A RANDOM DIFFERENCE EQUATION

A. Grincevidius UDC 519,21

In the present note we consider the difference equation with random coefficients
tu=£a§n—1+nm n=1» 2; ey (1)

where {gn, My }T is a sequence of independent identically distributed random vectors with the initial condition
Lo = 1y. The interest in studying this difference equation is explained by the fact that it arises in certain prob-
lems of physics, economics, etc.” There is a survey of papers on the given difference equation and questions
connected with it in Vervaat [1].

From (1), by induction we get
Cn=nn+nn—1gn+")u—-2gn—1gn+ coe M 5253 . «E,.+‘qo 5152 . En'

In what follows it will be assued that the random variable 7, is independent of the random vectors (¢, ny),
n=1, 2,... . Along with the random variable £, we consider the random variable

Vo= e bt b Bt o MG o B

From the independence and identical distribution of the random vectors (&, n,) it obviously follows that
the random variables ¢y and ¢, + Mgy, . . &y are identically distributed. The fundamental result of the paper is

THEOREM 1. Suppose for any real number ¢ P{n,; =c@ - ¢)} < 1. Then one of the following holds:
1) the distribution of the random variable ¥, diverges to = as n — =;
2) the random variable §, converges almost surely as n — =,

In the proof of Theorem 1 we need two auxiliary assertions. If nothing is said to the contrary, we shall
assume that limits are taken as n =,

Proposition 1, The following conditions are equivalent:
a) for some Borel function f£(*) almost surely n; + ns§; = £(§,&);
b) for some real number ¢ almost surely either n, = c(l — §), or ¢, 1y = @, c).

Proof. Condition a) obviously follows from condition b). Let condition a) hold, Since the random vectors
(ny + Moty £1&) and (my + Mk, §E)) are identically distributed, one also has ny + 91§ = £(&§) almost surely. The
event {£ = 0} implies the events {n, = £(0)} and {n, = £(0)%, = £(0)}, so if P{£ =0} >0, then m, + £(0)%, = £(0) al-
most surely, since the random variables £ and (&, ;) are independent. Now if P{t, =0} =0, then

€ m ) L2 T _ BB mtmeby ) _ ( 2 " > < B m >
0 1 0 1/ °\ 0 1 “\0 1 0 1
almost surely, so the support of the distribution of the random matrix (al m) is contained in a commutative

subgroup of the group of real matrices {( 0 1 ), x;eo} , isomorphic to the group of linear transformations of

1-
the line. As is well known any such commutative subgroup is contained either in a subgroup {(O el 1 x)>,

1
x#0; (c is a fixed real number), or in the subgroup {< o' J;)} . Whence condition b) also follows.

Proposition 2, Let fy(t) and g, (t) be the characteristic functions of the random variables X, and Yy, re-
spectively, 1fat)l = g,®), n=1, 2, ..., and the distribution of the random variable Y, diverge to £« as
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n — e, Then the distribution of the random variable X, also diverges to e,

Proof. Let Z be a random variable, for example with standard normal distribution, and not depend on
the remaining random variables, Then

O<Mexp(—2X2/2)=Mexp (itX, Z) =M £, (t2) <Mg,(tZ)=Mexp(~1*Y%[2)

where the last term in the chain of inequalities tends to zero for all t # 0, We have proved that the character-
istic function of the random variable X,,Z tends to zero for all t = 0, hence its distribution diverges to %
{cf., e.g., Tutubalin [5, Lemma 5]). Consequently, the distribution of the random variable X, also diverges to

+ oo,

Proof of Theorem 1, If P{{ = 0} > 0, then 2) obviously holds, so let us assume that P{£ = 0} = 0. Fur-
ther, let | 4] =1 almost surely. It is easy to see that it is sufficient to prove the theorem only for even n, We
set n = 2k, so '

Y= (0 + 028 F e+ 168} (Br o)+ oo+ (Mam i F i Baeca) Ga8a) oo o (Bmaey By

By virtue of Proposition 1, either for some number ¢ = 0 aimost surely (¢§7,) = (1, ¢) {then 1) hoids], or
the random variable n; + ¢, is not a Borel function of £§. In the latter case we want to symmetrize the ran-
dom variable ¥, under the condition 4, &, . . ., k- 1&k. In order not to complicate the notation, let us as-
sume that the random variable 7, itself is not almost surely a Borel function of £;.

We write
£, x)=M{exp (itn;) | E;=x).
We have
M (exp (ith,) 1Ey, «.., En) =M(explity,-)1&, ...\ Eacs) S(tEr ... Eucy, ) @)
and since f(t, x) is an even function in t, and the random variables Ej assume only values %1, one has

[f(8 .o Gy, B E=17G, BB

and consequently, from {2) by induction we get

| Mexp (it ) P <M M (exp (it4a) | &1, -0 BB =M [] £ £)=]] M~Fe ).
j=1 j=1

The right side of the latter inequality is the characteristic function of the sum of independent identically dis-
tributed nondegenerate random variables, so its distribution diverges to == (cf. Petrov [4, Chap, II, Sec.2,
Theorem 6, p. 63]).

