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Introduction. In this work we investigate the periodic boundary-value problem for the 
linear 

and nonlinear 

d (p(t)~t)-t-Q(t)z=f(t ) (O~t~co) 

dJF(P(t)~)q-F(t,z)=O (O~t~co) 

(1) 

(2) 

abstract equations in a Hilbert space. The existence of various classes of solutions of the 
periodic problem for Eq. (I) is studied in [I-3]. In these works the assumption is made that 
the spectrum of the operators Q(t) for every !~[0, 8] is located in the left half-plane. 
However, the case when Q(t) has spectrum points in the right half-plane seems to be more in- 
teresting. In this case the periodic problem does not always have a solution (which is clear 
even for scalar equations). Conditions of the existence of periodic solutions of second- 
order linear equations of type (I), under the assumption that Q(t) has spectrum points in 
the right half-plane, were investigated in [4]. However, only normal solvability is estab- 
lished there and the question of solvability for an arbitrary right-hand side from a certain 
class is not answered. This question is considered by the semigroup theory methods in [5] 
for the case when P(t) = I and the function Q(t) is semibounded from above. In this paper 
we apply the variational approach, when the existence of a solution of the periodic problem 
for Eqs. (I) and (2) is equivalent to the existence of a stationary point for the energy 
functional. The important aspect of this approach is that we determine specific classes of 
equation coefficients which generate regular differential operators. These classes are de- 
termined in such a way that the space in which we seek a solution is decomposed into the di- 
rect sum of two subspaces. On the first subspace the corresponding functional is convex, 
on the second subspace it is concave. Thus the stationary point is a saddle point. The 
variational approach allowed us to investigate the equations under milder restrictions on the 
coefficients (in comparison with [5]). It also allowed us to consider a lerger class of solu- 
tions. From our results the assertions of [6-11] for the finite-dimensional case follow as 
a particular case. 

It is worth mentioning that a general scheme introduced in Sec. I can be applied not only 
to the periodic problem for abstract operator equations in a Hilbert space, but also for other 

boundary-value problems. 

I. Solvability of the Equations with Potential Operators 

1.1. Theorem on Stationary Point of a Functional. Let ~ be a real Hilbert space with 
a scalar product [ , ] and with a norm I.I. Let ~ be a dense set in ~. A functional 
J:~R is called Gatea~ differentiable if for every z, h ~ the limit 

D J  (z; h) = l i m J  { J  (z + ~h)-- J (z)} 
g~O g 

exists and is a continuous linear functional with respect to h. By the Riesz theorem this 
functional has the following representation: D$(z; A) =[~z, h]. The operator ~ : ~  is 
called the gradient of the functional J ; it is denoted as ~=g~ad$. The functional J is 
called the potential of the operator ~; we denote it as $=pot~. An operator ~ which is 
the gradient of some functional is called a potential operator. 

THEOREM 1.1. Let ~ X @ Y  be a direct sum of two subspaces. Let 3: ~ R  be a 
differentiable functional and ~=grad3. Let for every z, h ~  and for some a, B > 0 the 
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inequalities 

A(h, h ) ~ [ ~ ( z + h ) - ~ z ,  h]~B(h, h) (1.1) 

hold. Here A, B: , ,~XZ:~R are bilinear continuous functionals which satisfy the following 

conditions: 

A(x, x) >~lzl ~, x~X ,  (1 .2)  
B(u, u)<-~lW, u~Y. (1.3) 

Then the equation 

has the unique solution 

�9 z = 0 (1 .4)  

~ and the estimate 

(1.5) 
I~1 ~ I~(O)l /min (a, ~) 

holds. 

The proof of this theorem can be found, for example, in [12]. 

1.2. Generalized Solution. Let ~ be dense and let it be imbedded continuously in a 
Hilbert space ~ with the scalar product ( , ) and with the norm II'II. Let ~ be a linear set, 
which is dense in ~, and let N: ~-+~ be a potential operator. 

LEMY~ 1.1. Let J:~-+R be a differentiable operator and 

DJ(z; h)=(Nz, h), z , h ~ .  
Let the inequalities 

A(h, h)<(~(z+h)--~z, h)~B(h, h), z, h ~ ,  (1.6) 

hold, where A, B: ~X~-+R are bilinear symmetric continuous functionals. 

Then the functional J can be extended by continuity to the whole ~ . The extension 
(which we denote also by J) is a differentiable functional and the following inequalities 
hold: 

A(h, h)~DJ(z+h;  h)-DJ(z;  h)~B(h, h), z, h ~ .  (1.7) 

Proof. The form (~z, h) determines on ~ a linear functional which is continuous with 
respect to h. Therefore, there exists an operator ~: ~ -+4 such that 

DJ(z; h)= (~z, h)= [~z, h]. 
Moreover, from (1.6) it follows that 

![~(z+h)--~z, h ] l ~ p [ h [  2, z, h ~ ,  

(1.8) 

where 

p = max ~max I A (1,, h) 1, max I B (h, h) f }. 
[Ih]~l Ihl~l 

Since ~ is a potential operator, the last inequality, by virtue of the results of [13], im- 
plies that the estimate 

holds. From this it is clear that the operator ~, and therefore the functional J , can be 
extended by continuity to the whole ~ . Moreover, the extension of ~ is the gradient of 
the extended functional. The estimate (1.7) follows from (1.6) and from the fact that 
is dense in 4. The lemma is proved. 

