ASYMPTOTIC EXPANSIONS FOR THE PROBABILITIES
OF LARGE DEVIATIONS. NORMAL APPROXIMATION. III

A. Bikelis and A. Zemaitis UDC 519.21

1. INTRODUCTION

Many classical problems in the theory of probabilities and mathematical statistics reduce to the study of
the asymptotic behavior of the probability distribution, depending on the infinite growth of the parameter.
Therefore, henceforward we set F{A} = Fa {A}; in addition FA {A} converges weakly to an unbounded divisible
law G as A — . Here A is a Borel set.

We shall look for an approach to the general problem of construeting the asymptotic Kramer-type expan-
sion for FA{A}, by means of two important special cases, when the limiting laws are normal and Poisson. Fol-
lowing Kramer, we introduce the conjugate random variable &, with distribution Fh{dx} (see [4, Part II}).
From [4, Part II] we have the formal equation

F{a)y=RG) [ [ e oidx}+ [ e (Fi-0){dx}], (1)

A A

connecting the distributions Fa{dx} and Fy, {dx} (see [6, Part II]). Henceforward, instead of FA{A} we shall
use the notation F{A}.

The conditions we adopt below ensure that the integrals in {1) converge. We first require that

0<R(h)= f e F{dx}< (Kp,)

—

for |h| < hy. However, the convergence of the integral R(h) is not a sufficient condition for the construection of
asymptotic Kramer-type formulas for Fa{dx} as A — =,

In fact, for small values of the parameter A, the Poisson distribuﬁon and the normal distribution with
parameters (m, 02) are essentially different, although they both satisfy condition (Kho), ie.,

@ 1 {u—m)* &* B®
1 —hM—E n mh+ 5
h)= — o =
Ry (h) Gv%le du=e
and
d P
Rp(f)= 3, & 2=,
k=0
We shall formulate conditions under which we shall study F{A} = P{¢ecA}.
Tn both cases, when G is either the Poisson or the normal law, we shall assume that & has all finite mo-
ments, i.e., M| Ik < w for k = 2, 3, ..., and has positive dispersion g2,
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In the normal approximation we shall require that the semivariants wj of the random variable £ satisfy
the condition of V. Statulyavichus

H(A) k! 6F

%< DR k=34, ... &

Here H(A) is some positive and bounded function for 0 € A< =,
If the limit law G is the Poisson law, we shall suppose that the factorial semivariants Vi k=1,2,...,

of the random variable £ satisfy the inequality

m (A) k! vk
el S —ge=r—, k=23 ...,

and vy > 0. Here 7 (A) is some positive and bounded function for 0 < A <, We shall define the functions
H (A) and 7 (A) below in more detail.

In (1) h is any number in the interval (—hg, hy). In the second part (in the "smoothing inequalities™) we
chose h = h (a) to be the solution of the equation

a= :5"1.‘ In R (h), (2)

where a=inf {y :y €4} for Ae (0, ©) and a=sup {y :yed} for Ade (-, 0).

Further study showed that h could be defined differently; viz., in the normal approximation

a—m
ci

h=h~=

where m = M£, and in the approximation F{A} to the Poisson distribution, h = hp is defined by the equation

h
Tief=a,

i.e., hy is the solution of Eq. (2), when we substitute the integral Ry (h) for R (h), and hp is the solution of (2)
when the sum Ryp (h) replaces R (h).

Such a choice of h simplifies many calculations; e.g., in the normal approximation we obtain the Kramer
series A(t) from the equation

In R (hy) — mhy — (";m )3__21)_ ( ""*Z'(;;'; e )2 =z (“a:aﬂ)a . (a_—m)

but we require a more precise estimate of the integral
[ e (Fyy— @) {ax}.
A

Here m (h) =(d/dh)InR(h) and o? (h) = (d¢/dh®) InR (h).
So in the normal approximation we choose h = h(a) to be the solution of Eq. (2), and in the Poisson ap-
proximation h = hp is the solution of the equation 'Yieh = a.

