
coefficient can be bounded above by a constant, independent of the map ~. Let V be a ball 
in M with respect to the Kobayashi metric, such that the closure of V in M is compact (the 
existence of such a ball follows from the condition that M is hyperbolic), U be a ball of the 
same radius in A with respect to the hyperbolic metric. Since a holomorphic map from A to M 
does not increase the distance with respect to these metrics [7, p. 311], the inequality 
[]/oNrJ~llfl] v is valid (the norms are defined as in Corollary i). It follows from the explicit 
expressions for the Bloch seminorm (i) and the element of length ((i - [zIg)Idz[) that the 
Lipschitz coefficient coincides with the Bloch seminorm b. Using Banach's open mapping theo- 
rem, it is easy to prove that the norms I['II U and b on the space of Bloch functions on A, 
equal to zero at zero, are equivalent, from which we get the assertion formulated above. 
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2. 
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4. 
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6. 
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ON POTENTIALS OF MEASURES IN BANACH SPACES 

E. A. Gorin and A. L. Xoldobskii UDC 517.98:519.53 

Let (X, I'I) be a real or complex Banach space, K a continuous function on the semiaxis 
t ~ 0, and ~ a charge on X (here and below, charges and measures are assumed to be regular, 
Borel, and of bounded variation). Under the assumption of absolute convergence, we consider 

the potentials 

u ~ , ~ ( x ) = ~ K ( ~ l x - - ~ l ) d ~ ( ~ ) , i :  x ~ X ~  ~ R , :  ~ 0 .  
X 

The p rob lem c o n s i s t s  in  t h e  e l u c i d a t i o n  o f  t h e  c o n n e c t i o n s  be tween  X and K u n d e r  which 
t h e  c h a r g e s  a r e  u n i q u e l y  d e t e r m i n e d  by t h e i r  p o t e n t i a l s ;  i . e . ,  f rom t h e  e q u a l i t i e s  u ~ , ~ ( x )  = 

0 f o r  a l l  x ~ X  and ~ ~ 0 t h e r e  f o l l o w s  t h a t  D = 0 (weak u n i q u e n e s s ) .  We a r e  i n t e r e s t e d  
also in the conditions under which one value ~ = I is sufficient for the unique determination 
of the charge (strong uniqueness). When K(t)=#, %~R, the weak and the strong uniquenesses 
coincide; the values of I and the functions K, for which uniqueness fails, are said to be 
exceptional. We note that for X=R ~ and -n < % < 0 the problem reduces to the classical 
uniqueness problem for Riesz potentials (see, for example, [I]). 

The reason of the recent strengthened interest in the considered uniqueness problem 
has been initially the relationship between this question and the problem of the description 
of the isometric operators on the subspaces of LP, observed for the first time in 1970 by 
Plotkin [2, 3], who has proved that in the one-dimensional case (both real and complex) 
uniqueness takes place for all X > 0, with the exception of even numbers. 

Subsequently (starting with [4]), in some investigations [5-8], by various methods one 
has also studied applications to the description of LP-isometries, known earlier from [9, i0]. 

The generalizations of the one-dimensional uniqueness theorems which have appeared later 
have been connected with the attempts of describing the isometrics in Orlicz spaces (see 
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[ii, 12], where in the one-dimensional case one has proved strong and weak uniqueness for 
certain classes of kernels K, containing power functions), and also in vector-valued L p- 
spaces. It has been established in [13, 14] that for X=R ~ and for an infinite-dimensi0nal 
Hilbert space X only the even values of ~ are exceptional (in 1985, a new proof for an in- 
finite-dimensional Hilbert space has been communicated to the author by W. Linde). In [15] 
it has been proved that uniqueness holds for all noninteger ~ > 0 in the case of real spaces 
C(Q) of continuous functions on a metric compactum Q. 

In this paper we obtain uniqueness theorems that strengthen the mentioned results. We 
show that for a finite-dimensional s space (X = ~, i~p< ~), those values of the exponent 

are exceptional for which %/p~N and, in addition, One of the following three conditions 
holds: %/p < n, p is even, p and %/p - n are odd numbers. For complex spaces ~ the excep- 
tional values of % are even, while in the real case they are those for which ~ + n is odd. 
We prove a theorem on the weak uniqueness for measures on a line, showing that for X=R, 
among the functions K(t) with power!ike growth order at infinity, whose Fourier transforms 
are locally summable outside zero, only the polynomials with even powers of t are exceptional. 
In the case when X is the p-sum of an infinite number of smooth Banach spaces (in particular, 
for infinite-dimensional L p spaces), the exceptional values of I are the multiples of p (i.e., 
~/p~ N). One obtains strong uniqueness also for the kernels K which are linear combinations 
of power functions. Finally, if X = C(Q), where Q is an infinite metric compact~un without 
isolated points, weak convergence holds for a wide class of kernels K, including all the con- 
vex nonconstant functions. 

In the finite-dimensional case the proofs are based on the methods of the harmonic anal- 
ysis of distributions (i.e., generalized functions over S); moreover, the potential is con- 
sidered as a convolution of distributions, connected in the usual manner with the Fourier 
transform. A fundamental technical step is the description of the zeros of the Fourier trans- 
forms of distributions of a special form. 

In the infinite-dimensional case, the method based on the Fourier transforms of distri- 
butions cannot be applied~ So far one has not succeeded to develop a unique approach which 
would allow to reduce the problem to the solving of concrete technical questions. In the 
obtained solutions for infinite-dimensional spaces one has used in an essential manner special 
properties of the norms of these spaces. Thus, the short proof of the uniqueness theorem for 
infinite p-sums of Banach spaces has been possible due to a simple property of the norm, com- 
municated to the author by W. Linde in the Hilbert case (recently, W. Linde has communicated 
that he has also obtained the proof of the theorem for infinite-dimensional LP-spaces). Hope 
for the appearance of a unique approach is connected with the estimates of the potentials of 
measures in an arbitrary Banach space, obtained with the aid of an infinite-dimensional vari- 
ant of a lermna by Cartan on coverings (see [16-18]), given in the last section of the paper. 

The simplicity of the proof in the infinite-dimensional case, as well as the width of 
the class of kernels in the theorem for X = C(Q), can be explained, apparently, by the fact 
that the extent of the information on the measure (the values of the potentials are known at 
all the points of the space) exceeds significantly the ~'dimension ~' of the measure (in an in- 
finite-dimensional space the measure has a thin support). In connection with this the follow- 
ing question is of interest: is the measure uniquely determined by the values of the poten- 
tial at the points belonging to the support of the measure? 

