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EMBEDDINGS OF FINITE CHEVALLEY GROUPS AND PERIODIC LINEAR GROUPS 

A. V. Borovik UDC 512.542+512.74 

In 1965 V. P. Platonov formulated the classification problem for simple infinite periodic 
linear groups [I, problem 1.75]. The present paper is the first of two papers devoted to the 
solution of this problem for the case when the characteristic of the base field is p > 2. 
Assume that G is a simple periodic linear group. O.Kegel [2] showed thatG is the union of an 
increasing series of finite simple groups: 

t = Go < G ~ < . . , <  G~ < . . .  

The main result of this paper is the following theorem. 

THEOREM. Let G be an infinite simple periodic linear group over a field of character- 
istic p > 2. If in the notation introduced above all the groups Gi, i = I, 2,... are known 
simple groups, then G is isomorphic to a Chevalley group or a twisted analog of a Chevalley 
group over some locally finite field of characteristic p. 

Here the term "known simple groups" means any finite Cheva!ley group or twisted analog 
thereof, any alternating group, or any finite number of finite simple groups. A locally fi- 
nite field is an algebraic extension of a finite field. 

The proof is based on the construction of a BN-pair in the group G and on the study of 
embeddings of G into the automorphism group of the Tits building associated with the BN-pair 
[3, 4]. In the case where the BN-pair of G has rank 42 the identification of G with a suit- 
able Chevalley group is achieved by some more detailed study of embeddings of finite Chevalley 
groups (cf. Lemmas 3-6 below). 

We use standard notation and terminology which may be found in [3, 5-7]. The term 
"Chevalley group" refers to simple Chevalley groups and their twisted analogs. 

We will now prove the theorem. Since the ranks of all Sylow r-subgroups of G for all 
primes r z p are bounded, the sequence {G i} contains no more than a finite number of alter- 
nating groups; if we eliminate them and all sporadic simple groups from {G i} we can say that 
all the groups G i are Chevalley groups. Moreover, we may assume that all the groups G i be- 
long to the same series of Chevalley groups [5] (e.g. 

G i ~ PSLn  i (kO, 

where generally speaking both n i and k i depend on i = I, 2,...). Since the ranks of the 
Sylow r-subgroups for r z p are bounded, the Lie ranks of the groups in {G i} are bounded, 
and therefore we may assume that they are all identical. If the sequence {G i} contains only 
a finite number of groups defined over fields of characteristic p then the ranks of all Sylow 
subgroups of groups from {Gi} are finite and bounded. By Theorem 4.1 in [8] all Sylow sub- 
groups of G satisfy the min, imum condition. It follows from [9] that the group G is almost 
locally solvable -- a contradiction. Consequently, {Gi} contains infinitely many groups 
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defined over fields of characteristic p; eliminating the remaining ones and changing the num- 
bering we have the following 

LEMMA I. Under the hypotheses of the theorem we may assume, without loss of generality, 
that all the G ibelong to the same one of the 14 series of Chevalleygroupsover finite fields of 
characteristic p and are all of the same Lie rank. 

After these preliminary remarks we begin the proof of the theorem by induction on the 
rank of the groups Gi, i = I, 2, .... We start by considering the case when the G i are of 
rank 42. To identify the group G = limG i with a suitable Chevalley group over a locally 

§ 

finite field we will use the following lemma. 

LEMMA 2. Let 

and 

id _ id  
I i-~a H1 - - , / / ~  --~ . . .  

id l id-~ G i  ~ G2 .-~ . . . 

be two directed systems whose index sets are the natural numbers, satisfying the following 

conditions: 

(I) every automorphism of the group Hi, i = I, 2,... can be extended to an automorphism 

of Hi+i; 

(2) there exist surjective isomorphisms ~: Hi ~ Gi, such that ~i(H~_~) = G~_~, i ~ 2 Then 

limH i = limG i. 
§ 

Proof. We need only construct a family of surjective isomorphisms 

r  i = i ,  2 . . . . .  

with ~lHi_l----~i-i for i >~ 2. We will construct them inductively, putting 

~i = 9~ hi, ~2 = 9~. 

Assume that ~bi,... ,@i-i are already constructed. Extend the automorphism ~i-lo~-i of 

Hi- l to an automorphism 0 i of H i and put ~i----gi ~ Then it is clear that 

The lemma is established. 