Furthermore, the question arises as to a suitable selection of a generalized measure Q{A}l in (1). Tt fol-
lows from the lemmas of Part II that we must choose Q{A} such that the integral

@w

[ g (Fu-0Q){dx}

—0

for Borel functions g(x), belonging to some class, is small. For Q{A} we may choose asymptotic expansions
of a classical type, of the conjugate distribution Fh{A}. For example, the asymptotic expansions of Chebyshev
and Kramer [6, p. 173], V. P. Zolotorev [12], and Grigelionis and Franken [13, 14] can be used,
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2. THE FORMAL CONSTRUCTION OF EXPANSIONS.
NORMAL APPROXIMATION

We continue our study of the asymptotic expansion of F{A} using the characteristics of the normal law,
started in the first part of this work. It remains to consider the cases when F{A} is a latticed probability dis-
tribution, and when A belongs to some class of Borel sets, '

Much is known about approximation to step probability distributions (see [15, 16]). We shall take the fol-
lowing point of view: we approximate the step function Fh{dx}, with jumps at the points ¢ + dv, where d > 0
and ¥=0, £1, £2, .., by sums of the form

> gle+dv).
c+dved )

To some extent the multidimensional limit theorems of [17] justify this approach.
Suppose we have the formal Chebyshev—Kramer asymptotic expansions:

1f F{A} is a nonlatticed distribution,

R s X3 [ P ¢ ) 0 @

If, however, £ takes values in the arithmetic progression {c + dv}, where d is the maximal step in the
distribution, then

Fu{A4}= 5 ZOAL, % an () e (FE)- @
e

c--dved
Here m(h) = M&,, 0% (h) = D&, , and
h h
km

j .
* { s (B) AT
gin (x)= Z Hj o (x) 1_1 ol <Zr{+‘;)!(cm”(h)) (4)

forj=1,2,...,qh =1, o) = (1/‘/2_7F)e —X2/2, H,, (x) is the Chebyshev—Hermite polynomial, and =* is the sum
defined in Part I of this work.

Consequently, it is approporate to choose

b i _1_ f din ( y—m (k) ) @ ( y—m k) ) dy in the nonlatticed case,

o (k) 5 AJ o (k) o (h)
j= 4
Q{4}=0.{4} = g (5)
c‘(Ih) Z '1—1 Qjn < c+d;(”h;” . ) k (C+({:(_,,;n (h)) in the latticed case.

The generalized measure Qsh{A} depends on the auxiliary parameter h, i.e., onthe solutionh =h[({@ — m)/
oA of Eq. (2).

If condition (S) is satisfied,

a—m= Z ZTI}—): (6)
1=2
and for | (@ — m)/a| < dyxA
h=h ( a;Am )= Z a ( a;—Am )1-1y (7)
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where a7, ! =1, 2,..., are defined in Part I by formula (20). The series (7) converges for e — m)/0o| < EH A,
where 8y is as in Lemma 1.

Using (7), we expand the semivariants 'Km(h), m=1, 2,..., in a series in (@ — m)/cA:

wB=n+ 2 oo (), v=L2 (8)

=1

where

Consequently,
(,‘;TT’()@_Y:( y;m )2+<L_;’IL)2 g . (‘G'G:Sm")' _9 y—;m é c ( aG—Am )H—I + é . (%yw (9)
and
hy-a)= - (FZL)y LmmEmm (g [ia, (2=Y. (10)
Here
r Pkm
(=" (=NT] &, =kttt
m=1
Moreover,
R (h) exp {—;zh—h (y—a —-% ( y;'(';;h) )2}=
-3
mon {5 (52 0 (%) -1 (22 few {2 (527) T e (50 )
con { 257 S (5 for {3 T e (1)) an
Since
w ®© J
exp {_5 (}';m )22 .. (ac—Am )r} 14 _Zl ( a;Am )J Z* ﬂ kl,l {_% (y;m )2}k1,
r=1 i= -

g

| o (22) (52} -1 B (50T 5 11 {a (2]