The discussed uniqueness problem is directly related with problems of completeness of 
special systems of functions and also with the question of the unique determination of a ran- 
dom process by its deviations from the elements of a Banach space [15]. From Our uniqueness 
theorems one obtains directly the equimeasurability of functions and of their images under 
certain linear isometric mappings of subspaces of vector-valued LP-spaces (see [13, 14]). 

The fundamental results of this paper have been communicated in [19]o 

i. Some Preliminary Facts from the Harmonic Analysis of Distributions 

As usual, let S~ S(R ~) be the space of fast decreasing functions in R ~. By defini- 
tion, two distributions /~, /2 ~ S r coincide on an open set Q c R ~, if (/~-/~)]-(~i = 0, Where D(~) 
is the space of functions ~S with compact supports, contained in Q. A distribution has the 

type of a locally summable function g on ~ if </,~>= ]g~ dx for all ~D(Q). If /+S',~S, 

Rn 
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then the convolution /~T is defined in the usual manner and is a distribution of the type of 

the C~(R~)-functions; in addition (/~)A=7.~, where f is the Fourier transform [20]). 

Let R be a subset in S. The R-convolution of the distributions ~/~, /2~S' is defined to 
be the set (possibly empty) of all distributions f such that 

(1 ~" (qDl ~(~2)) (x) = , .I (/1 ~ qDl) (~) (/2 ~ 92) (0~ - -  ~) d~ ( I ) 
R n 

for all ~, 92~R and x ~ R  n. 

The defined convolution is connected in the usual manner with the Fourier transform. 

LEMMA i. Let ~ be an open set in R ~ and let fl, f2 be distributions whose Fourier trans- 
forms ~i coincide on E with the functions gi~La(Q), i = I, 2. Then the D(~)A-convolution of 
these distributions is nonempty and the Fourier transform of any element of the convolution 
coincides on ~ with glg2 [here R = D(~) A is the space of the Fourier transforms of the func- 
tions from D(~)]. 

AA 

Proof. We consider arbitrary ~i, 92~D(~) A. Then (fi*9oA=f~9~=g~L2(~), i = I, 2. 
By the Plancherel theorem [20] /i~i~L~(Rn), the integral in the right-hand side of (i) is 
absolutely convergent and represents a convolution of L 2 functions. Therefore the distribu- 

tion f belongs to the D(~) A- convolution of fl and f2 if and only if /~i~2 = ((/i ~ ~i) ~ (f2 ~' 92)) A= 

g~g~.~9~ for any 9~, 92 ~ D(~) A. The last equality is equivalent with the equality of f and 

glg2 on ~. 

LEMMA 2. Let ~ be a charge on R ~ and let f be Borel function on R ~, such that I/(x) l~< 

C ( d , . I x l ) ~  for all , x ~ R  ~, where 'C, p>O,"  ~l/(a--x)]dl~tl(i~)<ooand ,f/(a x) d ~ ( x )  ~ 0 f o r  a l l  

Rn  R n 

a ~ R  ~. I f  t h e  f u n c t i o n  ~ d o e s  n o t  h a v e  z e r o s  i n  an open  b a l l  B c R  ~ and //B~L~(B), t h e n  

(f, 9)=0 for each function9~D(B), i.e., f = 0 on B. 

Proof. We consider a 6-sequence {(0i}i~_-1, 0)I~D(R~),. such that [oi(x) I~1 for all x~R ~ and 

i~ N. Then lira $i (x) = i for all x ~ RL We set h~ = ($i]) ~ ~, then h~ = (~i/)A~, since ~i/~ L ~ (Rn). 
~-+oo 

By the theorem on the dominated convergence under the integral sign, we have tim <h~, ~> = 0 
for any ~ ~ S. Indeed, ~ 

( ~ o i f ) A ( t ) ~ ( t ) , ( t ) d t  = <h~, ,> = <h~, ~>= S S (~oi/)(a--=)~(a)~(x)~a, 
R n R n L n 

,_~= S S/(a--x)*(a)d~(x)da=O 
R n R n 

f o r  any r  F u r t h e r , ~ ( t ) ~ 0  f o r  a l l  t~B, a n d ,  t h e r e f o r e ,  t h e  s e t  o f  f u n c t i o n s  ~ ' ~ ,  ~ )~S ,  
is dense in the space C0(B) of all continuous complex functions with supports in B. For 
sufficiently large i and h~Co(B) we have 

J'(;~/)h(t)~(t)dt ~(t)(o~.h)(t)dt ~Uhtl!l](t)ldt. 

By t h e  B a n a c h - S t e i n h a u s  t h e o r e m ,  f o r  any  ~ ~D(B) lira ~ ( ~ j ) h  (t) 9(t) dt=O and t h u s  <~, ~> = lira <], 
i-~oo R n i-~oo 

'~025> = lira < ( g j ) A ,  9> ~- 0 f o r  9 ~ D (B), 
i-)oo 

The lemma regarding the connection of the convolution with the Fourier transform re- 
duces the uniqueness problem in the finite-dimensional case to the description of the zeros 
of the Fourier transform of the distribution K([x[ ). Indeed, Lemma 2 shows that strong 

uniqueness in the finite-dimensional case takes place if and only if K(Ix~) is not equal to 
zero on an open set. In order to describe the degeneracy cases of the Fourier transform of 
the function Ixl ~ on an open set we need some auxiliary statements. First we prove that the 
Fourier of the norm in s (and of a series of other functions) is a real analytic function 
outside the coordinate planes in RL 
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LEMMA 3. Suppose that f~C(R ~) and extends to an analytic function on the domain K s = 
{z~C~: I~mz~l <sIRez~l, i~n}, where e > 0, with the estimate If(z)! ~A(i+!zl) ~, A~ p>0. Then 
f is a real analytic function outside the coordinate planes. 

Proof. We consider the function /~(x)=f(x)e -~(~,~), h>0, ~L~(R~). Then 

" Rr~ 0 0 

where the summation is carried out over all collections 6 { ~}~=~, 8~ 4-~. 