Lemma 2 will be applied as follows. The Chevalley groups of rank 42 over fields of odd 
characteristic belong to one of the types PSL2, PSL3, PSU3, PSU~, PSUs, PSp4, G2, 3D4, 2G2. 
We will say that a group of a given type X has no sporadic embeddings in characteristic p if 

whenever kl and k2 are finite fields of characteristic p the existence of an embedding 

~: X ( k , )  --~ X(k~) 

implies kl can be embedded into k2 and ~(X(k~)) is conjugate to the natural embedding of the 
subgroup X(kl) into X(k2) by applying an element of the extension of X(k2) by the group of 
diagonal automorphisms. It appears that Chevalley groups of any type do not possess sporadic 
embeddings in any characteristic; however, for the purposes of this paper we verified this 
only for the case of the groups in odd characteristic enumerated above. 

LEMMA 3. Assume that the conditions of Lemma I hold, and assume further that the groups 
G i ~ X(ki), i = I, 2,... do not possess sporadic embeddings; then G ~ X(k), where k = limk i.§ 

Proof. Consider two directed systems 

t ~ X(k~)  ~ X(k2)  ~ . . .  

where all embeddings are canonical, and 

lid _ id 
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By hypothesis there exist isomorphisms ~i:X(ki) + G i mapping X(ki_l) into Gi_~o We note 
also that it follows from the description of the automorphisms of the Chevalley groups (cf. 
[10]) that every automorphism of X(ki_ l) can be extended to an automorphism of X(ki). There- 
fore we find in view of Lemma 2: 

--9 ---> 

The lemma is established. 

LEMMA 4. The groups of types PSL n, n ~> 2, PSUn, n ~> 3, PSPn, n >~ 4 do not have any 
sporadic embeddings in characteristic p > 2. 

Proof. For groups of type PSL2 this follows from Dickson's theorem about the subgroups 
of PSL2(q) [11, II.8.27]. Now assume that n _> 3, GI ~ PSLn(kl)~ PSUn(kl)~ or PSPn(kl) , and 
G2 -~ PSLn(k2), PSUn(k2), or PSPn(k2), respectively; let ~: G~-+G2 be an embedding and put 
H = ~p(G~). We will assume that the group G2 is uniquely embedded in PGLn(k2). In G i take an 
involution t i which is the image of an involution of GLn(k i) with eigenvalues (--I, --I, I .... 
I). 

Put C i = CGi(ti), i = I, 2. C i contains a normal subgroup K i* L i where /Q~SL2(2ki) in 
the case G i ~- PSUn(ki) (here 2k i is the fixed field of an involutive automorphism of the field 
ki) , and K i ~- SL2(ki) otherwise, and put L i = I if G-~ PSU3(k i) or PSL~(ki) and L~--~SL~_2(ki) , 
$U~_2(k~), Sp~-2(k~) in the remaining cases. 

Considering the structure of centalizers of involutions on G2 it is easy to see that q~(t~) 
is conjugate in G2 to t2. We may assume that q~(t~)----t2. It is also easy to verify that q0(L~) 
L~, ~(K~)~K~. It follows from the description of the subgroups of Gz [11, II.8.27] that kl 
can be embedded into k2. The unipotent elements of K2 are images of transvections, there- 
fore (P(GI) is generated by the projective images of transvections of GLn(kz). From the de- 
scription of groups generated by transvections [12] it follows now that the inverse image 
H of H in GLn(k2) is conjugate in GLn(k2) to the subgroup of G2 = SLn(k2), SUn(k2)~ SPn(k2), 
consisting of the matrices with coefficients from kl. This concludes the proof of the lem1~m 
in the case G2 -~ PSLn(k2). 

Now assume G2 ~- PSUn(k2) or PSPn(k2). Then G2 = SUn(k2) or SPn(k2) consists of all ma- 
trices over k2 leaving invariant anondegenerate skew-symmetric orHermitian form f~ Therefore 
GLn(k~) contains an element g such that Hg = SUn(kl) or Spn(kl) preserves f. Hence~ the sub- 

group H preserves the form fg-1. On the other hand, H ~< G2 preserves f. Since H is conjugate 
in GLn(k2) to SUn(kl) or SPn(kl) it is absolutely irreducible, and the form preserved by H is 

unique up to a scalar factor. Therefore fg-I = If, where %~k2 , i.e., g~GU~(k2) or GSPn 
(k2) --the groups of the standard forms f. 