where 51:c0: Oand(—:l =¢y_yfor 1 =2,3,..., and

I=1

o f S e () () 2 27 I 8 (s

wherezl =0for Il =1,2 andczzz =cz_2for 1=3,4,...,then
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i y'_m(h) 2 _ %(“;M)SA(“JA’")_% (y_;m_)‘ { c y—m a-==m "\\ (12)
R (k) exp {_"h"h(y”")‘Q (%= Jj =e £ 200 () (2 )
re=1
where
b (y_m)— r i[z* : L) _a kl] R (y=m\ M MR e {y-m2l¥
S S T (2 H eI o e
j=0 k=0 I=0 =0 1=0
From (3),
TIW Al! f R(h)emah=rh-ag (Z%'(n;gh)) Gin (’}E%’I-)gm-) dy
j=0 A
R(p) e ,r e~h-a g {dy} = . in the nonlatticed case, (13)
4 Gt(ih) Z Lj Z R(h)e'“h_h(”dv_“)g;(c+'d:-;;i(-i!)—} » /c—:_(lv(*,{”"/”}
j=0 y+dve 4 d ' s ’
in the latticed case.

Hence, and from [6, Part II], it follows that there exist polynomials d'j[(a - m)/o, (y — m)/ o], satisfying the
following formal equations:

1 — — -
f rams . s aems 5 f ] (J’_Gﬁ_) d} (y cm, s -f'-;;f' ) dy inthe nonlatiiced case,
_ A —2 y
FA{A}=eA(a) (cA)Z‘_lT 4 (14)
" A d c+dv—a ,f ctdv—m a--m . .
7= - Z o (-— ) d; ( = . ) in the latticed case,
ct+dve A

They may be calculated in two ways. Letx = {a—m)/o,

hiex)= Z a, (ex),

Then h (x/A) = h and %, (h(x/A)) = ny, ().

The function

«© .

y=a N S & e (e ., _y-a (15)
Beo <c(l! (ex)) ' ~'> Z 'cr(h(ex)) e ¢ <c(h(ex))> Din (e (c(h (ax)))

=0

maj be formally expanded in a Maclaurin series in powers of g,

o (e o) =2 Z oo L) (75 ) "
ie
Here
d; (%, x):%— A (G(};&:x)) s S>L=0. (17)

it is very complicated to calculate the derivatives of the function w  [(y — a)/oth(ex)), el. Therefore, using this
method we only estimate the remainder term, and in order to calculate the polynomials d]f [y = m)/o,x] weuse
the classical asymptotic Chebyshev—Kramer expansion of the probability distribution Fa {A}:
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{ q; ( s m—) © (y_m ) dy inthe nonlauticed case,

) g
1 4 18
Fata}= Z A d c+dv—m c+dv—m)\ . (18)
i=0 < Z g ( ) ® ( = ) in the latticed case,

a |-

c
c+dved

We substitute € for I/A in Egs.({14) and (18) and compare their right-hand sides: in the nonlatticed case
we obtain the formal equation

Mﬂ
al—
~—
/—-\
|
Q'S
—
B¢
———

gy oo 30 L [ o(25)q (2 o) 4
j=0 y

and in the latticed case

alm

Z (c+d:—m) 4 (c+dv-—m).

[
ct+dveAd

i o _:' Z qj(£+d:—m) 9 (£+d;—m) 5 A (2x) %

j=G c+dve A

We now differentiate formally with respect to € and obtain

j

di{y, x)= Z Pi(x) g;-x ()

where

k
Po=2 [1 ;7 (= AT hyyp X7 2)m

m=1

and A, 4, is the coefficient of the Kramer series of order m.

3. STUDY OF THE REMAINDER TERMS

We turn to the estimation of the remainder terms, when the random variable § has bounded density and
take values in the arithmetic progression ¢ + dv, where ¥ =0, £1,+2, ....