We fix a number o, 0 < o < ~, and let ~=(~ .... , ~)~R ~, ~0 for k = I, .... n. For each 
choice of signs for 6, we consider the ray H6 in C~: /f~----{z~C~: Irn z~=o6isgn(~)Rez~, ~------i ..... n}. 
By virtue of the analyticity of the function f~(z)=f(z)e -~(~,~I in the cone Ke and the condition 
lim /h(z)=0, we can take in (2) integrals along the rays H6: 

= ,, . . .  / ~ ( x ~ + i o ' 8 ~ s g n ( ~ ) o q  . . . .  

6 o 0 

. . . .  Xn "~ iO~)n s g n  (~n) xn) ~-[ e ~ 8 1 ~  ~-~ e-8l~l~dxx . . .  dx~. ( 3 ) 
h=l h=l 

For h ~ 0 the last integrals converge absolutely and extend to analytic functions in the cone 
K~= {~ = ~+i~ ~ C~: i~l <~kl,~ k = 1 ..... n}. In addition, the functions fh converge for h § 0~ 
uniformly on compacta lying inside the octants in R ~, to the function defined by righthand 
side in (3) for h = 0 and thus, f coincides, outside the coordinate axes in R ~ , with a real 
analytic function. 

We assume that the function f satisfies the conditions of Lemma 3 and~ in addition, it 
is even with respect to each of the variables. Then either f does not vanish on any open set 
in R ~, or f = 0 inside all the octants in R~. , The following lemma characterizes the distribu- 
tions which are equal to zero outside the coordinate planes in R ~. 

LEMMA 4. Let g be a multiplier on S. If f is a distribution such that f = 0 on {x: 
g(x) ~ 0}, then gmf = 0 for some positive integer m. 

Proof. Let ~(t) be an infinitely differentiable function on [0) +~[ such that ~(t) = 0 
for t ~ l and ~(t) = 1 for t ~ 2. Let N be the order of the distribution f and let m > N. 
We set gk,m(X) = gm(x)~(kg2(x)). Then for any mu!tiindex ~, I~I~N, the functions D$(gk~ m) 
converge uniformly on compacta as k § ~ to the function D$(g m) and, consequently, the func- 
tions O~(g~.~) converge uniformly as k § ~ to D~(g~) for any ~ ~D(R ~). in addition, g~m~ f = 
0. Therefore, <gin/, ~> = </, g"W> = lira </, gh,~) = lira <gh.m/, ~) = 0 for any ~ ~ D (R~). 

We consider the multiplier g(~)=~.....~. If f = 0 outside the coordinate planes, then 

(~'o..'~)mf=0 for some positive integer m. If T=0~/~x~...ax~, then by virtue of the known 
relation between differentiation and Fourier transform of distributions, we have Tmf = 0 
everywhere in R =. 

Let f be a continuous positive function in some ball B(a, 8)={x~R~: Ix-a[ <~}. For each 
% eC the function fl is well defined in B(a, ~). 

LEM~ 5. If f extends to an analytic function on some domain Q c C ~ and if this domain 
contains a point z such that f(z) = 0 but 3f/Szk(z) ~ 0 for all k, then the equality Tmf ~ = 0 
in the ball B(a, e) is possible only for nonnegative integers % < mn. 

Proof. We assume that Tmf ~ = 0 in B(a, g). Then for any x ~ B(a , 8) we have 

mn--I 

where qk are polynomials in partial derivatives. Multiplying this equality by fmn-k, we ob- 
tain 

+ N + = o. ' ~  k = l  ' 

By virtue of the analyticity of the function f, the last equality is satisfied everywhere in 
and, in particular, at the point z. Therefore, %(~--~)....o(%--~n+~)=0. 
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Thus, for a function f, satisfying the conditions of Lemmas 3 and 5, fA can be equal to 

zero on an open set only for nonnegative integers %. 

We consider a class of functions f, containing, in particular, the ~ norm~ 

A function f on IR ~ is said to be quasihomogeneous if /(t%ml ..... t~x~) = t~f(xa ..... x~) for 
some ~i > 0 and ~ > 0 and for all t > 0 and x~R ~ �9 

Let n = n I +... + n r be a partition into positive integer terms and let R ~= 1R ~ ~...G I~ 
be the corresponding partition of IR ~ with respect to the standard coordinates. An element of 

the space R~ will be denoted by Yk" 

Let % be a positive integer and let fk = fk(Yk) be continuous quasihomogeneous functions 
on R~k, such that the Fourier transforms of their positive integer powers (up to the X-th) are 
real analytic in the ballsB(a~,e)~Rn k. We set q = q1" ..- 'qr, where qk is a polynomial in 
n k variables with complex coefficients, q(D) is the corresponding differential operator and 

/~(x) = E )% (y~). 

LEMMA 6. If q(D)f X = 0 everywhere on R ~ , then for each partition X = X I +... + X r into 

nonnegative integer terms we have (f~-h)A = 0 in B(ak, m) for at least one k. 

Proof. We apply induction on r. For r = 1 we haveq1(Ol)(f~)---- O, i.e., ?i(%)~f~)=0 

for any ~B(al, e), andS=0 everywhere in B(a I, m). Further, 

s = o .  (4) 

Thus, some linear combination of distributions G~(D~)(I~ ~) for X~ = 0 .... ,X is equal to zero. 

Considering the Fourier transform of the sum in (4) as a distribution inR~, we obtain that 
" ~DA 

a linear combination of the real analytic functions Ill ) , k~ = 0, ..., %is equal to zero in the 
ball B(a~, s). Further we note that the Fourier transform of a quasihomogeneous distribution 
with exponents ~z,...,~n and ~ is also a quasihomogeneous distribution with exponents ~,..., 

~n and-~ -...- ~n - ~" Thus (/$i)l! are quasihomogeneous distributions with the same expo- 

but with different ~ Consequently, the distributions (i~)A are linearly in- nents ~l,...,~n 

dependent (if they.are considered in an arbitrary ball). If a linear combination of these 

distributions is equal to zero in B(al, g), then for each lz = 0 ..... l either (/t~)A=0 in 

B(a~, g) or the coefficient of (/~i)A in the linear combination is equal to zero, i.e., q2 (D2)" 

�9 ..'qr(Dr)(- -~, /~]~-~z=0," and, by the induction hypothesis, for any partition I - l z = 
h----2 7 

X~ +... + I r there exists k> 2 such that (/~k)i=0 in B(a k, g). 