LEMMA 5. The groups of type G2, 3D~ do not have any sporadic embeddings in character- 
istic p > 2. 

Proof. Put Hz -~ G2(kl) or 3D~(kl) and H2 -~ G2(k2) or 3D~(k2), respectively, where kl 
and k~ are finite fields of characteristic p > 2, and let ~p:f/~-+}/~ be an embedding. 

In the groups Hi, i = I, 2 there is at most one class of conjugate involutions. If t i 
is an involution of H i then Ci = CHi(t i) contains two normal subgroups L i and M i such that 
L i ~- SL2(ki) in the case H i -~ G2(ki) and L i -~ SL2(~ki) in the case Hi ~ SD~(k i) (here 3k i is 
the fixed field of an automorphism of order 3 of the field k i) and M i ~- SLa(ki) in the other 
cases. The group LiM i has index 2 in C i and 

<t~> = Z(L~) = Z(M~) = Z(C~). 

As in the previous lenm~a we may assume that ~(t~)= t~----t, ~(L~)~ L~ , (p(M~)~< M~ It follows 
from Dickson's theorem about subgroups of the group PSL2(k2) [l], II.8.27] that the field 
kz can be embedded into k2. Therefore, there exists a Steinberg endomorphism o of the simply 
connected Chevalley group ~ of type G2 or D~ over the algebraic closure K of the field k2, 
such that /f;=~,ff= =~am for a suitable natural number m [13]. 

Assume that p:~-+GL(V) is a nontrivial rational representation over K of smallest 
dimension~ It follows from Theorem 13.1 of [13] that the restriction of ~ to H2 and @q0 
are irreducible representations. According to the same theorem, the representation p~ of 
H~ can be lifted to an irreducible rational representation X of ~ . We put ~=%(~), ~=@(~), 
and identify HI and H2 with their images in ~ and @~. 
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Now we can prove the lemma for the case that ~t ~ is an infinite group. By Theorem 1 

of  [14]  eve ry  f i n i t e  subgroup X of  ~ " = ~ / Z ( ~ )  c o n t a i n i n g  ~o i s  o f  the fo rm 

(here and later yu denotes the subgroup generated in Y by all unipotent elements). There- 
fore, one finds without difficulty that if ~n~ is an infinite group then it contains the 
group of K-rational points of the group $~ for some infinite subfield k of K and therefore 
is dense in ~ . But ~ and $~ are closed in the Zariski topology, hence ~ and com- 
parison of dimensions shows that ~=~ . Since ~ is simply connected there exists an auto- 
morphism ~ of ~ such that p = Xa. Since H~ ~ He we find 

Again by Theorem 1 of [14] 

( .mF 

Since the Schur multiplier of H2 is trivial [10] we may apply the homomorphism p to H2 and 
find that the subgroup (~o)~ G~(~) or 3D~(k~) which has a natural embedding into H2 ~ G2(k2) 
or 3D~(k2) is conjugate to H~ through the automorphism Xp -1 of H2. The lemma is now a 
consequence of the description of the automorphisms of the groups G2(k2) and 3D~(k2) [10]o 

We will reduce the proof of the lemma to the case already considered. If the group 
is of type Gz then ~ has a nontrivial rational representation obtained by reduction modulo 
p of the seven-dimensional representation of the complex Lie algebra of type G2 [15]. If 
is of type D~, then ~ has a natural eight-dimensional representation ~s(K). Correspond- 
ingly to the two ~ , dim V ~ 7 or 8. Let V- and V + be the subspaces of V consisting of 
the eigenvectors of the involution t belonging to the eigenvalues --I and I, respectively. 
Since t~Mz and t~L~ the groups M2, L2 act faithfully on V-, hence dimV- ~ 4. Further- 
more, dimV ~ 8 and det t = I, hence dimV- = 4 or 6. If dimV- = 6 then dimV + ~ 2, and it is 
easy to see that L~M2 centralizes V +. But then the multiplicity of the eigenvalue --I for an 
involution from L2M2 -- <t> equals 2, contradicting the fact that all involutions in H2 are 
conjugate. Therefore dimV- = 4, and the same reasoning shows that M2L2 does not centralize 
V +. Every nonidentity normal subgroup of M2L2 equals <t>, L2 or Me. One verifies readily 
that one of the groups M2, L2 (we shall denote it by X2) centralizes V + and the other (de- 
noted by Y2) has a nontrivial action on V +. Put X~=X~C~, Y~=Y~C~. 

