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STRONGLY HOMOGENEOUS TORSION-FREE ABELIAN GROUPS 

P. A. Krylov UDC 512.541 

A torsion-free Abelian group G is called strongly homogeneous if the automorphism group 
of G acts transitively on the set of all pure subgroups of rank I, i.e., if A and B are any 
pure subgroups of G of rank I, then aA = B for some ~Au[G. 

Strongly homogeneous groups form an important and interesting class of groups. Closely 
connected with these groups are the strongly homogeneous torsion-free rings. An associative 
ring R with unity is called strongly homogeneous if each element is an integral multiple of 
some element that is invertible in R. The additive group R + of a strongly homogeneous tor- 
sion-free ring R is strongly homogeneous. Indeed, if A and B are pure subgroups of R + of 
rank I, then there exist invertible elements u~A and v~B Left multiplication of R by 
the element w : vu -I is an automorphism of the group R + and wA = B. 

In certain special cases, strongly homogeneous torsion-free groups of finite rank were 
described in [I-3]. Arnold [4] completed the description of strongly homogeneous groups of 
finite rank. In the present paper we study strongly homogeneous torsion-free groups of arbi- 
trary rank and their endomorphism rings. We prove that a strongly homogeneous torsion-free 
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group G is isomorphic to a tensor product of a module over a strongly homogeneous ring, all 
of whose submodules of countable rank are free, by a torsion-free group of rank | (Theorem 
I). It follows that a countable torsion-free group G is strongly homogeneous if and only if 
G~F| where F is a finitely or countably generated free module over a countable strongly 
homogeneous ring and A is a group of rank I (Corollary 2). Since a torsion-free group of 
finite rank is countable, this corollary implies Arnold's theorem [4, Theorem I]. We then 
prove (Theorem 2, Corollary 4) that a strongly homogeneous torsion-free group is essentially 
determined by its endomorphism ring in the class of all strongly homogeneous groups. 

All groups considered in this paper are Abelian. The group terminology and notation are 
taken from [5, 6]. If G is a torsion-free group and p is a prime, then the p-height hp(a) of 
an element a~G is the largest integer k for which the equation a = pkx is solvable. If 
there exists no such x, then hp(a) = ~. If Pl, p2,.., is the sequence of all primes, then 
x(a) = {hp~(a), hp2(~) .... } is the characteristic of a. If b~G and hpi(a) ~ hpi(b) (I, 

2,...), then we write x(a) ~ x(b). A class of equivalent characteristics is called a type 
[6, Sec. 85]. A torsion-free group of rank I is completely determined by its type. A group 
G in which all nonzero elements have the same type is called homogeneous. This common type 
is called the type of the group G and is denoted by t(G). A strongly homogeneous group is 
homogeneous. A type is called ide~otent if it contains a characteristic consisting of 0 
and ~. Let E(G) denote the endomorphism ring of the group G, Z the ring of integers, and Q 
the field of rational numbers. If A is a torsion-free group and g| g~G, a~A, 
then h~(g| (see [5, Sec. 60, Exercise 9]). If A has rank I, i.e., is isomor- 
phic to a subgroup of Q, then each element of G| can be written in the form g| for 
certain gEG and aEA. 

We begin our exposition of the results with the following 

Remark I. A strongly homogeneous torsion-free group G has the following property. If 
O~a, b~G and %(a)~%(b) (%(a)=.%(b)), then aa = b for some ~E(G) (~AutG). Let A and B 
be the pure subgroups of G generated by a and b, respectively. Then ~A=B, ~AutG. Since 
~a, bEB and B has rank I, we have n(Ba) = mb for certain natural numbers n and m. We may 
assume (n, m) = I. An automorphism preserves characteristics of elements. Therefore, %(~a) <. 
%(b), hence mG = G. Consequently, multiplication by n/m is an endomorphism of G, and (nB/ 
m)a = b. If x(a) = x(b), then also nG = G, n.I/m is an automorphism of G, and (n$/m)a = b. 
In particular, if G has idempotent type, then each pure subgroup contains a generator of the 
group G as an E(G)-module. Indeed, if A is pure in G, then A contains an element a ~ 0 whose 
characteristic consists of 0 and ~. Then x(a) ~ x(b) for any bEG and ~a=b, a~E(G), 
i.e., a is a generator of the E(G)-module G. 

LEMMA I. I) Suppose G is a strongly homogeneous torsion-free group. Then for any ele- 
ment g, 0 ~g~G , the orbit O(g)={f~G[f=~g, ~EE(G)}=F is a strongly homogeneous group 
of idempotent type and G~F| , where A is a torsion-free group of rank I and of type t(G) 

and E(G) ~ E(F). 

2) Suppose F is a strongly homogeneous torsion-free group, A is a torsion-free group of 
rank I, and, for each prime p, if pA = A, then pF = F. Then G=F| is a strongly homo- 
geneous group and the mapping =~| ~E(f), is an isomorphism of the rings E(F) and 
E(G). 