We set, in particular, fk(Yh)= lYh 
of fk as distributions in R n~ can be 

coordinate planes we have fk = 0 and 
C ~ 0, i.e., fk is not equal to zero 

LEMMA 7. The Fourier transform 

I ph, p~ > 0 (the Euclidean norm). The Fourier transforms 
easily computed [21]: for even Pk everywhere outside the 

for other values of Pk we have 7h(~) = CI~I -p~-nk, C~R, 
on any open set in R~ 

(A ? of the function f(z) = lyklPk ,: where r ~ 2, Pk > 0, 

X > 0, is equal to zero on some open set in R ~ if and only X is a positive integer and, in 
addition, at least one of the following three conditions holds: X < r; among the Pk'S one has 
an even number; all the pk's and X - r are odd numbers. 

Proof. From Lemma 3 there follows that f is a real analytic function outside the coor- 
dinate planes ~s=0, i ~]<n. We assume that f = 0 everywhere inside an open set in R ~. Then 
f = 0 inside at least one octant. Since f is even with^respect to each variable, f is also 
even with respect to each variable, and, consequently, f = 0 everywhere outside the coordi- 
nate planes. By Lemma 4, this is possible only if ($1" �9 "~n)mf = 0 for some positive in- 
teger m, i.e., Tmf = 0 in R ~, where T=0~/0x~...0x~ �9 For r ~ 2 the function f satisfies the 
conditions of Lemma 5 and~ therefore, ~ is a positive integer. Finally, by virtue of Len~na 6, 
for every partition of the number X into nonnegative integers X = XI + ..- + Xr, at least for 
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one k we have (IY~J~hPh)A=0 on an open set, i.e., Xkp k is an even number. If we assume now 
that X > r and among the numbers Pk there are no even ones, then it is easy to prove by in- 
duction on r (starting with r = 2 and considering partitions with Xl = i and X I = 2) that 

all Pk and X - r are odd natural numbers. 

Conversely, if ~ is a positive integer and one of the three conditions of the le~ma 
holds, then for any partition i = k I + ... + X r into nonnegative integer terms, there exists 
an even number among the numbers Xkp k and, therefore, 

= :7 7, 
(n~) 0 

%=X~+...+% r ~1"" k~l 

( f o r  any ~ = ( ~ ,  .,., ~ ) ~ R  ~, ~5~0, ] = i ,  ..., n~ ~=(~]l~ . . . .  n~), ~ ) .  

~. A UnSgueness Theorem for Measures on a Line 

First we consider the uniqueness problem on the line, i.eo, for X = ~. As it follows 
from Lemma 2, the strong uniqueness on the line is equivalent to the fact that K does not 
degenerate on any open set. At the same time, weak uniqueness holds for all functions K of 
powerlike growth at infinity with regular Fourier transform, with the exception of polynomials 
in even powers. 

THEOREM i. Let K be a Borel function on R (on C), admitting the estimatelK(x)!~A(i+ 
:Ixi~), where A~ p > 0, and K is locally sun, able outside zero. There exists a nontrivia! 
charge'~ on R (on C), for which 

I K i  t(x) < (tx + (z) = o 

for all t, a~R (~C),if and only if K is a polynomial. 

Proof. We assume that there exists a nontrivial charge ~ with the indicated properties. 
Then the continuous function ~ is different from zero on some open set H. Let Kt(x) = K(tx) 
for t r 0. By Learns 2, for any 9~D(H)and for any t ~ 0 we have 0 = <K~,9> = <~, 9(x/l)>. 
Thus, for any number t ~ 0 and any ~ ~D(~H) we have <K, ~> = 0 and, consequently, K is a dis- 
tribution with support in {0}. By Lemma 4 (or [20]), K is a linear combination of derivatives 
of 8-functions, i.e., K is a polynomial~ 

Conversely, if K is a polynomial of degree n, then for D one can take any change for which 
the first n moments are equal to zero. 

COROLLARY i. Let X be an arbitrary real (complex) Banach space and let K be a Bore]. 
function on R (on C), satisfying the conditions of the theorem. There exists a nontrivial 
charge ~ on X for which 

.IlK (<i, + 
X 

for all~X* and a ~I{ (a~C), if and 

Proof. For any scalars t, a and 

d I ~ i (~) < ~, ~ K (<L z> + a) d. (x) = 0 
if 

only if K is a polynomial~ 

for any ~X* we have ;K(t<~:~x>+a)d~(x)=0~ and, 
X 

after 

the c h a n g e  o f  
p 

v a r i a b l e  y = <~,  x > ,  we o b t a i n j K ( t y + a ) d ~ ( ~ ) ( y ) = O .  I f  K i s  n o t  a p o l y n o m i a l ~  

t h e n  by  T h e o r e m  1 we h a v e  ~ ( ~ )  = 0 f o r  a n y  ~ a n d ,  t h e r e f o r e ,  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  
c h a r g e  ~ i s  e q u a l  t o  z e r o  a n d  U = O. 

3. Finite-Dimensional Spaces of T_hL~9__~ Z 

~(nl ..... nr) with the norm Ixl \~/P We consider the n-dimensional real space ~p = ly~i~! , 

where p 9 1 (we preserve the notations introduced in Sec. i). We prove a uniqueness theorem 
for the kernel K(t) = t X, ~ > 0. 

THEOREM 2. Let]~p<~. /92 and X > 0. There exists a nontrivial charge U on X = 

nl .... 'mr), for which .Ilxl~d[~l(x)<~and .[Ix--~l>~d~(~)=0 for all x~X, if and only if 
X . X 

~/p is a positive integer and, moreover, at least one of the following three conditions holds: 
X/p < r~ p is even; p and k/p - r are odd numbers. 
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Proof. By virtue of Lemma 3, the Fourier transform of the distribution f(x) = Ixl ~ is 
a real analytic function outside the coordinate planes. By Lemma i, f($)~($) = 0 for any 

~R ~, ~j~0, j = i, 2,...,n. If f is not equal to zero on any open set, then the continuous 
function ~ is equal to zero everywhere in R ~. If, however, f = 0 on an open set, then f = 0 
everywhere inside the octants and as a nontrivial charge U, satisfying the conditions of the 
theorem, one can take d ~ ( x ) = ~ ( x ) d x ,  where ~ is an even function fromO(R ~) with support in- 
side the octants. Conditions for the equality f = 0 on an open set are described in Lemma 7. 