We write

I N I y=m\ ., (y—m \'
s f) <= O LS 4 (g (5 e
-
and
| %’— (% d : 3 c+dv , fetdv—m '
b (4, D) =| Fa{a}-e ;g ;% (= )d,-( = x)l
1f F{A} has bounded density, then by Lemma 3, Part I,
o fa [ )se%’x(%)[pn (4 [)+entaf] (19)
Here

s Iy £.2
ot )= 5 5 (S e (220 (25 ) - 200 (20 () 7 Oy e
A
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and

x2 @ i
- o o
Pas (A, f)=e [m— ] @) -8 \'2115}2, @1
where fh (t) is the characteristic function of the random variable £h,

&= % Pj (td(h)) exp { itm (h)—fi’;(—h) },

=0
i
i - * *I_ gz (&) Al (iil)l+2 Ky
Pue)=2, [11 7 ( d+2) o+ (7 ) .
In the latticed case we use Lemma 6, Part I, and obtain

(3
os (4, Z)y<e? [oss (A, Z)+ps (4, D)1 (22)

Here

_ : i d ct+dv—m\ ., fetdv—m _d-R(B) ctdv—mih) c+dv--m(h) "h(c*'d")‘?:’a‘l(?:‘ ;
3|5 3 [Lo(ehn) g (s R (chini) (cobm), Je

j=0 ctdved ° ° ¢ °) o (A ek
and
— =z 1
- dexp{—Qh c—a+d adc } 4 3
st(A, Z):e - [ QK((I—e_dh)[ ]) f {fh(t)—gs(t)gzd’] ]
-5
where
@ s :
- itcedny 4 1 c+dv—m(h) c+dv—m(h)
0= 2 ""”“?@Z‘,E‘P( s (o) @4
V= —w J=
The functions g (t) and és (t) are connected by the equation
© g9mh _ 2mide
L0= 2 sft+5r)e 7. (25)
A= --co
In fact,
5 ] c+dv
L etdvi—md\  d 1 c+dv—m k) c-rdv—m (k) 4 1 - S .
A o) )_‘ 5 () EOAJ‘ qf"( () ) () ) s | e gs(o‘(h))dt' (26)

We make a change of variable t = vo (h) in the integral. We then split the interval of integration {—~w, =) into
intervals

[27\—1 22+1 )
@ ),

7T A=0, £, +£2, ...,

and obtain
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2+

T

< d
o) (cthomi)_ 2 ¥ [ erems @

Let v = u + 2rA/d, and then

L
i d
o: (F-F‘{—;;;‘;L(hl)z% Z e 4 r e-—u‘lx(c~f-1i\:)gs (u+27;_):‘) du.
- -
a

Hence and from (25)-(26) it follows that

_ 2rikc

‘g (t+ 2—25) dr.

e—i: (c+dv-—m (h))é,'s (’) e—itm (hy dt = _2%

x
e=it (c+dv) Z e

A=

N>

:a]°-
ala '~ qya
ada——, s

Equation (25) is proved.
We first consider the remainders p;g(A, [) and pyg(A, Z). It is easily seen that their asymptotic behav-

ior as A — o depends on the remainder

Us(v, )=e® S AL} oW+ x)d] (u+x, X) _ﬁ ;, % e—h,,a,?(cu(:}) o (:(:))

i=0

for sign u = signx. Here h = h(x/A) is the solution of Eq. (2), where

We define the set Xa of arguments x for which the estimates for Up (x, u) are correct as follows:

XA={ .\-:1<1x}<8(12+8) A, where 3<fp }.

Here By is the real root of the equation 6HS = (1—6)3, H = H(A). We note that By < 1.
Denote by D...(...) the pélynomials whose coefficients depend only on s, the indicated variables being in

the brackets,
LEMMA 1. Let condition (S) be satisfied. Then

ux

’ — — +1 1+2 1—8)-
Us(x w)i<Dy(ux , V, L B, Vitg) Sore 72 @7

for xeX, and signu = signx.

Here
__bH3 _ x 5 E-1
=oer t T hy L=Qy—-29)",
i 3(s+3 5 3(1+3 < 1+
H=H(A) (Hfi%ﬁ)?) gz_(gil' 5, = Bn(z Br)

Proof of Lemma 1. By (S),
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{k}l<H(m+2)!cmH(h) (28)

Ktz

form=1,2,..., s.

Using Cauchy's inequalily, we have

;,(%):i.___l__ 29

for xeX,, where |®] < 1,

For ¢ (0, 1/A) we have

i dm 0 =m+1
?z;m—h(sx)‘sVLm“%‘v m=0,1, ...,
for x€X, and 5 < gH'

It follows from the definition of the polynomials d f(x + u, x) that the derivatives with respect to € of or-
ders £ =90, 1,..., s of the remainder

Xt
5

us e ™ (k) us us e 2 ,
ms<m, €>=§0€ [ c(h(ex)) (P<c(h(ax)))qjh(sX)<U(h(&?t))) R fp(x+u)£fj(u+x, X)}

at the point € = 0 are equal to zero, i.2.