We put 

~, = c~1 (t), ~2 = c~ 2 (t). 

It is clear that ~ and ~2 normalize V- and V +. Put 

(B- ---- No~(v>(V-) n C~:~(v)(V+). 

Denote by ~ and ~z the images of ~i and (~z under the natural embedding into ~-. It 
follows from the description of centralizers of involutions in the groups G2(K) [16] and ~8(K) 

[17] that 

~ * ~, ~-- SLy(K) * SLy(K) 

has finite index in ~ The group X i is contained in one of ~, 3~ �9 We shall assume that 

X ~ ,  i = I, 2, thus ~Fi~J-N~i. 

Let Z i be the image of Yi in ~-; then Z~<~ . It follows from the description of the 

irreducible representations of SL2(K) [i0, Sec. 12] that the representation of ~ onV-is equiv- 
alent to the tensor product of two-dimensional representations of the groups ~ and 3~ , i = 
I, 2, which implies, in particular, that the groups ~i~ and ~3z are conjugate in G-~ 

GL (V-). Put 

(E,3,) g -- ,~.3~-, g ~ |  

The group ~ -  contains an element which interchanges the subgroups ~= and ~ under conju- 

gation; hence, we may assume that ~--~2, ~f----~2. It follows from the description of finite 
subgroups of SL2(K) [11, Theorem II.8.27] that every subgroup of ~2 which is isomorphic 
to X~Z~ is conjugate in ~ to E~. therefore E~ h = E~ for some h ~ . ~ ' ~ .  Moreover, again 
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by Theorem 11.8.27 of Ill] 
N~,181 (E~)/Z (El) ~--- PGL2 (k~) x PGL~ (k~) 

or PGL2(kz) x PGL(3kl); hence N@_(EI) 0N~-(yI3~) induces the full automorphism group of Lhe 

group Elo Consequently 

N@_ (Ea) < C@_(E~). N~_ (~131). 

But El acts irreducibly on V-, hence by Schur's lemma 

C@_(E1) = Z(~-)  

and 

gh ~ N@_ (E~) ~ N@_ (~3~). 

On the other hand 

(X~3~) ~ = :~3~,  

and therefore ~i~=~=~z , and ~i=~2 is an infinite subgroup of ~N~2. Now the !em~a is 

established. 

LEPTA 6. Subgroups of type eG2 do not possess sporadic embeddings. 

Proof. Let 

H ~ G, H ~ ~G~(k~), G ~ ~G~(k~), 

and assume that t is an involution from H. Then it is known that 

C~(t) ~ <t> X PSL2(k~), C~(t) ~ <t> X PSL2(kz). 

It follows from the description of the subgroups of PSL2(k2) that k2 is a subfield of k2~ 
Assume that F ~ 2G2(kl) is the subgroup of kl-points of G = 2G2(ke). We will show that F and 
H are conjugate in G. Since H and G have at most one class of involutions, we may assume 
that t~F . Moreover, CG(t) contains only one class of subgroups isomorphic to PSL2(kz) [11, 
Theorem II.8.27]; therefore we may replace H by some subgroup of G conjugate to it and then 
assume that CF(t) = CH(t). Let T be a Sylow 2-subgroup of CF(t). It is known that NG(T) , 
NH(T) , and NF(T) are extensions of T ~ Z2 x Ze x Z2 by the Frobenius group of order 21; there- 
fore 

N . ( T )  = N A T )  <. 1t n F, 

hence HnF>C~( t ) .  

By Lemma 12.2 in [18] CF(t) is a maximal subgroup of F; therefore HnF=F and H = F. 
The lemma is now established. 

The proof of the theorem is therefore complete for the case when the groups G i have 
rank ~<2. We will now deal with the case where the rank of G i is >/3. 

We choose in every group G i a Sylow p-subgroup U i such that U i ~< Uj for i ~< j, i, j = 
I, 2, .... 

LEMMA 7. There exists a natural number i0 such that for every p-subgroup Q >/ Ui0 of G 
the group NG(Q) is p-closed. (Recall that a group is called p-closed if it contains a nor- 
mal Sylow p-subgroup.) 

Proof. Assume that V is a vector space over GF(p) on which the group G acts faithfully. 
We define inductively for every p-subgroup Q of G 

v$)  = (q) 

and V~j+~) as the inverse image in V of the space 
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Put 

Clearly, 

where n = dim V. 