From Proposition 2 it now follows that the distribution obtained by symmetrization of the distribution
of the random variable ¢, diverges to +«, and all the more the distribution of the random variable ¥p itself
diverges to £,

Let us assume now that | £] # 1 with positive probability, and we consider the random walk
Se=0, Sy=In|& ], ..., Sy=In[& {+1n] 8|+ ... +ml|&], ... (3)

Three cases are possible (cf. Feller {3, Chap. XII, Sec. 2, Theorem 1]): 8, tends to + =, S, tends to—
or Sp oscillates between — and +«, We consider each case separately.

I. Sy tends to -« almost surely, Let 1) not hold, Then one can find a sequence nj t = such that the dis-
tribution of the random variable ¥n) as k— = converges to a (possibly improper) distribution F, and here
F(+») — F(~=) > 0, But then the distribution of the random variable ¥nj 41 also converges to the distribution F.
Passing fo the limit in the equation

bnye1=m+E& ‘,E.,‘:

where ;an =T+ Mt T M rib.e . . ény is distributed just as yp is, and normalizing the limit distribution
F, we get that if the random variable ¢, does not depend on the remaining random variables and has distribu-
tion F/(F(») — F¢«)), then n; + £y, too is distributed just as $o is. By induction we get that

MAN it M et .o+ Ey o B8 . B
is distributed just as ¥, is. But £;. . . £,4, tends to zero, so the distribution of the random variable ¥n tends to

the distribution of the random variable y,.
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From the convergence of the random variable y, in distribution follows the convergence in probability.
For the proof of convergence almost surely we apply the method of Jessen and Wintner [2]. Let y, converge
in probability to the random variable §, and oy, be the o-algebra generated by the random variables {§,7y),...,
(¢ns M) It is easy to prove

M(exP(itq))idn)=exp(it(nl+"'+‘qnal v E.m—-l))f(til En)v

where f(t) = Mexp (ity). By Theorem A of Jessen and Wintner [2] (or by the convergence theorem for semi-
martingales) M(exp (it}) ! o) converges almost surely, and since §;. . . £, converges almost surely to zero,
one also has 0y + mpé; + ... + Mpd;. . . & converges almost surely.

II. Sp tends to + « almost surely. By virtue of what has already been proved the distribution of the ran-
dom variable ¥ /8. . by =/ &y + -1/ Epatbn o+ - T 01/ &, . &y either diverges to +w or converges weakly;
in addition the limit distribution is continuous (cf. {8]). Since {§;. . .&;ltends to + =, in both cases condition 1)
of Theorem 1 holds.

HI. 8, oscillates almost surely between — and + =, Then the increasing stepwise renewal process tends
to + =, We denote by Ly =0; Ly, Ly, ..., the first, second, ... upper stepwise moments of the random walk
(3) and Q, the number of these stepwise moments to time n inclusive. Just as earlier, let us - assume for sim-
plicity of notation, that 7, is not a Borel function of £, We have

M exp (it ) |2=|M [M (exp (itn)18y) .- M(exp (itn, 8 ... &) s <oy E)]i2=
=\Mf{t E) Sty &) - SOE .o By, BB SMIUFQ EDP .ot [F (8 oo. B oy, B ) P1+P {Q<m)} @
{the function f{t, x) is defined by (1)].
_ If along with the random vectors (§;, 1) we consider a sequence of independent random vectors (&, np,
Ny n=1, 2,..., such that
Mexp (i (tn,+s7;+u8))=MIf(t, E)) f (s, &) exp (&},
then the random variable equal to

(= T) + (e~ Ti) Ba ¥+ . .. +n, =) & - By )
if Q = m, and equal to zero if Q > m, will have the characteristic function standing on the right side of 4).
The random variable (5) can be represented in the form

81+82Q1+ . +8,,,(pl ver Pm-1y
where
8=(ny,_s1—Ty_j s} + -+l — ) By _y+1 -o- By
<PJ=ELJ_‘+1 o EL,'
As is well known from the theory of random walks, the random vectors (¢j, 6j) are independent and identically
distributed. Further, it is easy to prove that P{Gj =~ c)goj} <1 (cf. [7}), and since lg,. . .pm! tends to +

almost surely as m —~ =, by virtue of what has already been proved (case 1) the distribution of the random
variable {5) diverges to £w, By Proposition 2 the distribution of the random variable y, also diverges to =,

The theorem is proved.
We note that the hypothesis of the theorem is essential. In fact, if for some real number ¢ almost surely
n,=c( = &), then ¥ = c@ = &&. . . &), and if In§; will be the distribution such that M x in £ =0, but the

distribution of the random variable Z Ing, diverges to—= (cf. [3]), then ¢, will converge in probability, but

almost surely diverge, l

From Theorem 1 there follows directly the following:

COROLLARY. If the hypothesis of Theorem 1 holds, then the convergence in distribution of the random
series
Mtmbt . b e Bt

is equivalent with the convergence almost surely.