L <s_(;§a—>) e) veco=0 (30)
for I =0,1,..., s.
Consequently,
s (6(:Z:x)) ’ s>= (;:(ll)! 5::1 @5 (U(Zz.x)) J >{i5 o , 0<O<1. (31)
Let
G; (h (ex))= 6(2;)) e (k) (ﬁ) Gjn tex) <“—G‘ui;§)
Then
e us S LS eeDtATigre g :
e (G("Th)) €> =S [iaercs v (.Ex)) I- ,Z=o f:ﬂzl_j Far -y @ O (R E), (32)
where

/3 & 3 k"h
gg G; (h (sx))=l!Z dR;,;,’RU’) ﬂ km! (,,f, dmdfnffx)) (33)

"h-

and R =ky +ky+...+kp.

it is easily seen that
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R .
aR=po-uhs  gp [ A-i uc
th G (=2, Ck P <c(h) ‘P\s(h)) 4in (W))"

=0

Mx

G (-uorreot o [25 o (5 ) an (Sa) | 54

1

P

Turning to the study of the derivatives of the functions

W= o e () an (Sa)s 9=0 1 ens (35)

we express them in terms of Fourier integrals of the functions

1 o® h)

sopafpow) 5] g (e, 5

et

Wj(h)=L f e e A-TP,, (tc(h)) dt
Hence,

ita (k)
o Wi = f et Z < s 2o 7 (A TPy, (m(h))) (36)

_ Using mathematical induction we shall show that there exists a polynomial Dyj (0 (h) Jw{, H) in || ¢ (h) and
H, whose coefficients depend only on j and q, satisfying the inequality

c(h)
; dh‘l A~

Py (05 ) < Sy Dy (o) [ol, H) 37)

forq=0,1,...andj=1,2,....
It is known that

A-I Py, (mo'(h)) 5 % (h) o
and
87P, (o (1)) = 20 S L s () 57 Py (05 () (38)
r=1
forj=3,4,...
It is easily seen that
| APy (00 () < 57 Por (1010 @), H) (39)

forr=0,1,2,...,7.

Since

d&
Ym+a (h) = anc Lm (h)v
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then

A1 2Py, (coc(h)):é Yg1q (B) 5. (40)

Hence and from (27) it follows that

; d lo P HA (c(i)'™?
A1 2 Py (as ()| < % <= b, (lais®, ).

Let
- d h : .
| A7 Pa (0o ) [ <22 b, (iotom, &) (41)
forr=0,1,...,j— 1. We prove inequality (41) for r = j. To estimate the derivative

j—1
_; d 'ah) J+e ’ - jte—-r r
A o (o) S S G 8P (o) 500037 o o0 0)]

we use inequalities (27) and (41) and obtain

i d [ H+3) /"3 (k) o i*?
iA"d—th,,(wo'(h))ES U )"A,.H”“’ +

(=r) e i*t2=r r H(j—r+3)lc/~t+3(p) | L ~
Z JG-r+2) [ Aj=r & Dor (“’”G(h)' H)+

H —rs ol TR ok ‘ = A -
4] r-fl;J)’ci1 (h) 6() Dy, (‘O)fa(h)y H) ZJ(+)1 Dy, (|m,c(h) H),
Hence inequality (41) holds for r = 0,1,2,..., j.
Let the inequality
! d* h 7
A 2 P (o) [< 52 Dy, (jlath), H) (42)

hold for =0, 1,..., g~ 1. We shall prove it for o = q.