It is natural to define a generalized solution of the equation 

~ z = O ,  z ~ ,  ( 1 . 9 )  

as  a s o l u t i o n  . ~  o f  t he  e q u a t i o n  

~ z = O ,  z ~ .  (1.10) 

In the following assertion we formulate conditions which are sufficient to guarantee 
that generalized solutions are classical solutions. 
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LEMMA 1.2. Let ~:~-~ satisfy the conditions of Lemma 1.1 and ~=--$+~, where 
%:~-~ is a linear self-adjoint positive-definite operator whose energy space has the same 
topology and the same domain of elements as the space ~ ; the operator Sr:~_+~ is non- 
linear and semicontinuous. 

Then the generalized solution of Eq. (1.9) belongs to ~ and ~9=0. 

Proof. We define the operator ~:~-+~ as in Lemma 1.1. By virtue of the represen- 
tation for N we have for z, h~ that 

[@z, h] = --(~z,  h ) +  (.Y-z, h) .  

Denote by [,J~ the energy scalar product generated by the operator ~. Then from the pre- 
vious equality we obtain that 

[~z ,  hi = - -  [z, h]~ + (Y-z, h). 

Since the energy space of the operator @ has the same topology and the same domain of ele- 
ments as the space ~, and since the operator ~" is semicontinuous, the last equality holds 
for all z~. In particular for the generalized solution .~ and h~ we have that ( % 
~h) = (~-~, h). Thus, ~(~*) and ~.~ =$r~. Since ~(~*) = ~ and ~* = ~, ~ =~-% The 
lemma is proved. 

1.3. Regularity Classes. Everywhere below we shall assume that ~ is imbedded com- 
pactly in $ . By ~(~) we denote a class of linear self-adjoint semibounded from above oper- 
ators ~ in ~ , which are defined on the domain ~(@)~, and for which ~ has the same topo- 
logy and the same domain of elements as the energy space of the operator ll--~ for sufficient 
ciently large I > 0. By Rellich's theorem, see [14, p. 217], the spectrum of the operator 
ll--@, and thus the spectrum of the operator @ , is discrete. Moreover, the system of eigen- 
vectors of the operator ~ is complete both in the space ~ and in the space ~. 

By [ , ]Swe denote the energy scalar product in ~, generated by the operator I[--@ . We 
introduce a bilinear continuous on ~ functional 

Note that 

L ( z , h ) ~  l ( z , h ) - - [ z ,  hle , z , h ~ . . ~ .  

L(z, h ) =  (~z, h), z ~f~(~), h ~ ~ .  

(1.1~) 

Consider the operators ~, ~5~(~). We write ~[~, if A(z, z) ~< B(z, z) for all 
where the functionals A, B are constructed according to (1.11) from the operators 
spectively. 

LEMMA 1.3. If Z~(@)~%2(@)~... is a complete collection of eigenvalues of the operator 
@~(~), and if ~, % .... is the corresponding orthonormal (in ~ ) system of eigenvectors, 
then the following representation holds: 

(1.12) 

z ~ ,  
~, ~ , re- 

(1 L (z, z) = f j  ~j (e) (z, ?:) ~, z ~ Z .  
j = l  

Proof (is in [12, p. 149]. For a definite operator ~ the representation (I .13) is given 
in [14, p. 221). 

An operator @ is called regular if it has a continuous inverse in ~. Therefore, the 
operator @~(~) is regular precisely when none of its eigenvalues vanishes. We denote the 
set of all regular operators ~(~) by ~(~). The regularity index ind~ of the opera- 
tor ~(~) is defined as a sum Of its positive eigenvalues. Since the operator ~ is semi- 
bounded from above, ind@ is a finite number. We denote the set of all operators from ~(~) 
with the regularity index k by ~k(~) (k = 0, 1, 2,...). It is clear that the classes ~(~) 
are not empty for every k = 0, 1, 2,...; they are mutually noninteresting and 

oe 

( ~ )  = U @k(~) .  
h~O 

Thus, if an operator ~ belongs to a class ~(~) , it means that its eigenvalues satisfy the 
following inequalities: 

~,~(~)/> ~ ,~ (~) /> . . .  >~ ~,k(~) > 0 > ~h+d~) >/ . . . .  
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The regularity classes for self-adjoint completely continuous operators were first introduced 
by one of the authors in [15]. 

LEMMA 1.4. Let operators ~,'~9, ~(~) and ~{~9. Then their eigenvalues, num- 
bered in nonascending order, satisfy the inequalities 

~%~(~:) ~< ~#(~) ~<;~j(~), ] = !, 2 . . . . .  (1 .14)  

Moreover, if i n d ~ = i n d ~ ) = k ,  then i n d , = k ,  and 

and 

~- ,  ~ <  ~ - ,  < ~ - l .  (I . 16) 

Note that relations (1.14) and (1.15) follow directly from the Courant minimax principle. The 
proof of (1.16) is less trivial and is given in [12, p. 154]. 

