ,  0}, O g / O z ~ = h  on 8 Q ' •  0}, 
(34 

t h e r e  e x i s t s  a u n i q u e  s o l u t i o n  o f  p r o b l e m  ( 4 ) ,  ( 5 )  o f  c l a s s  C 2 + t ( ~ )  • C t ( ~ )  • C Z ( g ) .  

We n o t e  t h a t  by s u b t r a c t i n g  f r o m  u t h e  s o l u t i o n  o f  t h e  D i r i c h t e t  p r o b l e m  w i t h  t h e  d a t a  
f ,  g ,  we c a n  r e d u c e  t h e  g e n e r a l  c a s e  t o  t h e  c a s e  o f  z e r o  f ,  g ;  we w i l l  c o n s i d e r  t h i s  c a s e  
later. 

We preface the proof of Theorem 4 with two lemmas concerning solvability of the prob- 
lem in the simplest case and concerning the approximation of functions from Ho!der classes. 

LEMMA 5. Theorem 4 is true for the case A = -A, p~ = Xn, h e C2(T0 U TH). 

Proof. Let {Vk} be a complete orthonormalized set of characteristic functions of the 

2 __ -- ~2/~xn- I ; we Diriehlet problem for the operator -&' = -82/8x12 - ~2/82x2 o.. 2 in ~' 

denote the corresponding characteristic values by Ik 2, 0 < Iko It is known that in the 
given case such a system exists and that v k e C2+I(~ ') [12, Theorems 17oi, 12oi~ i0~ We 

W 

introduce the class of functions WA = {h =~ ~ hkv k, where N, h k are some numbers}~ We show 

that the functions ~=i 
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N 
) , h X n  --~h(Xn+H) u (x) = y .  [C~e + C j  + ~ ( z , ~  + q~k)) ~ (x), 

N 
qj (x) = F~ qjhvk (x'), j = 1,2, 

a r e  a s o l u t i o n  o f  t h e  i n v e r s e  p r o b l e m  ( 4 ) ,  ( 5 )  i f  h 0 (h on F 0) and h H (h on F H) b e l o n g  t o  
t h e  c l a s s  W 5 and 

q,~ = ~ (1 - ~ - ~ ' )  (h0~ + h . ~ ) / ( - -  H (t  + ~ - ~ ~ )  + 2~;  ~ (~ - -  ~-~')), 
q2k = ~h ( ~ - -  e--~hH) - 1  ( ( (~ ;1  __ H) - -  ( s  § H )  e -2~'hH) hok § 

+ ( ~ / '  ( 1 - -  e -2~hH) + 2He--~aH) h H k ) / ( - - H ( I  + e -zk ' )  + 2~;* ( '  - -  e - ~ ' ) ) ,  

where C1k, C2k are defined in terms of qlk, q2k as solutions of the following system of 
linear equations: 

C1~ + C2he -~kH + ~2q2h = O, Clh~k--C2~ke -~kH + ~ q l k  = ho~. (35)  

Here h0k, hHk are coefficients in the expansion of h 0 and h H with respect to the basis {Vk}. 

Actually, validity of the equation -Au = Xnq I + q2 may be verified by a direct substi- 
tution. The boundary conditions on F follow from the definition of characteristic functions. 
The remaining boundary conditions (5) are equivalent, by virtue of the definition of u and 
qj, to Eqs. (35) (conditions u = 0 on F 0 and 8u/Sx n = 0 on F 0) and to the equations 

Clhe -~h~+C2~+~f~( -Hq lh+q2h)=O ( u = 0  on rz ) ,  

--2 Clh~he - z h H -  ~kC2h + ~ q~ = hHh (Ou/Oxn = 0 on FH) , 

which  r e s u l t  f rom t h e  f o r m u l a s  f o r  q l k  and q2k o f  Eqs.  ( 3 5 ) .  Thus t h e  p r o b l e m  i s  s o l v a b l e  
f o r  a r b i t r a r y  d a t a  h~,  h H e W5. 