Thus, the answer does not depend on the magnitude of the n k but on their number r. For 
n 

example, in the real and the complex Ep the sets of the exceptional exponents coincide. 

The case r = i, not covered by Theorem 2 (when X is a Euclidean space), has been con- 
sidered earlier (see the introduction) and is derived from Lemma i by taking into account the 
known formula for the Fourier transform of the distribution Ixl ~. 

From Theorem 2 one derives easily a theorem on strong uniqueness for X = Z~ nl'''''nr)" 

and kernels K which are linear combinations of power functions. Indeed, if K ( t )  = ~ a ~ t  zi, 
/ = 1  

a~EC, ~ r  0 < ~ < . . . < ~ , ,  t h e n ~ ( I k  ) i s  a l i n e a r  c o m b i n a t i o n  o f  homogeneous f u n c t i o n s  o f  

d i f f e r e n t  o r d e r s .  I f  . v a n i s h e s  on an open s e t ,  t h e n l x l X ~ =  0 on an open s e t  f o r  each  
i = 1 , . . . , m ,  i . e . ,  a l l  t h e  e x p o n e n t s  h i a r e  e x c e p t i o n a l  in  t h e  s e n s e  o f  Theorem 2. Thus,  
s t r o n g  u n i q u e n e s s  h o l d s  f o r  t h e  k e r n e l  K i f  and o n l y  i f  one has  u n i q u e n e s s  f o r  a t  l e a s t  one 
of the kernels Ki(t) = t li. 

We consider now the case p = ~. Here the singularities of the Fourier transform of the 

distribution f(x)=[xl ~, where lxl= max Ighl is the norm in s nl .... 'mr), are not restricted 
k=l,...,r 

to the coordinate planes. In this case, in order to describe the Fourier transforms, we make 
use of explicit formulas connected with the Bessel functions. 

THEOREM 3. Let r ~ 1 and ~ > 0. There exists a nontrivial charge ~ on X = s nl ..... nr) 

for which .[Ixl ~d l~l(x)<~ ~,,I[x--~l ~d~(~) 0 for all x~X, if and only if at least for one 
X X 

k, i~k~r, the number X + n - n k is even. 

Proof. The Fourier transform of the distribution fl = Ixl ~ admits the representation 

~h 0) (~=~+...+~r, ~k~R ,~ 

(2n)n/2 ~ ~ t 2 n+~ 1 I I  J~-~h (I ~ 1 t) dt 

h = l  

( a s  u s u a l l y ,  f i r s t  we c o n s i d e r  t h e  c a s e  - n  < ~ < 0, when t h e  i n t e g r a l s  c o n v e r g e  and t h e n  we 
e x t e n d  a n a l y t i c a l l y  t h e  o b t a i n e d  f o r m u l a s  f o r  a l l  v a l u e s  o f  ~) .  Making u se  o f  t h e  known f o r -  
mulas  and a s y m p t o t i c s  f o r  t h e  B e s s e l  f u n c t i o n s  Jv [ 2 2 ] ,  i t  i s  e a s y  t o  show t h a t  f t ( $ )  i s  a 

r e a l  a n a l y t i c  f u n c t i o n  in  t h e  domains where ~k ~ 0 and ~ ~ 1 ~ 1 = ~ 0 ,  w h i l e  in  t h e  doma ins  
~h=l 

~ =/= 0, I ~ I > ~ / ~  ], t h e  F o u r i e r  t r a n s f o r m  has  t h e  form 

?~(~) H ~rl~h~nACOSk~ -- 0 z Klrnj (I ~s I t ) I I I l  ~ h r  r n ( l~u l t )d t '  

where  I v,  K 9 a r e  t h e  m o d i f i e d  B e s s e l  f u n c t i o n  o f  t h e  f i r s t  and t h i r d  k i n d .  From h e r e  i t  f o l -  
lows t h a t  t h e  d e g e n e r a c y  o f  t h e  F o u r i e r  t r a n s f o r m  on an open s e t  i s  p o s s i b l e  i f  and o n l y  i f  
n - n k + h - 1 i s  an odd number f o r  a t  l e a s t  one k. Now t h e  a s s e r t i o n  o f  t h e  t heo rem i s  de-  
r i v e d  from Lemma 1 in  t h e  same way as i t  has  been done a t  t h e  p r o o f  o f  Theorem 2. Thus,  as  
in  Theorem 2, one c o n s t r u c t s  an example  o f  n o n t r i v i a l  c h a r g e  in  t h e  e x c e p t i o n a l  c a s e s .  

In  p a r t i c u l a r ,  f o r  complex s t h e  even v a l u e s  o f  h a r e  e x c e p t i o n a l ,  w h i l e  f o r  r e a l  ~ 
t h o s e  v a l u e s  o f  X a r e  e x c e p t i o n a l  f o r  which  t + n i s  an odd number.  
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4. Infinite-Dimensional Case: Spaces of Type C( ) 

Let Q be a metric compactum, containing an infinite number of points and having no iso- 
lated points; X is a closed subspace of the space C(Q) of all continuous real (or complex) 
functions, such thatfor arbitrary s I .... , s n~Q and constants ~i .... , ~, !~l=i, there exists a 

functiona~X, such that a(sk)=$~ and ]a(s)[<i for all s ~ Sk, k = l,...,n. 

Let K(t) be a nonnegative nondecreasing convex function on the semiaxis t > 0, differ- 
entiable at the point t = 1 and such that K'(1) > 0. 

For the space X and the function K we have a theorem on weak uniqueness. 

THEOREM 4. If ~ is a charge on X such that fK(tlxl)dl~[@)<~ for all t ~ 0 and SK 
X X 

(tIx--a[)d~(x)=O for all t>0, a~X, then ~ = 0. 

Proof. We need the following known fact (see [23]): if a, b are arbitrary elements of 
a Banach space X, then 

lira l a + t b i - - l a ]  = sup  B e x * ( b ~ l b i ,  
, o<t~o t ~*~s(a) ( 5 )  

where S(a)={x*~X*: Hx*I[-----i,x*(a)=Ia[} is the set of the support functionals at the point a. 