LEMMA 1.5. Let s D~;(~) and 9[~. Let :q0~, ~ .... , q~, ... and 9~, ~2,.-.,~n,... be 
complete orthonormal in $ systems of eigenvectors of the operators 9i and ~9 , respectively. 
Then the space ~ can be represented as ~=X~ Y, where X is a linear span of the vectors 
qh .... , t~, and Y is a set of all z~, such that (z, ~j) = 0 for j = I, 2 .... ,k. 

Proof. We show first that 
I h 

dot t(q~, Cm)},,,m=~ =~ 0. 

L e t  us  a s sume  t h a t  t h e  o p p o s i t e  i s  t r u e .  Then t h e r e  e x i s t s  a v e c t o r  h - - - -~  a j q ) j ~ - 0  s u c h  t h a t  
{ = l  

(h ,  ~ j )  = O, j = 1 , . . . , k .  S i n c e  ~, ~ ( ~  and s  , t h e n  by Lemma 1 .3  we h a v e  t h a t  

h 

o <  E ao (~)(< ~)~ = A (< h) ~< B (< a) = ~ ~ (m)(a, ~a)= ~< 0. 
j = l  j = h + l  

The contradiction obtained proves that the determinant above does not vanish. Therefore, 
for any z ~  the system 

f ~ k 

\ ] j = l  

h 

* * * Putting x ~, * ~ X and y= z ~ Y, obtain has the unique solution ~i, ai, ..,a k- . ~ aj q~j - -  x we 
a decomposition j=l 

<Z = X ~ 3  Y. 

THEOREM 1.2. Let lr:~)-*R be a differentiable functional, let ~=grad~ ~ and let the 
condition (I.6) hold, where A and B correspond, according to (1.11), to the operators ~ and 
~9 , respectively. Moreover, let ind~=ind~9=k. Then Eq. (I .9) has the unique generalized 
solution (p and the estimate 

[fl~i~[q)(0)~/min (~, ~5) ( 1 . 1 7 )  

h o l d s ,  w h e r e  t h e  c o n s t a n t s  ~ and $ a r e  d e t e r m i n e d  by Eqs .  ( 1 . 2 2 )  and  ( 1 . 2 3 ) ;  i f  % O ~ ( N ) ,  
t h e n  

lI~ll ~< II~(0)N/?, ? = rain {X~(~), --X~+,(~)}. ( I. 18) 

Proof. By Lemma 1.1 the functional ~ can be extended to the functional differentiable 
on the whole spece ~ . We define the spaces X and Y as in Lemma I. 5. Then 2~=X@Y. Now 
in order to prove the existence of the solution and to establish estimate (I. 17) it is suffi- 
cient, by virtue of Theorem 1.1, to prove that inequalities (I .2) and (I .3) hold. From the 
representation (1.13) we obtain immediately that 

h 

A (~, 4 = ~ ~, (~X) ( . ,  ~m) -~ ~> Xh (~)/I x IP, x ~ X,  
j=~ (I. 19) 
co 

~=~+~ (1 .20)  
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Recall that ~, ~(~), i.e., ~ has the same domain of elements and the same topology 
as the energy space of the operators If--~ and l!--~ (l is sufficiently large). Hence the 
norm l.I in ~ and energy norms I'I~ and I'I~ are equivalent, i.e., there exist constants 
az, Bz > 0 such that 

I z l ~ > ~ l z l ,  l z l ~ < ~ l z l ,  z ~ : ~ .  ( 1 . 2 1 )  

By (1.11) and (1.19) we have that 

Hence 

A (x, x) = l tl x 11 ~ - I ~ I~ >~ ~ (m It x il ~, 

[~ - ~ (u)] 1/�9 1/~ >~1 x I~, 

and taking into account (1.21) we obtain the estimate 

II x II ~ i> ~/F -- ~ (~)I. 

Therefore, the estimate (1.2) is established with 

= ~ (~) ~ / I z  - ~ (~)1. (1.22) 

Hence 

(~z  - ~ h ,  ( ~  - -  r  - h ) )  f> ,~ (ll ,~(z - h)llz+ IIt~(z - h)llZ). 

o 2 

I I$z- -$h ,  ~ I f ~ ( ~ - h ) F § 1 6 2  ,/, h ~ l l ( X -  r  h)[I I1(~§ r  h)ll~r--.o I.? >~ ~, I z - -  h .  t ~ II 

Putting z = q~, h = 0 we obtain the estimate (I. 18). 

2. Periodic Boundary-Value Problem for the Second-Order Equations 

2.1. Hill's Differential Operators. We apply the results of the previous section to 
the following boundary-value problem: 

d(  dz) !.. 7F P(t)~ +Q(t)z=](t),  o~t<~o~, ( 2 . 1 )  

z(O) = z(~o), i(O) = i(o~). ( 2 . 2 )  

Let H and Z be Hilbert spaces with the scalar products < , >, < , >i and with the norms 
I-I, ]" [I, respectively. We assume that the space Z is defuse and compactly imbedded in H. 