We a p p r o x i m a t e  f u n c t i o n s  h0,  h H o f  c l a s s  C ~, e q u a l  t o  z e r o  on ~F0, 0FH, by f u n c t i o n s  
f rom Wh a c c o r d i n g  t o  eL+X-norm. L e t  p > n(1  - X). S i n c e  ~ '  ~ C :+x ,  t h e  c h a r a c t e r i s t i c  
f u n c t i o n s  a r e  t h e n  d e n s e  in  L~(a'); t h e r e f o r e  t h e r e  e x i s t s  a s e q u e n c e  o f  f u n c t i o n s  f ( k )  f rom 
W~, converging in Lp(a') to -h'h 0. We note that if f e WA, then the solution of the Dirich- 

let problem -A'h = f on ~', h = 0 on 8~' also belongs to W A. Therefore the solution h(k) 

of the Dirichlet problem with the data f(k) belongs to W A. By virtue of known Schauder 

Lp-estimates of solutions of elliptic boundary value problems [i0, Chap. 5], we have 

11 h (k) - -  h 0 IIw~(n,) <~ C II ] (k) + a ' h  0 flLp(a') -~  0 

as  k ~ 4~.  By a S o b o l e v  imbedd ing  t h e o r e m  [11,  p.  2 3 0 ] ,  t a k i n g  t h e  c h o i c e  o f  p i n t o  a c -  
a c c o u n t ,  we o b t a i n  

[ h (k) - -  h 0 ]x+~ (fl') ~ C I[ h (k) - -  h 0 ]]w~(~,)" 

Thus ,  h ( k )  c o n v e r g e s  t o  h 0 in  C ~ + X ( ~ ' ) .  We c o n s i d e r  hfl s i m i l a r l y .  

Lemma 5 i s  t h e n  a c o n s e q u e n c e  o f  t h e  S c h a u d e r  e s t i m a t e  ( 6 ) ,  t h e  c o r o l l a r i e s  t o  Theorems  
1 and 2,  t h e  p o s s i b i l i t y  o f  t h e  i n d i c a t e d  a p p r o x i m a t i o n ,  and t h e  s o l v a b i l i t y  o f  t h e  p r o b l e m  
w i t h  d a t a  f rom Wa. 

LEHHA 6. L e t  h e C~+X(~ ~) and h = 0 on 3~ ~ Then t h e r e  e x i s t s  a s e q u e n c e  o f  f u n c t i o n s  
h ( k )  e C ~ ( ~ ' ) ,  h ( k )  = 0 on 3~'  s u c h  t h a t  h ( k )  c o n v e r g e s  t o  h in  Cz+X(~ ~) and I h ( k ) l ~ + X ( ~  ' )  
C(h).  

Proof. By virtue of the conditions on domain ~' there exists a finite set of balls 
w~, ..., w m in R ~-~ such that their union contains the closure of ~', and if 8~' 0 wj is 

nonempty, then a diffeomorphism y(x; j) of class C2+l(wj) may be found, which maps wj onto 

a domain vj of class C =+~, such that its inverse belongs to C2+l(vj), while ~' ~ wj, ~' 

wj are mapped, respectively, onto {0 < y~} ~ vj, {0 = y~} ~ vj. Let % be a C=-partition of 

unity corresponding to the covering wj. We have h = h~+...+h~m on ~', the supports of 

h ~ lie in wj, and h ~ satisfy the conditions of the lemma with respect to h; it is there- 

for sufficient to approximate each h T~. 
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Initially, let wj c ~'. We introduce the standard averaging kernel ~g(x) = ~(Ixl/e), 

where ~ e C0~(R~-1), S ~dx = i, 0 ~ ~ and supp, = {x: Ix! ~ I} (see, for example, [12, p. 
68]). Then the functions (A~)~ , which are convolutions of h ~j with ~, belong to C2(R~-I)~ 
their supports belong to wj for sufficiently small s, and (~j}~-~h@j in CI(~ ' ) as 

+ 0o We extend h ~ through zero on R~-~Xwj. It is not hard to see that if the Holder 

constant [u] 1 is not larger than Co, then also [uE]l ~ C0; therefore, l(~%)~l+~ C. Thus 

(h%)~ approach h ~j as g § 0. 