We consider arbitrary a, b~X, [el =i and t >i" 0. From the assumptions of the theorem we 
have 

K (I t (x-- b) + (x)= 0. (6) 
X 

Since K is a convex function, making use of the theorem on monotone convergence under the 
integral sign and of formula (5), we can differentiate the equality (6) with respect to t: 

0 = ~ d  K~] a + t (x~-- b)[). d~ (x)It=o = K' (1) sup Re x* (x --  b) d,a (x) (7)  
X . x * ~ 8 ( a )  

J~ (t  x t) - K (t) (the integral in the right-hand side is absolutely convergent since [x I ~ +i for 
ix[ > l). 

For functions a~X, corresponding by virtue of the properties of the space X to the 
points s I ..... s n and to the nUmbers ~i, .... ~n, equality (7) takes the form 

x/ max __b(s~))d~(x)=O.  Re~k (x(s~) (8) 
h ~ l , . . .  ,n 

For each of the points s k we select a sequence {sjk}j~l~Q, such that limsjh=sk (and, moreover, 
j~ 

all the points sjk, k = 1 .... ,n, j = i, 2 .... are distinct). For each positive integer m we 

thedefinerealthecasenUmbersek = ~ili s in the complex case they are the roots of order m of 1 and in 
�9 We set ~jk = Ej for k = 1 ..... n. 

Now we apply equality (8) to the points Sjk (instead of s k) and to the points ~jk (in- 
stead of ~k), where k = 1 .... ,n, j = 1 .... ,m, and then we let m go to infinity. We obtain 

"j' max [x ( s~) - -b ( s~) ld~(x)=0~  
X h = l  . . .  n 

where ,  as b e f o r e ,  b i s  an a r b i t r a r y  f u n c t i o n  from X. 

We also note that the property of the subspace X guarantees the existence for any s1~..o ~ 
s~Q and n~nbers $i ..... Sn of a functionb~X~ such that b(sk) = Sk, k = 1 ..... n. 

Thus, the charge, generated by the charge ~ on s as a result of the mapping x~-+{x(s~)}~n=1, 
satisfies the conditions of Theorem 3 and, consequently, it is equal to zero (in the real 
case one has to take an odd n). At the same time, the collection of finite-dimensional dis- 
tributions, corresponding to the finite collections of points from Q, determines completely 
a probability measure on C(Q) (see, for example, [24, p. 33 of the Russian edition]; we note 
that the intersection of the balls in C(Q) is a limit of finite-dimensional sets). There- 
fore, U = 0. 
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The convexity of the function K has been required only for the justification of the dif- 
ferentiation under the integral sign. The theorem is valid also for other classes of func- 
tions, for example, for functions that satisfy the Lipschitz condition, or for concave func- 

tions (under the additional condition .I [ x]d I ~](x) < oo). 
X 

5. Infinite-Dimensional L p Spaces 

If one performs in Theorem 2 a formal limiting passage as n § ~, then one can assume 
that for infinite-dimensional LP-spaces the exceptional exponents will be the numbers that 
are multiple of p. We prove a somewhat more general fact: such exponents are exceptional 
for p-sums of aN infinite number of smooth Banach spaces. 

We make some preliminary remarks. If p ~ i, X:, X2,... are Banach spaces, then X = 
oo 

(X~eXz@...)~ {x =(x~, x~,...):x~X~,[xI~= ~ ix:ip< oo}is the p-sum of the spaces X i. A Banach 
i=l 

THEOREM 5. 
spaces, dim X~ 
which 

space is said to be smooth if at each point of its unit sphere there exists a unique support 
functional. It is easy to see that the p-sum of smooth spaces is also a smooth space for 
p > I. In [25] one has formulated the following question: is a finite Borel measure, defined 
on a Banach space, uniquely determined by its values on balls? A positive answer to this 
question has been obtained in [25] for smooth spaces, for spaces C(Q) and L:. However, the 
problem is not solved in the general case (see [26]). 

Let % >0, p~ ~, X~, X2, ..., X,~, ... be an infinite sequence of smooth Banach 
for alli~N. There exists a nontrivial charge ~ on X=(X~ | for 

.(ixl~dl~l(x)<oo, Ilx--al~d~(x)=O Va~X 
x "~ 

if and only if %/p is a positive integer. 

The proof is based on a simple property of the norm in X, which we have established by 
generalizing the method applied by W. Linde in the Hilbert case. 

LEMMA 8. If the charge ~ satisfies the conditions of Theorem 5, then .I (I x- a l p 4-c) ~@• 
d~(x) = 0 for arbitrary a~.u and c > 0. x 

Proof. We fix a sequence {eh}k~=:, ek ~Xh, [e~[ = i. For each k~N we consider an element 
a~X, for which the k-th coordinate is equal to e k and the remaining ones are equal to zero. 
For any x, a~X and c > 0 we have limlx'a-scahl v Ix:-alP+c p. By the theorem on dominated 

convergence under the integral sign, we have 

.( (I x -- = I ~ + cP)~/P d, (x) = lira ( (I x -- = + ca~ I~) ~/~ d~t (x)'= 0. 

The Proof of Theorem 5. Let %fp~N. We fix a ~ X ,  we make use of Lemma 8, and we per- 
form the change of variabley----[x-al. Let ~a(g)----~B(a, y) (B(a, y) is the ball in X with cen- 

ter at the point a and radius y). Then ~(y-5 c)~/Pd~a(y) 0 for every c > 0. Differentiating 
0 

this equality with respect to c (which is possible by virtue of the dominant convergence), 

we obtain ~(g+ c)~/P-nd~a(g) 0 for all c > 0 and n~N. 
0 oo 

Now we fix c > 0. The function k(~)= ~ (y-5 c)e/P-~d~a(y) is holomorphic in the semiplane 
O 

Re~ > k/p, it is equal to zero for ~ = 0, I, 2 ..... In addition, ]k(~)] <<. c~/P-~e:l~[ (X) for 
Re~ > %/p. By Carieson's theorem (see [18, p. 7] of [27]) we have k(~) = 0 for all ~, Re 

> [~Ip] + 1. 

We perform the change of variables x = in (y + c) in the integral which defines the func- 
tion k(~) and we consider the values ~=lq-E/p+:it, t~R, lying on a line parallel to the imag- 
inary axis. By virtue of the standard uniqueness theorem for the Fourier transform, we have 
~a = 0, i.e., the charge ~ is equal to zero on all the balls with center at the point a. By 

the Hoffman-Jorgensen theorem [25], we have ~ = 0. 
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Finally, if X/p is an integer, then we consider the positive integer n > %/p and arbi- 
trary e~X~ ~ Then the charge ~, equal to the sum of 2 n point charges, each of which is con- 

centrated at the point (s~e~,...,Snen) and equal to s~'g~" ... "Sn, where ~i = il, i = !, .... 
n, yields us the required example (after raising the norm to the power i and opening the 
parentheses, at least one variable will be missing in each term). 