We investigate the problem (2.1), (2.2) under the following assumptions: 

a) for every t~[0, ~] P(t):II--~H is a linear bounded self-adjoint operator such that 
P(0) = P(~); the generator-valued function P(t) is strongly continuously differentiable and 

<P(t)h, h>~polh[ ~, p o > r  h~H; ( 2 . 3 )  

b) for every t~[0, ~] Q(t):D(Q)-+H is a linear self-adjoint operator, which for every t 
is defined on the domain D(Q); we assume that D(Q) is dense in H, that the operator-valued 
function Q(t) is strongly continuous and semibounded from above 

<Q(t)h, h><~alhl z, h~D(Q); ( 2 . 4 )  

that the energy space of the operator II --Q(t) (1 > a) has the same domain of elements as Z 
and that there exist constants ci, c2 > 0 such that 

~I~I~<I ~l~<~l~l~, (2.5) 

where by l-Iq we dertote the energy norm generated by the operator II -- Q(t); 
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The estimate (I .3) can be proved in the same manner. We can put 

= ~ I ~+i (~)I/I z -- ~+i (~)I- (I . 23) 

In order to prove the estimate (1.18) we introduce linear manifolds ~=X and ~={y~ 
~:(y, ~)=0, )=I, ..., k}. As in the proof of Lemma 1.5 we can show that ~)=~@@~. Let 
~:~-+~ be the projection of �9 on ~ parallel to ~/ and let ~:~-+@~ be the comple- 
mentary projection. By the arguments similar to those from [12, p. 111] we can obtain from 
(I. 6) that 



e) f(.) is an element of the Hilbert space ~----L2([0, o]; /f) , in which the scalar prod- 
uct ( , ) and the norm ]]'[] are defined in the usual way. 

The solution of the problem (2.1), (2.2), by our definition, will be a function q0 :[0, 

0~] § D(Q) such that (Qq~)(')~, the functions q~(.), and (p~)'(.) are absolutely continuous, 

(P$)(.)~fj,.Ep(t) satisfies Eq. (2.1) for almost all t~[0, (0] �9 

Remark 2.1. The problem of finding periodic in t solutions of boundary-value problems 
for partial differential equations can be reduced to the problem (2. I), (2.2). As an example 
of the operator P(t) we consider the multiplication operator. As an operator Q(t), t~ [0, 
~] we consider the operator which is defined on the Hilbert space H = Lz(~) (~ is a bounded 
domain in R n with a sufficiently smooth boundary) and which is generated by a symmetric dif- 
ferential expression 

Q(t) z =  ~ a : i ( t , x  §  z 

where the coefficients are sufficiently smooth and ~-periodic in t. Let the ellipticity 
condition 

n 

a~i(t,x)~:~.-~/6~ ~ ,  t~ [O,~o] ,  x ~ f ~  
i,,i=l i = 1  

o 2 
If we put D(Q) = W2 (~), then for every t~[0, ~] hold for some 6 > O. 

Ol 
self-adjoint and semibounded from above. Note that in this case Z = W2(~). 

Consider in ~ the differential operator ~, which is defined as follows: 

~( ~) ~z=~i- P(t)~ +Q(t) z, z ~ ( ~ ) ,  

~(~) = ~)(P, Q) = IZ ~ 
z~D(Q), Qz~O, 1 
z, P z  - -  is absolutely continuous, ( P z ) ' ~  ~, 

(o) = z 0 ) ,  ~ (o) = ~ (~).  

where 

The operator ~ : ~ ( ~ ) ~  

the operator Q(t) is 

( 2 . 6 )  

(2.7) 

is called Hill 's operator [generated by the pair of coefficients 
(P(t), Q(t)}]. Now the solvability of the problem (2.1), (2.2) is equivalent to the solv- 
ability of the equation 

~z =/. (2. s) 

LEMMA 2.1. The domain ~(~) is dense in ~, the operator ~:~(%)-+~ is symmetrical 
and semibounded from above. 

Proof. In order to show the density of ~(~) in ~ we choose a complete in H system 
of elements {~=, a~A} from D(Q). Then the system of functions 

{cos zktu=, sin • • = 2~ /~ ,  k = 0, i . . . .  , ~ ~ A} (2.9) 

is complete in ~, and therefore each z~ has the Fourier expansion 

z (t) = ~, [ak~ cos xkt + ~k~ sin xkt] u~, 
k=O ~ I = l  

where '~k~ = (z, cos • ~h~ = (z, sin • 
We put 

N N 

~ .  (t) = E E [ ~  cos •  + ~ sin ~kt] ~ .  
k : O  m = l  

It is clear that zx~(~) for every fixed N. Moreover, 

This proves the completeness of ~(@) in ~. 
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For z, h ~ ) ( ~ )  we have that 

0) 

(3z, h) ---- .f {<(Pz)" (t), h (t)> + <0 (t) z (t), h (t)}} dt. 
0 

We integrate by parts in the first integral and obtain 

(3z, h) = y {-- <P (t) s (t), i (t)> + <Q (t) z (t), h (t)>} dt. 
0 

Hence, taking into account that the generators P(t) and Q(t) are self-adjoint, we obtain that 
the operator ~ is symmetrical and from (2.3), (2.4) we obtain the estimate 

(%z, z) 4 -pol l i [F+ a[ iz i l~  allzll ~. (2.]0) 
The lemma is proved. 