Consider now the case in which the intersection of wj with ~ is nonempty. Going 
over to variable y, we reduce the problem to the case of the halfspace 0 < Yl. We denote 
A@ in the variables y by gj. We extend gj through zero onto {0 ~ yl}\vj. It is Obvious 

that gj e Cl+i({0 ~ Yl}) and that gj = 0 for Yl = 0. We define gj(-Yl, Y2 ..... Yn-l) = 

-gj(Yl, Y2 ..... Yn-l) for 0 ~ Yl. Averages of gje are equal to zero for Yl = 0 by virtue 

of symmetry (oddness) of the extension and choice of the averaging kernel. As was the case 
above, for small e we have: (suppgjE) n {0 ~ Ym} belongs to vj, and as above gjg approach- 

es gj as e § 0. Returning to the variables x and extending the function in variables x 

through zero onto ~'\wj, we obtain the required approximations of function h%. This com- 

pletes the proof of Lemma 6~ 

Proof of Theorem 4. We note, by virtue of Theorems ! and 2 and also the corollary to 
Theorem I, that estimate (6) is valid without the term lui~ on the right-hand side~ We 
introduce a one-parameter family of inverse problems (4), (5), where in place of A we take the 
operator A t = -A + t(A + A), and in place of p~ and P2 we take the weights Plt= (I - t)x n+ 
t01, P~t = i. 

The set �9 of values of parameter t for which the problem is solvable is nonempty since, 
by Lemmas 5 and 6, it contains t = 0. Proof that ~' is closed proceeds according to the 
known scheme [ii, 12] with use of estimate (6) without the term lul~ and the usual pro- 
parties of Holder norms. 

We show that �9 is open in [0, I]. Let t o e ~. We denote by B t the linear operator 

which to the pair of functions (q~, q2) from C0l(~) • C01(~ ') makes correspond the pair of 

functions 8u/~x n on F 0 and %u/Sx n on FH, where u is the solution of the Dirichlet problem 

(4), (5) with A = A t (without the conditions ~u/~x n = h on F 0 U FH). In view of the Schaud- 

er estimates of solutions of the Dirichlet problem and the compatibility conditions (34) the 
operator B t is continuous from X = C0l(~ ') • C01(~ ') into Y = (C~+l(~0) ~ C0(F0) ) • (C ~+l 
(~H) D C0([H)), where C01(~'), C0(~0) , C0([H) are sets of Holder or continuous functions, 
equal to zero on the boundary of the indicated sets. According to the definition of the 
set 7, for an arbitrary h e y there exists a solution u, q~, q2 of the inverse problem with 
t = t o . By the remark made at the beginning of the proof, operator Bt0 has a continuous 

inverse from Y to X. Since operators, which are close in the uniform operator norm to in- 
vertible in Banach spaces, are also invertible~ operator B t will be invertibie for t close 
to t o . Thus the set ~ is open. 

By virtue of the principle of continuity ~ = [0, i]; therefore, the initial problem 
corresponding to ~ = 1 is solvable. Uniqueness of its solution is a consequence of Theorem 
2. This concludes the proof of Theorem 4. 
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PERIODIC GROUPS WITH THE PRIMARY MINIMALITY CONDITION 

FOR CERTAIN SYSTEMS OF SUBGROUPS 

A. A. Shafiro UDC 519.45 

The primary minimality condition was introduced by Chernikov [i]. Polovitskii [2] 
described the periodic, locally solvable groups satisfying the primary minimality condition 
[I]. Pavlyuk, Shafiro, and Shunkov [3] proved that locally finite groups with the primary 
minimality condition for locally solvable subgroups are almost locally solvable. Later an 
analogous result was obtained for binary-finite groups: Sedova [4] considered groups with- 
out involutions, and Pavlyuk [5] treated the general case. In the present paper we study 
extensions of binary-finite groups by binary-finite groups in which certain systems of 
locally solvable subgroups satisfy the primary minimality condition. 

Notation and Definitions 

Definition 1 (Chernikov). A group G satsifies the p-minimality condition for some 
p e ~(G) if any descending chain of subgroups H I m H 2 m ... m H k m ... in which H i - Hi+ l 

(i = I, 2, ...) contains at least one p-element is finite. A group G satisfies the primary 
minimality condition if G satisfies the p-minimality condition for each p e ~(G) [I]. 

Definition 2. If in a periodic group G all divisible* Abelian subgroups (divisible 
Abelian p-subgroups) generate a divisible Abelian subgroup T (divisible Abelian p-subgroup 
T) and the factor group G/T contains no infinite divisible Abelian subgroup (infinite divi- 

*The author uses the term complete, but divisible is more common in English, and more sug- 
gestive -- Translator. 

Krasnoyarsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 31, No. 4, pp. 
160-165, July-August, 1990. Original article submitted November 19, 1987. 
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