We give another, somewhat more complex proof of Theorem 5, applied, however, to kernels 
which are linear combinations of power functions. 

THEOREM 6. Let n~N, %~>~> ..>%~>0, ~. a~C\~0~, K(t)= ~ ~ . . . .  , ~ t  , p ~ { ~  and let 
h=l 

X be the p-sum of an infinite sequence of smooth Banach spaces. There exists a nontrivial 
charge U on X, for which 

.[K (Ixl) d] ~l ( x ) <  ~ , ,{  K ( ] x - -  at)  d ~ ( x  ) = 0 
x x 

for all a~X, if and only if all the numbers Xk/p, k = 1 ..... n, are positive integers. 

P r o o f .  We c o n s i d e r  an a r b i t r a r y  a ~ X ,  we a p p l y  Lemma 8 and we p e r f o r m  t h e  change of  
variable g = Ix-al �9 We obtain that for all s > 0 we have 

oo 

h=l 0 

We d e n o t e  Zh=~.k/p,  Ch ~-~hsinr~zhF(zh 4-1). We d i f f e r e n t i a t e  t h e  e q u a l i t y  (9) m t i m e s  w i t h  r e -  

s p e c t  to the variables, m~N, m>z~, and we make use of the known properties of the F-func- 
tion [28, p. 773]:  

zh--m 0 = .  ahzk(zk t ) . . . , - ( z ~ - - m + l  ( y + s )  d ~ ( y )  
0 

(9) 

n �9 co 

7 sin ~z~r (zh + t) r (m -- z~) (,q + s) z~ " d ~  (y) 

for every s > 0. Since m > z k for all k = l,...,n, we can replace the F-function by an in- 
tegral : 

~xm-Zk-~e-Xdx  l " ~ f j 
oo c o o o  

z] t  ~ m  
0 = ch (y + s) d~t~ (y) = ck x~-~i~-I _~ z~-~ �9 . e (y -i- s) dxdl~t~ (g). 

k~l 0 0 h~l 0 0 

After the substitution t = x/(y + s) we obtain 

0 = ca tra-zk-!e-t(Y+S)dtd~a (y) --__ e~t m-  k-1 a (t) e-tSdt,  
h=l 0 0 0 \ ~--i / 

where ~a is the Laplace transform of the charge ~a" Since s is an arbitrary positive number, 

n 

the Laplace transform of the function ~cktm-~-1~a(t ) is equal to zero; it follows that either 

B~(t)=O for any t > 0 and thus ~a = O, or c k = 0 for all k = 1 .... ,n, i.e., sin~z k = O, k = 
l,...,n, and all numbers z k = ~k/P are positive integers, ft remains to note that from the 
equalities ~a = 0 for alla~X there follows U = 0 by virtue of the Hoffman-Jorgensen theo- 
rem �9 

We note that the necessity of the equality v = 0 for the charge ~ under the condition 

that S (y + c)Pdv(y) = 0 for all c > 0 and noninteger p has been established for the first time 
0 

by Plotkin in [i0]. We have given here other proofs of this fact, based on a theorem by Carle- 
son and on the Laplace transform. The Carleman criterion for determinate moment problems 
(see [29]) also allows us to obtain a simple proof. We note that in order to establish the 
equality v = 0 with the aid of Carleson's theorem, it is sufficient to have the values of c 
belonging to any interval. 
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6. An Infinite-Dimensional Variant of Cartan's Lemma on Coverings; 

Estimates for the Potentials of Measures 

Let X be a complete metric space and let ~ be a measure on X (as before, we consider 
finite Borel measures). We consider a continuous, strictly increasing, nonnegative function 

oni[0 ' q-o~[, (p(0):-0, limT(x)~(X). The function q a will be called a majorant. 
~-~ co 

For each point x~X we set z(x)= sup {t: ~tB{x, ~)~(p(t)} , where B(x, t) is the closed ball 

in X with center x and radius t. It is easy to see that ~B(x, T(X))=~(T('z))and:sup~(x)<~p-~ 
( x ) )  <: = 

A p o i n t  x ~ X  i s  s a i d  t o  be r e g u l a r  ( w i t h  r e s p e c t  t o  ~ and ~) i f  ~ (x )  = 0,  i . e . ,  ~B(x,  
t ) < ~ ( t )  f o r  a l l  t > 0. The p u r p o s e  o f  i n t r o d u c i n g  t h e s e  c o n c e p t s  c o n s i s t s  i n  t h e  f a c t  t h a t  
f o r  t h e  v a l u e s  o f  t h e  p o t e n t i a l s  a t  t h e  r e g u l a r  p o i n t s  one  can  o b t a i n  an e s t i m a t e  in  t e r m s  
o f  t h e  f u n c t i o n s  K and ~. I n d e e d ,  i f  K ( t )  i s  a c o n t i n u o u s l y  d i f f e r e n t i a b l e ,  d e c r e a s i n g  f u n c -  
t i o n  f o r  t > 0 a n d  l imK( t )  9 ( t ) = l i m  K( t )  cp(t)=O, t h e n ,  u n d e r  t h e  a s s u m p t i o n  o f  t h e  c o n v e r g e n c e  

~-->0 t->co 

of the integrals, we have 
co co 

.[ K (1 x -- ~ I) d~t (~) = ~ K (t) d~t~ (t) <~ - S K' (t) ~ (t) dt,, ( 10 ) 
X {} 0 

where ~x(t) = ~B(x, t) and x is a regular point with respect to ~ and T. 

We show that the set of regular points is sufficiently large for an arbitrary majorant T. 
For this, first we cover all the irregular points by a sequence of balls whose radii tend to 

zero. 

LEMMA 9. Let 0 < 7 < 1/2. There exists a sequence of balls B k = B(xk, tk), k = i, 
co 

2,..,, which collectively cover all the irregular points and which are such that ~ ~(?th)~ 
~(X) (i.e., t k § 0). h . = l  

Proof. Let 0 < ~ < i, ~ > 2 but 7 < ~/~. We set B0 = ~ and we assume that the balls 
B 0 ..... Bk_ i have been constructed. If ~h =sup{T(x): x~BoU...UBk-[}, then there exists a point 

x~q~BoU...UBk-~, such that T(Xk)~ >aTk. We set t k = ~T k and B k = B(x k, tk). 