Since

da 2 (h) Jjte j—r+z P L
. (m(h)>_ %t +:,+2):» Z (1] url o Z C2%ysgmrmasalh) o Py (mo‘ (h)),
=1

then by (27) and (42)

A—-r

4 [« HU+a+2)o%(h) (lolsm)™
l AT dhq P,h (coc (h))l INEX [ G+2)
it e f-re 7
G=-na'(leis®) Dy (olck) H) _ of(h) -
" ; -0 G—r+ ) jlg—a)l ! (j+g+2)! = &ira Dy (l“’ic(h)’ H)'

Inequality (37) is proved.
We now consider the derivative

=g g (o) re

ae © =(p-g)te * 3° n i (M)""

mg!

m=1
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It follows immediately from (27) that

_tiat (h al k
m;

dr—4 tlc e (° h))p ¢ (p— q)'e Z n Tl <(m3+l)(1713+2) ( ())) (43)

T
my=1

forp—q=0,1,....
We now return to integral (36). It follows from (37) and (43) that

[ )

P
AW <o Z —t o [ Dy (it o (), H)x

—®

k

x 3" ]‘] . ,((m3+1)(m3+2) (r,c(h))2> . LU

my=1

Hence and from (34) we have

R
dR ! _
L% G < X Ch{uopfremwen C2B b

p=0

From (29) sign x = signh (¢X). Therefore, for sign x = sign u we have the inequality

Ux

) -
4R x+% (1-8) oP~1(h o
LG <Y CRGugree 2O 0 ),

=0

Hence and from (29) and (39) it follows that

o . * » . (h) V(Lix ymt1\"m _ ux -
- Gj (h (e-‘)) <! Z Ch(jujo)R-r Ap+, (H n Ty ( mlae ) €xp 1+;~(1—8)

del 7/
m=1

s m=

TS et (B et T (e
R <

pd
Since |eA] < 1, 1< |x] < A,and 6% (h) = 0% (1 + @p), where |®|< 1, it follows from (32) and the last in-
equality that

s s+1 R A 1
| ds+t ( > Eaed Z Z (s DI el =51 Z* Z cr El & i \ Ve
' O NGFl-DNG+I— ux %77 Dy, ) e | — VL™t X
| destt o (k (ex)) o (B) eyl (s+1-D(G+1-3! pola) ”l,—,—=11 L (mx! )
s+1 — — 1
X eXp {— o }z;ﬂ%”ﬁl?! Dy (uxi, V, L, H, Y1+ exp {— e }
l+-;—(l—8) +§(1—3)
for sign u = signx. The statement of Lemma 1 follows from the estimate just obtained and from Egs. (30) and
(31).

Henceforward we shall write

l

%J,:{ A:xeX, and ()<azinf{_1f:yEA}I

and

EYL={ A:xeX, and 0>a:5up{y:yeA}}

for the classes of Borel sets for which the following lemma holds.
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LEMMA 2. If the conditions of Lemma 1 are satisfied, then for all 4eRN, or AeM we have the in-
equalities

ph(A, f)< %i : S CDu(l+§0-3), v, L A, 1/“1?5) (44)
and
i (4, D)< %;*‘ !_iTe“%’Dh(l-%% (1-9), v, L, A, VT+e). (45)
Proof of Lemma 2. Since
R(hy=exp {—§+&m(h)+ Z—s A (—1)}, {46)

then after a change of variables y = 0u + a we may write integral (21) in the form

el ()15 5 T [ g (e a2 0 (25

where A;“ ={ ”;a:weA}, AeR, or AePR_.

Hence and from (27) we have inequality (44).

By a similar argument it follows from (20} that

p1s (4, Z)=% e ° | Z Al—] Z [cp(u+x)d}(u+x, x) —;—h) e *h g (T:%) a5 (}"("T)H

where u = (¢ + dv—a)/0.

By Lemma 1,

As s
ctdvia o ’ c(§+%(1—8))

o

a2 3 (| e

for x > 1. In the case x < —1, the region of summation becomes (¢ +d¥—a) /< 0. Since e~¥ =y~%a%% for
y>0and >0,

tede1 -~ 5 vt T
e, B<E [ e T Dy, (145 (-9, v, L, A, VTe)x

X1

2ot e T e (g aon v 7 VT

Lemma 2 is proved.