We fix some ~ ~ ~ and denote by H$ the energy space of the operator II-~. Note that 
for z. h~(~) the energy scalar product and the energy norm are 

[~, h]~ = - -  (P~, i )  + ((U - -  Q) z, h), 

I z I~ = .i { - -  <P (t) z (t), z (t)> + [z (t)I~} dt. 
0 

Actually these formulas are true for every element from //~. 

We i n t r o d u c e  t he  space  L2([O,  co]; Z) w i t h  t he  s c a l a r  p r o d u c t  

(z, h h = i' <z (t), h (t)>~dt 
0 

(2.11) 

(2.12) 

Z _\1 /2  and with the norm Ilzl[1 ( ,~h �9 We also introduce the space W~([0, o]; H; (0), which consists 
of all functions z from the Sobolev space W I 2 ([0, (0]; H), such that z(0) = z(w). In this space 
the norm is defined as usual: 

We consider now the space 

with the scalar product 

ii: I J ~ :  I1 ~ it ~" +/I i t~ ~. 

= L~ ([0, ~1, Z) n W~ ([0, col; H; co) 

[z, hi = (z, h)~+ (4 h) 
and with the norm 

It is clear that ~ is a Hilbert space and for z~(~) the estimate 

holds. 

(2.13) 

LEMMA 2.2. 

space Z. 

Proof. Let 

Since z~--z,,@~(9~), 

The space H% has the same domain of elements and the same topology as the 

z~H~. Then there exists a sequence {z n} of elements from ~(~) such that 

I z . - - z m l a  ..... -~0, l zn--Z~-n~ ~ ~0. (2.14) 

it follows from (2.12) that the sequence {Zn} is a Cauchy sequence in ~. 
Therefore, there exists w~ such that []~--wfl-~O as n § oo. From the second relation in 
(2.14) it follows that w=~. Let us show that z(0) = z(~). The continuity of the imbed- 
ding of W21([0, ~]; H) in the space C([0, ~]; H) of continuous functions z:[0, ~] § H with 
the uniform norm implies that the following estimate holds: 

max Iz(t) l ~ c ( ~ z ~ + ~ z ~ ) .  (2 .15 )  
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Therefore, taking into account that Zn(0) = Zn(m) , we obtain 

I z ( O ) - z ( ~ ) l < l ~ ( O ) - ~ ( o ) 1  + I ~ ( ~ ) -  ~ ( ~ ) 1 ~  ~(t1~-~I1 + ~ -  ~ ) ~ - - L o  

Hence z~W~([O,~J;H;~) .  

From ( 2 . 1 4 ) ,  ( 2 . J 2 ) ,  and ( 2 . 5 )  i t  f o l l o w s  t h a t  t h e  s e q u e n c e  {z n} i s  a Cauehy  s e q u e n c e  
i n  L 2 ( [ 0 ,  m] ;  Z ) .  S i n c e  t h i s  s p a c e  i s  imbedded  in  $ and Ilz n -- zII § 0 as  n + ~ we o b t a i n  
t h a t  z ~ L ~ ( [ 0 ,  m]; Z). Thus  we h a v e  p r o v e d  t h a t  Ha_____~5~ By t a k i n g  l i m i t s  i n  ( 2 . 1 2 )  we c a n  
e a s i l y  p r o v e  t h a t  t h e  f o r m u l a  ( 2 . 1 2 ) ,  and t h e r e f o r e  ( 2 . 1 1 ) ,  h o l d s  f o r  e v e r y  z , h ~ f - Z  8. 

L e t  us p r o v e  t h a t  ~ H g .  L e t  z ~ .  We c o n s t r u c t  a s e q u e n c e  {z~}, z n ~ ( ~ ) ,  w i t h  t h e  
p r o p e r t i e s  ( 2 . 1 4 ) .  F o r  t h i s  we c h o o s e  a s y s t e m  o f  t y p e  ( 2 . 9 )  w h i c h  i s  c o m p l e t e  i n  $ , w h e r e  
u ~ D ( Q )  and t h e  f o l l o w i n g  c o n d i t i o n  h o l d s :  

<Q(O)um, un> = ~mn, ~ m n - -  isthe Kroneckerdeltasymbol. 

We c o n s i d e r  t h e  F o u r i e r  e x p a n s i o n  f o r  t h e  f u n c t i o n  ~ : 

s  ~ [a~cos•  
~,~l 

( 2 . 1 6 )  

( 2 . 1 7 )  

where 

a~,~ = (i, cos • b~,~ = (~, sin u.ktu.,). 

Note that in (2.17) we sum over k ~ 0, since ~0m = 0 by the condition that z(0) = z(~). 

i n t e g r a t e  e v e r y  t e r m  i n  ( 2 . 1 7 )  and o b t a i n  t h e  e x p a n s i o n  

Z (t) = Z (0) + 2 t [ahm.~in xkt + b~.m (1 - -  cos xk/)] urn. 
h,m=l  

Since D(Q) is dense in H, for every ~ > 0 we choose such ~D(Q) that lz(0)--~l < *  
sider the function 

N 

z~ (t) = ~ + ~ ~ [ak~ sin • + b~m (t - -  cos • urn. 
h l r n ~ l  

We 

We con- 

It is not difficult to see that z~D(~) and that Mz~r--zll-+O as n § ~;. Let us show that the 

sequence {z N} is a Cauchy sequence H$. in Firstly, 

and 

i < P  (t) (zN (t) - -  zM (t)), zs," (t) - -  z ~  (t)) dt ~ - +  0 
0 

zN - -  z .  ~ ~--7g-++~-~ O. 