Clearly, the sequence ~k (and thus also t k) does not increase. The balls B(xk, T k) are 
pairwise disjoint. Indeed, if s > k, then xz~B~, i.e., the distance between x i and x k is 
greater than ~Th>2T~>~+~t. Then, 

oo oo 

< :E < E (x,O) = E (x); 
h = l  h = l  h = l  h = l  

consequently, ~k § 0, i.e., for each point x, not belonging to the union of the balls Bk, 
T(x) = 0, x is a regular point. In addition, t k = $~k + 0. 

The following lemma shows that an infinite-dimensional space cannot be covered by a 
sequence of balls whose radii tend to zero.% 

LEMMA I0. If Yi c y~ c... are proper closed subspaces of the Banach space X and 0 < 
t k + 0, then each ball of radius p > maxt k contains a point a such that d(a, Y h ) =  inf [ a - - Y l : >  
t k for all k = i, 2 ..... y~Yh 

Proof. We shall assume (increasing some t k if necessary) that the sequence t k decreases 
and t i = maxt k. Let ~ > 0 be such that p > (i + 2e)t i. We select a subsequence s k = tnk, 

n i = i, for which T-~s~> sj for all k~N, and we set Z k = Ynk+i. It is sufficient to prove 
~>h 

t h e  lemma f o r  Z k and s k (we r e p l a c e  a l l  Yj and t j ,  n k < j ~ nk+ i ,  by Ynk+l and t n k ) .  

We c o n s i d e r  f u n c t i o n a l s  ~k~X*,  such  t h a t  II~[l= 1, ~ ( Z k ) = 0 .  For  e a c h  k ~ N  t h e r e  e x i s t s  
~ X ,  such  t h a t  lukl = 1 and Sk(Uk) = 1. 

%We thank O. G. Smolyanov and E. T. Shavgulidze for letting us know the proof of this fact. 
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We consider an arbitrary B(a0, p) and for n ~ i we set a,=a~_~+(i+e)6~s~u~, where ~ = i 

or ~n = -I is selected in such a manner that I~(a~_~+6~s~u~)I~s~. Theft !am--anI=(i+e) • 

6kS~Uhl<(~+2e)S,+1, re>n, and there exists the limita=liman, and, moreover, ]a--ao]~(i~ 
h = n + l  n ~  

2 e ) s , < p ,  i . e . ,  a~B(ao, p). F i n a l l y  

and, consequently, the point a satisfies the requirements of the lemma. 

Now we can prove the existence of a regular point in each ball of sufficiently large 
radius. 

TH___EOREM 7. Suppose that X is an infinite-dimensional Banach space, ~ is a measure on X, 
and ~ is a majorant. Then each ball of radius 9> 2~-~(~(X)) contains a regular point. 

Proof. By Lemma 9, all the irregular points can be covered by the balls B k = B(xk, tk), 

where 0 < t k + 0 and maxt k = t I < p [one can take y < 1/2 such that ~-~(~(X))<@]. 

We consider the subspaces Yk in X, Yk = span {xi: i = 1 ..... k}. By virtue of Lemma I0, 
in each ball of radius p there exists a point a satisfying the inequality d(a, Yk) > tk for 
allk~N o In particular, a~B~ for all k~N, and the point a is regular. 

We note that the set of points which are regular for the majorants n~ for at least one 
n ~ N is dense in X. Thus, the set of points at which the values of the potentials admit the 
estimate (I0) (with a constant in the right-hand side independent of the kernel K) is dense 
in the space X. 

We consider the majorantT(t)=21~j(X)e , where M > i. If the point a is regular 
relative to [Pl and T, then the inequality (I0) allows us to obtain for s, Res > O, the fol- 
lowing estimates: 

X 0 0 0 

Now we assume that ~Ix,al-~d~(x)=O for every n~N. Representing the charge ~a in the 
X 

usual manner in the form of a difference of measures~==~p~, we obtain that for all n~N 

' - - ~ d  - -  we have sn = y-~d~t~(y) = y. ~ ( y ) .  The moment problem which occu r s  a f t e r  t he  change of  v a r i -  
0 0 

ab l e  z = 1 /y  i s  d e t e r m i n a t e  a c c o r d i n g  to  Car leman ' s  c r i t e r i o n  [29]~ Indeed ,  from ( ! 1 )  i t  

2 follows that ~ - ~ _ _ ~  (M] '/M n=~7~n n=~ \-~7 for some ~ > 0 and the series in ~he right-hand side diverges 

since M > io Thus, ~ = ~7, i.e., ~==0 , and the values of the charge on balls with center at 
the point a are equal to zero. 

Thus, if for all n~N the equalities [Ix_aFnd~(x)=O hold for any m~-regular point a 
0 

for all m~N, then the values of the charge ~ are equal to zero on the balls with centers 
in a dense subset of X and thus, on all the balls in X. If, in addition, for the space X the 
Hoffman-Jorgensen theorem holds, then ~ = 0. 

The given reasoning allows us to hope for a solution in the future of the uniqueness 
problem for an arbitrary Banach space of infinite dimension. 

Note Added in Proof. The following remark is due to the first of the authors. Let 
~(t) be a continuous positive function on the semiaxis t ~ 0 such that a(t) -~ <~(x+~)/~(x) < ~(t) 
for all t and x, where loga(t)/~(t) § 0, t + ~. Let K(z) be ho!omorphic in the angle largzi<8, 
IK(z)[<e(iZi) and let ~ be a charge such that $0~m()dI~I(t)t <~. If, under these conditions, 

~ 0 but S~K(x + t)dp(t) = 0 for all x ~ 0, then the Fourier-Laplace transform K(~) ex- 
tends to a meromorphic function in C*, while if this holds with the replacement of K(t) by 
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K(~t), ~ > 0, then it extends to a holomorphic function. The proof is obtained by a standard 
deformation of the contour. Under more qualified estimates, the growth of K(~) is made more 
accurate. For example, if ~'/~ = 0(i/t), then K is a polynomial. In particular, this remark 
allows us to generalize Theorem 6 (we note that the results of Sec. 6 ensure the correctness 
of the formulation of the problem within very wide limits). 
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