Proof. I) Consider any pure subgroups X' and Y' in F of rank I. Let X and Y be the pure 
subgroups of G generated by X' and Y', respectively. Then X nF=X' and YNF=Y'. If 
a~AutG and ~X = Y, then obviously ~' = ~IF (the restriction of ~ to F) is an automorphism 
of F and ~'X' = Y'. Consequently, F is strongly homogeneous. By construction, the element 
g is a generator of the E(F)-module F. Since an endomorphism does not lower characteristics 
of elements, we have x(g) ~ x(f) for all ]~F (characteristics in F). This is possible only 
if x(g) consists of 0 and ~, i.e., g, hence also F, has idempotent type. 

Suppose A is a subgroup of Q containing unity and of type t(G). We will show that G 
F| Note first that if B is a torsion-free group of rank I and of type t(F), then t(B) = 
t(F) ~ t(G) = t(A). Therefore, since t(B) is an idempotent type, B| [6, Proposition 

85.3]. The mapping F • A + G defined by b,~- -+-~- , b~F, m A is bilinear. The ele- 

ment nb/m exists in G. This follows from the existence of an isomorphism B| , where 
B is the pure subgroup of F generated by b. Consequently, there exists a homomorphism 

216 



( _:) n 
~:F| such that t~ bQ ---- ~-b [7, Sec. 5.1, Proposition 2]. Clearly, i# is a mono- 

morphism. Suppose a EG, C is the pure subgroup of G generated by cz, and B=CNF. Then 

B'| This implies the existence of a natural number m such that ma~B and IEA. 
m 

Now ma@--~F@~A,: ~ ma@ = a ,  and  ~ i s  an  i s o m o r p h i s m .  The i s o m o r p h i s m  E(G) ~ E (F )  

f o l l o w s  f r o m  2 ) .  

2) L e t  X and  Y be  p u r e  s u b g r o u p s  o f  G=F| o f  r a n k  1. C h o o s e  O ~ ( x |  and  
y| (x, y~F; a, b~A) so that Z(x|174 Also, choose natural numbers n and m 
so that ncz = rob. Then nm(x|174 and nm(y|174 Since z(nm(x|174 
b)), we have x(mx) = k(ny). Thus, X and Y contain elements x| and y| (changing the 
notation) such that X(X) = X(Y)- Therefore, ~x = y for some c~AutF (Remark I). Then 
cz| and (o~'|174174 Therefore, (~| and G is strongly homogeneous. 

The mapping =-+~| o~E(F) , is a ring homomorphism E(F) + E(G). If x|174 x, 
y ~F, a~A, then the existence of a natural isomorphism f| implies x = y. Thus, 
the above mapping is a monomorphism. Suppose ?~E(G). We will show that y is induced by 
some ~E(F) , i.e., ]=0~| Suppose x~F, a~A , and ?(x | a) =,z | b, z~F, b~A . The 
elements a and b have equivalent characteristics. Consequently, there are only finitely many 
primes p for which hp(CZ) > h (b), and in this case we always have hp(C~) < ~. Let p be one 
of these primes. Write hp(c~ = hp(b) + k. Since hp(x| hv(z| 
and h~(x|174 it follows that h~(z)=hp(x)+l, where 7 >/ k (7 is a natural number or 

= ~). Then z----p*z ', z'~F , and z|174 Here hp(~) = hp(pkb) and, in addition, 
hq(b) = hq(pkb) for all primes q ~ p. There exist elements z~F and b{~A such that z| 
z~| and %(a) ~z(b~). The last inequality implies ncz = mbz for certain natural numbers n 
and m, where (n, m) = I and mA = A. In view of 2), we also have mF = F. Therefore, z~=mz2, 
z ~F. We now have z~|174 =z2|174 Put y = nz2. We have shown that for any 
x| its image satisfies ?(x|174 a for a unique y~F. Uniqueness follows from 
the existence of an isomorphism F| The mapping o~:x--~y, x~f, is an endomorphism 
of F and ? =~| The lemma is proved. 

A ring R is called an E-ring if the left regular representation of R is an isomorphism, 
i.e., each endomorphism of the group R + is equal to left multiplication of the ring R by some 
element of R. An E-ring R is commutative [8, Corollary 1.3]. 

Remark 2. All ideals of a strongly homogeneous ring R are exhausted by the principal 
ideals (n.1) = nR, n = 0, I, 2,... (see [9, Corollary I]). Therefore, a strongly homogeneous 
E-ring is a principal ideal ring. 

THEOREM I. Suppose G is a strongly homogeneous torsion-free group. Then the center C 
of the ring E(G) is a strongly homogeneous ring and G-~F| , where F is a C-module in 
which all submodules of countable rank are free and A is a torsion-free group of rank I and 
of type t(G). 

Proof. l) Suppose F and A are the same as in the lemma. Then G~-F| E(G)~-E(F), 
and F is a strongly homogeneous group of idempotent type. It suffices to prove that the 
center C of the ring E(F) is a strongly homogeneous ring and that all submodules of countable 
rank of the C-module F are free. We will assume that G itself has idempotent type. 