Secondly, taking into account that the operator-valued function [I[-Q(t)] ~]~. UI-Q(O)] -~/~ 
bounded and (2.16) (for N > M) 

i I z,-+ (t) - -  z ~ ( t ) I : d t ~  max t flS - -  Q(t)pl~.tlS-- Q(O)] -~/2 i ~ . 

�9 f <[l! - Q (0)] (zN (t)  - z ~ ( t ) ) ,  z,,~ (t)  - z ~  (t)  > dt  
O 

[ <i ~ -  [a~msin•  + 
h , m ~ M  l , n ~ M  0 

+ bkm(l - -  cos • [a~ sin • + bz~ (1 - -  cos • tit. <Q (0) u~, u~)} <~ 
] 

<~ d2 II ~N - zMll 2 + ~ 1 2 b~M) N , M ~  ~ , ~ = M ~ ( a ~  + ~ - + 0  

is 
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by Bessel's inequality. Therefore, we have proved that the sequence (z N} satisfies (2.14) 
and hence z~Ha. 

Thus, Ha has the same domain of elements as ~ . The equivalence of the norms in 
these spaces follows from (2.13) and from the fact that ~(~) is dense in H$=~. 

LEMMA 2.3. The space ~ is compactly imbedded in ~. 

Proof. Let K={z~:lzi ~r}. We have to prove that this is totally bounded in 6. 
Moreover, we shall prove that this set is totally bounded in C([0, ~]; H). It is not dif- 
ficult to see that firstly the set K is uniformly bounded, since by (2.]5) 

m a x  I z ( t )  l ~ < ~ l z l ~ < c r .  
O~t~o 

Secondly, this family is equicontinuous since 

r; I I Z (t)  - -  Z (S) ] = ('~) dT ~ I1 9:. It" [ t - -  8 11/2 ~ F ] t - -  S 11/2. 

Finally, the set Kt={z(t):z~K} of values of the functions from K for every t~[0, o] is 
totally bounded in H. In order to prove this fact we define the functions from this family 
on the whole axis by continuing them u-periodically, and we construct for them Steklov's mean 
functions 

We have that 

t+~ 

z~ (t) = N z ('~) dT. 

t+e 

_II ~ I g (T)lldT < (28) -112 ~ g Ill < cr (2e) -I/=. [~o (t)I ,  --~ 2 ,  

Since Z is compactly imbedded in H, the set Kt.~={z,(t):  z ~ K }  for every t and c > 0 is totally 
bounded in H. From the relation 

t+e t+z 

t - e  t--e 

it follows, by Frechet's theorem, that the set H is totally bounded in Kt. By the Arzela-- 
Ascoli theorem the set K is totally bounded in C([0, ~]; H), and therefore, in ~ . The lemma 
is proved. 

Remark 2.2. If the operator-valued function Q(t) is strongly differentiable in D(Q) 
then Hill's operator has a regular point and hence it is self-adjoint. For P(t) = I this 
fact was established in [5]. 

We denote by ~ the Friedrichs self-adjoint extension of the operator ~. As is known 
the energy spaces of the operators I[--~ and I[--~ coincide. Therefore, the self-adjoint 
extension of Hill's operators, generated, according to (2.6), (2.7), by coefficients {P(t), 
Q(t)} which satisfy the conditions a), b), belong to the class ~(~). This class was defined 
in the previous section. Hence these operators can be subdivided into the regularity classes. 
In particular if P(t) = I, and if Q(t) = Q does not depend on t, has a discrete spectrum and 
~i, ~2 .... ,~s are the positive eigenvalues of the operator Q, then (see [5]) the operator 
is regular precisely when 

v ~ ( 2 ~ n / ~ )  ~, 7 = t ,  2 . . . .  , s; n = O ,  t . . . . .  ( 2 . 1 8 )  

Moreover, its spectrum coincides with the set 

0 ( 3 )  ---- {~ ~ R: ix = v z -- ( 2 ~ n / ( o )  2, v ~ o ( Q ) ,  n = 0, t ,  . . . } .  

If condition (2.18) is satisfied, then 
s 

i n d  ~ ~ s + vj , -= (2.19) 
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where by [-] we denote the integer part of a number. 

Remark 2.3. If Q(t) is a negative-definite operator-valued function, then by (2.10), 
ind ~ = O. 

2.2. Solvability Theorems. We consider a periodic boundary-value problem for the non- 
linear second-order equation 

(P ( t )~)  § F (t, z) 0, (2.20) 

z(O) = z ( ~ ) ,  ~(0) = ~(~), 
( 2 . 2 1 )  

where as before P(t) possesses the property a), and F:[0, ~] x D § H (D is a linear set which 
is dense in H),and F(t, z) for every z~D is an element from the space ~. 

We define the solution of the problem (2.20), (2.21) as a function @:[0, ~]-~O such 

that ~(-) is an element of the space 2~, the functions (P$)'(.), F(t, ~(.)) belong to the space 
~, ~(t) satisfies the conditions (2.21), and for almost all t~[0, ~] it satisfies Eq. (2.20). 