We now consider p,g (A, [) and Pog (A, Z), depending on the asymptotic behavior of the integrals

0

v~ [ 1A {aty) s (i) an

and
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2

= [ ) () [ (49)
wHS_;i—
as A — w,
Clearly, for the integrals ¥ and J we have the inequalities
ad
) ﬂ S (5—'(;5) g (5(;1)} [ di+2 ) fA 1 £y ( (k}) r de+ 2 | 1fa ¥3 (ﬁ) P 7 (49)
and
ad
! — f
[ nlsm)-alsm)iase [ al(e) e
sl ads r,sM
+2 [ (o) Td=htht (50)

T noh
A< lisj—‘%ﬂ

5.—8) V1—-5 1-8 ;
Here ¢, = fi—..%ﬁlq—m“‘, H,= 6:,(1 )s) , and 6 < 8, < 1, where 8, satisfies the inequality 66(1—6,)/(1—0) <1, If

ciA > na (h)/d, then J, = 0 and J; = 0.

Moreover, we write

_ 235+1 (] — §) max (Hy» H‘,"“)
Co = s+1 .

(1-8)+1(l—p) ?

We suppose that in Lemmas 3-9 the random variable £ satisfies condition (8).

LEMMA 3. The following inequality holds:

V 27 (25 + 531
¥, < —"A(z%mgﬁ' (513

Proof of Lemma 3. Repeating the arguments in [11], we obtain

A () () < (52"

for [t] = cyA. Hence (51) follows immediately.

LEMMA 4. Let £ have lattice distribution with maximal step d > 0. Then

b mxl’l_——g)’
1 (

2V (@st5)0 ¢} | 4e,Di H)e (52)

I Y Y= )

Proof of Lemma 4. It is easily seen that

_t\_3 < it - s LI p (4 2mrc(h) -%(t+ﬂ:‘"~))'<
4 (Sw) g’(am))l AR € +Z; 57 | B (1 2250 )\

e

ot 5 S o) )

Azl j=0

2mAa (h))'
Since |t| = 7o (h)/dand A = 1, £2, ..., there exists a polynomial Dgtd, H) such that
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o

4 ey
I t — V| eltfstie ? Ds(d, Hye °
£ (Fﬂ)‘gs(c(m)ls AT T

. (53)
1~ exp {__; (EE_%_I;&) }
Hence follows the statement of Lemma 4.
LEMMA 5. If £ has bounded density, then
Y,<oVT+p [ iford.

(54)
14

L<ell+p | fule) 21 (55)
o »Ele_g-; <esg
The proof is obvious.
LEMMA 6. If condition (S) is satisfied, then
_dar
Y, <D, (Hie (56)

and

me i lop VP
] drs Tz Did. Hexp { - i (”"“'a : ) }
J:<2D;(H)e = 4 — —— e T S

U\ _ (57
d <I~exp { “; (\’F‘Gi_/d"[:p_> }>

Proof of Lemma 6. We have

19
o I L=
‘gs (‘cr(lt')k} '€ S N Dyt , Hye * (58)
joet

[see (37)]. Consequently, there exists a polynomial Dg (H) such that

3 A%
Y, <D, (Hye (59)
We showed that
Ds(d, H)ex { L (ﬁclv’_—EY}
(14 Zo® | (@ H)exp g —g d
| 2 & (e 775 < i w1l (60)
A0 1 —exp { -3 ( Ld }
[see (53)]. Inequality (57) follows from (58) and (60).
From (49) and the estimates of the integrals ¥,, ¥,, and ¥4 we have the following lemma.
LEMMA 7. If £ has bounded density, then
S G AT ) .. _gar - i
3 2 ]/2n(2s—5)£!£§1 s b / : ) 2 61
Pes (A’ f)ée [47“1/1__; ( A tDs(H)e +ol/l+e [A f"("”t] (61)
TS
for 4eMt,. or 4eh..
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From (50) and the estimates of the integrals Jy, J,, and J; we have the following lemma,

Let £ have lattice distribution with maximal step d > 0, Then

LEMMA 8.
x* _ _ a—¢ A_ ncvl—p A
(4 E)ge“—f _dexp{ 2h (c a+d)[ 7 ]} 2V % (25 +5)1 3 .\ 4c; ADE(d, H)exp{ i < 5 )} 9D (ﬁ) ___,_Q.A\
e N In{l—e" ) o T/t; Az (s+1) — | (7:6 Vize )a H s € +
exp ) —5 (—F—
drc |/ T+p DI, H)ex { 1'312 P)z} o . 7
+aVive | LAOP dt) (62)