Put 

S t a b Q =  ~ NG(VQ)). 
J=O 

StabQ---- ~ NG(VQ)), 

oo 

U = U  U~, 
i=o 

t h e n  U i s  a Sy lov  p - s u b g r o u p  of  G. S in ce  the  space  V i s  f i n i t e - d i m e n s i o n a l  we f i n d  

Ui U V(~) -~ V(j) 

for all j >i 0 and all i larger than some i0. It follows that 

No(U~) ~ Stab U 

f o r  i ~> i 0 .  Note t h a t  U i s  a Sy lov  p - s u b g r o u p  in  S t a b U .  The subgroup  of  S tabU g e n e r a t e d  by 
all p-elements centralizes every factor of the series 

IvYl 

and is therefore nilpotent. Consequently, StabU is a p-closed group, StabU = NG(U). 

Now assume that the p-subgroup Q of G contains Ui0. We construct inductively 

Q1 = NQ (U%), Qj+I = NQ (Qj). 

Since Q is a nilpotent group, the series (Qj} reaches Q in a finite number of steps. Clearly, 

Qt ~< Stab U~o, 

and according to the previous paragraph, QI ~< U, and Stab QI = Stab U. Moreover, 

Qj+~ ~< Stab Qj ~< Stab U, 

Therefore 

and 

Stab Qj+i = Stab U 

Stab Q = S t a b U .  

Consequently NG(Q) ~< StabU is a p-closed group. The lemma is established. 

LEMMA 8. The group G contains a BN-pair whose Weyl group is isomorphic to the Weyl 

group of the groups Gi, i = I, 2,.... 

Proof. We choose i0 as in the previous lemma and change the sequence {G i} so that i0 = 
I. The theorem of Borel--Tits about parabolic subgroups [19] in Gi+ I implies that there exists 
a parabolic subgroup Pi+l containing NGi+I(U i) where Ui ~< Ru(Pi). Inviewof the previous lemma 
Pi+1 is p-closed and therefore is a Borel subgroup of Gi+ I. Therefore we may assume without 
loss of generality that the U i are unipotent radicals of Borel subgroups B i = UiH i of the 
groups G i (where the H i are tori) such that Ui ~< Uj and H i ~< Hj for i <~ j. Put 

U= U U~, H= H~, B = UH. 
i = l  i : l  

It follows from the classification of tori in finite groups of Lie type [20, Chap. II, 

Sec. I] that H i is a maximal torus in G i and 

NG (Hi) = H. NG 1 (H1), 
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and, in particular, the Weyl group 

covers all Weyl groups 

W = Nal (HO/II~ 

NGI ( H 0 ,  ~ = l ,  2 . . . . .  

Put N i = NGi(Hi). Then (Bi, N i) is a BN-pair in the group G i. This means that the follow- 
ing axioms hold [4, 3.2.1]: 

(0) B i and N i generate Gi; 

(1) B, n N , = H , ~ N , ;  

(2) the group W i = Ni/H i can be generated by a set R i of involutions such that for all 
r~R~ and w~W~ we have 

and 
rBw = BwB U BrwB 

rBr # B. 

(We recall that the sets of the form rBw are correctly defined as ~Bw where 7~r, ~ w  are 
representatives of the cosetsofH i and Ni, and are independent of the choice of representa- 
t ives. ) 

We may therefore assume that all R i lie in WI. The group Wz is finite, therefore in- 
finitely many of the sets Ri are identical. Eliminating unnecessary terms from the sequence 
{G i} we see that all R i = Rz, i = I, 2, .... It is now clear that for the groups B, N = NG(H) 
and the set R~cN/H axioms (0), (I) and the first part of (2) are satisfied. Moreover, 
rBzr = B for r~R, therefore <rBzr, BI> is not p-closed. Hence <rBr, B> is not p-closed 
and rBr ~ B. We have thus constructed a BN-pair in the group G with finite Weyl group W. 
The lemma is established. 

We can now complete the proof of the theorem by induction on the rank n of the BN-pair 
of G. ale case n ~ 2 has been dealt with in Lemmas 3-6, therefore we will assume that n ~ 3. 
We will apply the classification theorems from [4] to identify the group G with the group of 
k-rational points of a simple algebraic k-group for a suitable locally finite field k. For 
the remainder of the proof references like 3.2.6 refer to point 3.2.6 in [4]. The terminol- 
ogy of [4] is adapted to the one of [3]. 