The problem (2.20), (2.21) generates the operator in 

which is defined on the domain 

Pz  - i s  absolutely continuous (Pz) ~ ~,}  
Or) = z ~ 2 :  F (t, z) ~ 4 ,  ~ (o) = ~ (~).  

We assume that the set ~(N) is linear and dense in 2:. For example, this is true if F(t, 
z) = Q(t)z + f(t, z), f is a bounded in 2: operator and Q satisfies the condition b). 

Now the solvability of the problem (2.20), (2.21) is equivalent to the solvability of 
the equation 

~z = O. ( 2 . 2 2 )  

R e c a l l  t h a t  i f  ~ i s  a p o t e n t i a l  o p e r a t o r ,  such  t h a t  J = p o t N : N ( N ) ~ R  can be e x t e n d e d  to  t h e  
whole space ~ without the loss of differentiability, then (by definition) a stationary point 
of the functional J:~-+R, i.e., the solution of the equation 

DJ(z;  h ) = O  V h ~ 2 : ,  (2.23) 

is called a generalized solution of Eq. (2.22). 

THEOREM 2.1. Assume that there exists a function g:[0, ~] x D § R, such that it is 
continuous with respect to t, differentiable with respect to z, and for every z, h~(N) 

lira _1 {g (t, z -k eh) - -  g (t, z)} = <F (t, z), h>. 
8~"0 8 

(2.24) 

Assume that there exist two pairs of coefficients {PA(t), A(t)}, (PB(t), B(t)}, which generate 
Hill's operators ~ and ~ , respectively, such that ~ , ~  for some k > 0 and the inequali- 
ties 

h o l d .  

<Pz(t)z, z> <~ <P(t)z, z> <~ <Px(t)z, z>, z ~ H ,  
<A(t)h, h> <~ <F(t, z +  h ) - F ( t ,  z), h>-~ <B(t)h, h>, z, h ~ D .  

(2.25) 
(2.26) 

Then Eq. (2.22) has the unique generalized solution ~ and the following estimate holds: 

with some constant Y1 > 0. 

If ~(~>, then the estimate 

Iq) l ~< ?,ltF(t, O)lt (2.27) 

holds. 

]lq)ll <~ JJF(t, 0)]l/min ()~h(~l), -)~k+~(~9)} (2.28) 
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Proof. We consider the functional 

.Y(z)----- - - E < P ( t )  z(t),  z ( t ) > +  g(t ,z(t))  dt, z ~ ( ~ ) .  
o 

Let us prove that it is differentiable and for z, h~)(9~): 

{0 

D3" (z; h) = j" {--  <P (t) z (t), ~t (t)> + <F (t, z (t)), h (t)>} dt. 
o 

We first note that it follows from (2.26) that 

I < F ( t , z + h ) - - F ( t , z ) , h > l ~ . ~ 9 1 h l ~ ,  z , h ~ D ,  

with some constant p > 0. Therefore, the function <F(t, z(t) 
in 0, and hence, the following representation holds: 

( 2 . 2 9 )  

(2.30) 

( 2 . 3 1 )  

+ O h ( t ) ) ,  h(t)> is c o n t i n u o u s  

Moreover, by 

1 

{g (t, z (t) + eh (t)) - -  g (t, z (t))} = # <F (t, z (t) + Oeh (t)), 
O 

h (t)> dt. 
(2.26) we have that 

I <F (t, z (t) + e0h (t)), h (t)> 1 ~ e091 h (t) 1~ + I F (t, z (t)) I" I h (t) i 

(2.32) 

Hence for 0<8, 0~0~I the integrand in (2.32) has a majorant with respect to e, which is 
i n t e g r a b l e  w i t h  r e s p e c t  t o  t and @. T h e r e f o r e  

~ i l i m y ~ { g ( t , z ( t ) + e h ( t ) ) - - g ( t , z ( t ) ) } d t =  <F(t,z(t)), h(t)>dt. 
~ 0  

0 0 

From this it is easy to obtain the formula (2.30) and the relation 

D~(z; h ) =  ($z, h), z, ~ ' ~ ( N ) .  (2.33) 

We consider the funetionals A, B:~X~R, which correspond, according to (1.11), to 
the operators g and ~ , respectively. Taking into account (2.11) we can write that 

A (z, z) = ~ {-- <PA (t) ~ (t), ~ (t)> + <A (t) z (t), z (t)>} dt, 
0 

B (z, z) = .f {--  <PB (t) z (t), z (t)> + <B (t) z (t), z (t)>} dt. 
0 

By (2.25) and (2.26) the functional J satisfies the conditions of Lemma 1.2. Therefore, it 
can be extended to the whole space ~ . The extended operator is differentiable and the in- 
equality (1.7) holds. By Theorem 1.2 Eq. (2.22) has the unique generalized solution. The 
estimate (1.17) holds for this solution. By (2.30) 

[DJ(0;  h)l ~ liE(t, 0)ll.llhl[ ~ tilE(t, 0)l;.Ihl, 

where c is the norm of imbedding of ~ in ~, hence the estimate (2.27) holds. If ~(~), 
then (2.28) follows directly from (I.]8). The theorem is proved. 