With the additional assumption —« < MIni%l < 0, this assertion was obtained by Vervaat {1].
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THEOREM 2, Let the hypothesis of Theorem 1 hold. Then independent of the initial random variable
1, the distribution of the random variable ¢, as n — « either

a) diverges to =%, or
b) converges weakly, and here almost surely . . .§, converges to zero,

Although Theorem 2 does not follow directly from Theorem 1, to prove it only slight changes in the proof
of Theorem 1 are necessary,

Theorems 1 and 2 can be used to prove a limit theorem for the random variables ¢, and ¢,. Let the hypo-
thesis of Theorem 1 hold, the random walk S, go to + = almost surely. Then, for example, the distribution of
the random variable £y / §. . . ¢, either diverges to =« or converges, and the function of its limit distribution
is continuous (cf. [8]), so the sequence In| ¢yl — Sy is stochastically bounded below. If for some constants ay
and by, the distribution of the random variable (S, ~ a,) /by converges weakly, then

limP{(!n!Cn}——an)/bﬂ_(sn—an)/bn>_5}=1 (6)

for any positive number e. An upper estimate for the difference of the random variables standing in (6) is ob~
tained more simply. For this it suffices only to require the finiteness of the expectation of some power of the
random variable In" | 1! (cf. Kalenskii {6]).

Moreover, the method of proof of Theorem 1 allows us to get a limit theorem for the random variables
¢n and Py also in the more complicated case when the random walk Sy oscillates between — = and + s,

Proposition 3. Let the hypothesis of Theorem 1 hold, and Sp oscillate almost surely between —w and + s,

Then the sequence In|{,]— sup 5, is stochastically bounded below.
0<j€n

Proof, For simplicity of notation again we assume, without loss of generality, that n, is not a Borel
function of £, We have exp (osup S)=1& ... ELQ| almost surely, since L is the moment of the first maximum
</&n

of the sequence Sy, Sy, . . ., S;. Whence it is easy to get the inequality

Lo
!Mexp(itd»,,/expoiu_g S)iE <M n [FaErt ... EgLE)E+P{Q<m}. 7

I=Lg 41
The right side of (7) is the characteristic function of the random variable equal to
(g _pt1 = Tig_peD)/Biy a1 - oo Ergt oo 0y —Mng)fBry 8

for Q = m and zero for @ < m. The random variable (8) can be represented in the form of a sum

80-m+1/Po-mi1 --- Pot ... +30/q,
which has the same distribution as the random variable equal to

81/91+8o/pr et - +8mfPL o O 9
for Q = m and zero for Q < m {cf. [7]).

As m — e the distribution of the random variable (9) either diverges to +« or converges weakly and has
continuous distribution.

In the latter case, in order to apply Proposition 2, it is necessary to multiply both sides of {7) by the
positive characteristic function of a distribution diverging to =« sufficiently slowly. Whence we get that the
limit distribution of the random variable ¢,/exp sup S; eannot have an atom at zero, i.e., the random variable

0<j<n

In!d,|— sup S, is stochastically bounded below.

1<j<n

Analogously, one can prove the stochastic boundedness below of the sequence In|f,|— sup (5,-5)).

<j<n
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LARGE DEVIATIONS OF ORDER n FOR SUMS OF RANDOM
VARIABLES RELATED TO A MARKOV CHAIN

P. Gudynas UDC 519.21

In this paper we prove a limit relation for probabilities of large deviations of order n of sums of real
random variables (r.r.v.) related to a homogeneous Markov chain, An analogous result for independent r.r.v.
can be obtained from more general assertions of Cramer (1], Chernoff [7], and Petrov [2]. The hypotheses of
the fundamental theorem of the present paper are somewhat unusual, since they are formulated in terms of the
spectral theory of linear operators. Hence there are also given below two more concrete examples of se~-
quences of r.r.v. related to a Markov chain and satisfying the hypotheses of the fundamental theorem.

Let (X, #) be a measurable épace and let p(x, A) be the transition probability from (X, #) to (X, #).

We consider a homogeneous Markov chain §, i =0, 1, 2, ..., where § assume values in the measurable
space (X, #) and for any xeX, Ae#

P(aleA]El—l=x)=p(xc A)v i=l! 2: e (1)
Let f(x) be a real measurable function, defined on (X, #), and M be the Banach space of bounded com-

plex-valued measurable functions (X, #). If for a real number h

sup [ M p(x, dy)<e, @)
xeX x

then we define the bounded linear operator P(h + iv), mapping M into P, in the following way:
(Pth+iv)g) ()= [ () e®+/ P p(x, dy). @)
P

It will be assumed below that (2) holds for allh > 0.

Let 9t be some closed subspace of the Banach space M such that for any z, Rez > 0, the operator P(z)
carries % into itself, and the function ¢, identically equal to one, is an element of RN

We write Sp = £(&) + £(&§) +. .. + £(p). We shall be interested in the asymptotic behavior of the prob-
ability

Ps(sn>M)=P(Sn>nalEO=x)- )
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