Let A be the building corresponding to the BN-pair (B, N) of the group G (3.2.6), C a 
chamber in A. The Weyl group of the building 5 is isomorphic to the finite group W=N/BNN 
(3.11), therefore the diagram diagrA of the building A (3.8) is one of the Coxeter diagrams 
An, Cn, n ) 3, Dn, n ) 4, E6, E7, Es, F~ (2.14). 

We label the vertices of diagrA by numbers from I = {i .... , n} such that two outer 
vertices connected by an edge of multiplicity i have labels i and 2, for example: 

C: O--<>--'..---O==O 
f 2 n-I n 

Diagram I 

Let X be a cell of C of type I -- {I, 2}. Then the star StX (1.1) is isomorphic to a flag 
complex in the projective plane (3.12; 6.3). 

On the other hand, let P be the stabilizer in G of the cell X under the natural action 
of G on A; then P is inductive limit of the parabolic subgroups PN Gi of Gi, and the Levi 
factor L = P/~j(P) is inductive limit of the Levi factors 

L~=PJR=(p~), i =  t, 2 . . . . .  

Denote by the generated in �9 U L l group L i by the unipotent elements, then all L i are of 
type A2 (3.12) and by Lemmas 4 and 5 L u is a group of type A2 over some locally finite field 
k. 

As in 5.2 one verifies that StX is canonically isomorphic to the building of the group 
L. Therefore StX is a flag complex in the projective plane over the field k. If diagrA is 
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of type C n this guarantees that the projective plane of the polar space associated with A 
(7.4, 7.9) is desarguesian. If diagrA is of type F~ the same considerations enable us to 

exclude cases (iii) and (iv) of Theorem 10.2 which enumerates the possibilities for the 

structure of A. 

Now we can use Theorems 6.6, 6.13, 8.32, 10.2, 10.4 to verify that the group of special 
automorphisms of the building A is isomorphic to an extension of the group <~ of k-automor- 
phisms of some absolutely simple k'-group (k' is some finite extension of the field k) by the 
automorphism group of k'. Since G is a simple group and the group of automorphisms of a 
locally finite field is Abelian, G can be embedded into 6. 

If we now show that G--~ ~ , the theorem follows from the classification of semisimple 
algebraic groups [21]. In ff~ we choose a BN-pair ~,~ such that B~<~,N<~OI (which is pos- 

sible by 3.11). 

If ~ is a parabolic subgroup of ~ , then ~ is the stabilizer of some X~A and P = 
NG is a parabolic subgroup of G. As pointed out already, the buildings of the Levy fac- 

tors L(P) and L(~) of the groups P and ~ are isomorphic to the building of StX. The group 
L(P) u is the inductive limit of the groups L(Pn G~) ~ , i = I, 2,... which are of smaller rank 
than G; therefore, by the inductive hypothesis, L(P) u is product of normal subgroups each of 
which is isomorphic to some Chevalley group (possibly with center different from the iden- 
tity) over a suitable locally finite field. By 5.8 L(P) ~-L(~) ~ and P=Gn~ covers the 

factor group 

L(~) ~ = !~ / / i~(~) .  

Since this holds for every parabolic subgroup of ~ and ~ one obtains readily that G-----~ ~. 

Indeed, let ~+ be a system of positive roots related to ~, ~ , and if= be the root sub- 
group corresponding to the root ~qb + . Put ~----<~,U_u> and ~=----<iI=,11_~> (cf. [22, 5.12, 
4.2]). The group ~ is generated by all its subgroups of the form ~n~ for ~(D + . Since 

the image of Nn~U in 

u R u = r 

covers the image of ~N~ in g(~=)~, it follows that N=~ and H is a maximal torus in ~. 
Let H a = ker~; then ~=~C@(H=) is a reductive group, and in particular 

Put P= = G n ~=. Then 

Cp=/R~(p~) (H~) 
covers 

%j R~(~) (~). 

On the other hand, H a and Ru(P ~) are locally finite groups in which the periods of elements 

are relatively prime; therefore it is easy to see that Cp~(H~) covers 

Cp~/R~(p~) (H~). 

Consequently Cp (H~) covers 

But 

therefore 

3=R.(~3~,)/R.(~r 

Cp a (He,) = H~3~ 

and ~=~G. Since ~ is generated by all subgroups ~= for ~ §  , we have G=~=. 

concludes the proof of the theorem. 

This 
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