COROLLARY 2.1. Let constants 0 < m < M exist and let constant operators A and B with 
properties b) exist such that 

mlz[Z~ <P(t)z, z> ~M[Z] 2, 
<Ah, h> ~ <F(t, z +  h)--F(t ,  z), h> ~ (Bh, h); 

where F is a potential operator, i.e., Eq. (2.24) holds. Let ~ % ~  ..,~%~>0 
~2~...~ be all positive eigenvalues of the operators A and B, respectively. 
j = I,...,I we can find an integer nj >~ 0 such that 

(2~ '~ ~'# Ix~ --/"2-~ )~ ~-njJ  < ~ < . . ~ - ( n j + l )  , ] = t , . . . , l ,  

and ~i 
If for every 

(2.34) 
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then Eq. (2.22) has the unique generalized solution. 

Proof. Inequalities (2.34) guarantee that Hill's operators 9~ and ~, generated by the 
coefficients {mI, A} and {M.I, B}, respectively, belong to the same regularity class. 

Note that Corollary 2.1 contains as a particular case the results of [6-11] where the 
problem (2.20)-(2.21) is investigated in the finite dimensional case. 

COROLLARY 2.2. Let F(t, z) = Q(t)z + f(t, z), Q(t):D § H, satisfy the conditions b), 
the operator-valued function Q(t) is strongly continuously differentiable on D, and f:[O, 
m] x H § H is such that the composition operator (fz)(t) = f(t, z(t)) is continuous in ~. 
Moreover, let the conditions of Theorem 2.1 hold. 

Then the generalized solution of Eq. (2.22) q0~)(9~). 

Proof. Note that the operator 9~ can be represented as 9~=%0s where ~ is HillVs 
operator, generated by the coefficients {P(t), Q(t)--a.I} , and (~'z)(t):f(t, z(t))+az(t), where 
the constant ~ is determined from condition (2.24). By virtue of Remarks 2.2 and 2.3 the 
operator ~0 is self-adjoint and negative-definite. The corollary follows from Lemma 1.2. 

Consider a linear problem (2.1), (2.2) for ]~, or, which is the same, the equation 

~z = [ ( 2 . 3 5 )  

Note that in the linear case the generalized solution of Eq. (2.35) (~ , and only it, satis- 
fies the identity 

L(q% h ) = ( ] ,  h) v h ~ . : .  (2.36) 

The funetionals L(z, h) and L(z, h), generated by the operators ~ and ~, coincide; there- 
fore, the usual solution of the equation 

%z= l (2.37) 

is  the genera l i zed s o l u t i o n  of Eq. (2 .35) .  

THEOREM 2.2. Let the pairs {PA(t), A(t)} and (PB(t), B(t)} be such that the inequalities 
(2.25) hold and forh~D(Q) 

<A(t)h, h> <~ <Q(t)h, h> <~ <B(t)h, h>, (2.38) 

and let the operators !~I, ~ belong to the same regularity class (~. 

Then Eq. (2.35) has the unique generalized solution and the following estimates hold: 

[q~[ ~ ,hi[f[[, (2.39) 

It,ll ~ [I/ll/min {2~(~), --gk+,(~)}o ( 2 . 4 0 )  

Proof. The existence of the solution and the estimate (2.39) follows from Theorem 2.1. 
The estimate (2.40) follows from the representation 

and from the est imate ( I . 1 4 ) .  
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AN OPTIMAL CONTROL PROBLEM FOR AN ELLIPTICAL SYSTEM WITH POWER NONLINEARITY 

S. Ya. Serovaiskii UDC 517.977.56 

Lions and others [I, 2] considered the method of solving linear problems of optimal 
control using the necessary conditions for optimality in the form of variational inequali- 
ties. The direct extension of these results to nonlinear systems is difficult, connected 
with the necessity to prove the differentiability of the function of the state of the control 
system. 

Another method of obtaining optimality conditions was suggested in [3], connected with 
the construction of the so-called "quasiconjugate system." Moreover, to obtain optimality 
conditions it is sufficient that the function of the state of control be weakly continuous. 
Thus, we are able to extend significantly the class of optimization problems which are soluble 
using variational inequalities. These results were developed further in [4]. 

In this article the method developed in [3, 4] is applied to the solution of an optimal 
control problem for an elliptical system with power nonlinearity. 

I. Statement of the Problem 

In the open bounded region ~ of the space R 2, with sufficiently smooth boundary ~, 
consider the control process described by the equations 

-hg(v)+[g(v)F=[+v x ~ ,  
g(v)=O x~O~, 

where A is the Laplace operator, v is a control defined on the set 

U={vlv~L~(~), v(x)~K a.e.}, 

K is a convex closed set, y(v) is the function of the state of the system corresponding to 
the control v, and ]~L~I~(~) is a known function. 

Define the functional space Y=ff~(~) ~ L4(~). Clearly, the space Y with the norm II'[IY= 
]I'~+II']IL~, where II-II is the norm in H~(~), is Banach. 

Definition I. The function y(v) is called a generalized solution of problem (1.1), 
(1.2), corresponding to the control v~U, if y(v)~Y and we have the equation 

(1.1) 

(1.2) 

aty(v),~,]+<[y(v)]%~>=<]+v,~> v ~ Y ,  
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