-
“ }> HJ>—'L_A_:‘
oV 1-p

Lo a
d(l—exp{ T V

l\’)}

for Ae®, or AeR_.
We shall now formulate the basic results.
LEMMA 9. Let the random variable £ satisfy condition (S) and have bounded density. Then

0 x 5
i N —- —
Fp{d}—e® (A)% ZoZiT f cy(yﬁm)d, (1—&15 x)dy‘s
= 4
f‘:—?(f; “?‘{_{,’f D ( (1—3) v.L H V1+
ASHL 2s ’ p)
L+ (1-9) 12-(24+a)” -ay ——- L
e (RIS p e T aoVi¥e [ srd)]
it>~4—é-‘

for AeR, or AsR_.
LEMMA 10. Let the random variable £ satisfy condition (S) and take values ¢ + dv, ¥ = 0, %1, &2

with maximal step of distribution d > 0. Then

Fatarees B A3 LS (ertomy g erton ) g
j=0 cidved
( )*ﬁ ) o dcxp{—2h (c a+d[a C] } 2V n 5)1 oF
As+1 D, <1+% (1_8)’ v, L, H, V1+P) * 27c(l—e'all)o'1/1_~:: ) Zz(?::l;))”ca +

—

RN 2
(401A+_4’_m_1£ﬁ_9_) D3 (d, H)exp {_ (f.‘il__P) }
+

e Y

_ax 2
+D,(H) e © +aV1%e [ 'f,,(z),zdt) }

£ A

sV T—p

< ['<1
S IS

for AeN, or AeR.. Herex = (@ —m)/0, where a=inf{y:yeA} for AeR, and a=sup{y yed} for AeM_;

h is the solution of Eq. (2).
The statements of Lemmas 9 and 10 follow from (19) and (22) and Lemmas 1, 7, and 8
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REDUCED STOCHASTIC EQUATIONS OF THE
NONLINEAR FILTRATION OF RANDOM PROCESSES

B. Grigelionis UDC 519.21

The general stochastic equations of nonlinear filtration of random processes, which describe the evolu-
tion of a posteriori distributions of the nonobservable component of the process, are essentially nonlinear.
This circumstance makes investigation of questions of the existence and uniqueness of the solution of such
equations and calculational procedures difficult. However, if stochastic equations describing the evolution of a
posteriori distributions multiplied by a definite positive functional of an observable process dependent on the a
posteriori distribution under consideration are examined, then they turn out to be linear. By using these re-
duced equations, important properties of the solutions of the initial equations of nonlinear filtration are success-
fully investigated. This method was used in [1-6] in a number of particular cases.

The purpose of the present paper is to derive general reduced stochastic equations of nonlinear filtration
when the observable component is a random process with values in the half~space of an m-dimensional Euclid-
ean space with boundary conditions. We obtain such equations in a particular case for observable locally in-
finitely divisible random processes. Reduced stochastic equations of nonlinear filtration are derived analogous~
ly for observable processes with values in g finite interval (compare [7-9]).

1. REDUCED STOCHASTIC EQUATION OF NONLINEAR FILTRATION

OF RANDOM PROCESSES WITH OBSERVABLE COMPONENT IN Rin

Henceforth, we shall use the notation and results from [8].

Let an observable random process X = { Xy, t = 0} with values in R}" have the local characteristics (a, A,
6, v, B, B, ) relative to the family of 0 -algebras {#,, 120} and the measure P, i.e., have the following struc-
ture:

1 4
Xi=X{+ [ 36(X) ay(s)ds+ fva)de:M [ xp (s, dx),
5 ¢ 0 G
H

vi

i
Xi=X{+ [ xo(X) a,(hds+ [ Bils) do,+ Mi+ Ni+
14 [

+f | ,((,\ x; q (ds, dx)+f f(l——x(V))xp(ds. dx), 1=2,...m,
I RHTA Q Rﬁ
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