2) Put R=E(G), S=R| and V=GNzO. Then V is a left S-module under the opera- 
tion (~|174 c~/~, a~G , and r, q~Q. For a fixed element ~| its action 
on V is a linear transformation of the Q-space V. We will assume that S is contained in the 
ring L(V) of all linear transformations of the Q-space v. We identify the ring R with its 
image under the canonical monomorphism R-+R| Then S={o~L(V)]no~R for some natural 
number n}. We will prove that the S-module V is irreducible. Suppose ~| b| V, where 
a, b~G; r, (p~Q, and aNr~/=O. If A and B are the pure subgroups of G generated by a and 
b, respectively, then ~A = B for some ~/?. Since .o~a, b~B, it follows that n(~cz) = mb 

for certain natural numbers n and m. Consider the element cr r-~ of S. We have (~z@ 
m \ 

m ~n(o:a)~ ~mb(~-~b~q). Thus, V is generated as an S-module by 
m/ 

any nonzero element. This means that V is an irreducible module. 
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3) Thus, V is a faithful irreducible S-module. By Schur's lemma, D = EndsV is a divi- 

sion ring and, by the density theorem for irreducible modules [10, Chap. 2], S is a dense 

ring of linear transformations of V over D. Note that D consists of those linear transfor- 

mations in L(V) that commute with all elements of S. This follows from the fact that each 
endomorphism of the group V is a linear transformation of the Q-space v. 

4) We will show that D=C| This equality is very important for what follows (we 

identify C| with its image under the canonical monomorphism C@zQ-~R| we do the 
same thing in analogous situations). The center of the ring S is C| hence C| 

Suppose d~D. Choose some generator ~ of the R-module G (Remark I). Since da~V, we have 

n(da) ~ G for some natural number n. Now for any ~ R  we have nd(aa)= a(n(da))~ G. But 

~ ranges over the whole group G as ~ ranges over R, hence nd(G)~G, nd~R, and d~$. The 

element d commutes with all elements of S; hence d lies in the center of S, i.e., d~C| 

and D = C | zQ. 

5) Fix a generator ~ of the R-module G. Let H=Ca~{ealeE-C} be the C-submodule of 

G generated by ~, and let W=Da ={da]d~D} be the D-subspace of V generated by ~. Then 

H = W n G .  S u p p o s e  g ~ W n G  and g = d a ,  d ~ D .  F o r  any a ~ R  we h a v e  d ( a a ) = ~ ( d a ) = ~ g ~ G .  
Since a is a generator, it follows that dG~G and d~R. Thus, d~DnR=c and g~da~H. 
This shows that w n6 ~H.. The reverse inclusion is obvious. 

If c~C and ca = 0, then c(~) = ~(ca) = 0 for any ~R. Consequently, cG = 0 and 

c = O. Therefore, the mapping t-+ca, c~C , is an isomorphism of the C-modules C and H. 

6) We will show that the ring C is strongly homogeneous. Since C is contained in D and 

D is a division ring, it follows that each nonzero endomorphism of G contained in C is a 

monomorphism. Fix a pure subgroup B of rank I in G. Suppose 0~:~C, and let E be the 

pure subgroup of G generated by the image ~B. Since G is a homogeneous group and ~ is a 

monomorphism, we have ~B ~ B ~ E. Since the rank of E is I, it follows that ~B = nE for some 

natural number n. We shall show that ~G = nG. Suppose X is any pure subgroup of G of rank I. 

Choose endomorphisms ~, ~E(G), for which ~B = X and ~E = X. We have ~X = a(~B) = 
~(aB) =~(nE)~ nG. Since X was chosen arbitrarily, ~G~ nG. Also, nX= n(~E) =~(~B) = ~(~B) 
aG. Therefore, nGm~G, hence ~G = nG. We now define an automorphism $ of G as follows. If 

b~G, then $a = nb for a unique a~G. Put go = b. Since aG = nG and a is a monomorphism, 

it is clear that B is an automorphism of G and ~ = n$. Moreover, ~C and the strong homo- 

geneity of the ring C is established. 

7) We will show that the C-submodules of G of finite C-rank are free. Since C is a 

principal ideal ring (Remark 2), submodules of free C-modules are free. Also, if M is a C- 

submodule of G, there exists a C-pure submodule M* of G generated by M. Therefore, it suf- 

fices to prove that C-pure submodules of G of finite C-rank are free. Suppose first that M 

is a C-pure submodule of G of C-rank I. Put W~ =M| zQ. Since D =C | acts naturally 

on V=G| it follows that W~ is a D-subspace of V. If W~=W'@W" , where W' and W" 
are D-subspaces, then W' ~M and W" n M are disjoint C-submodules of M, which is impos- 

sible inasmuch as the C-rank of M is I. Consequently, dim DW~ = I. Note also that M=w~nG. 
If g~W~G , then gEM| , hence ng~M for some natural number n. Therefore, since 

M is pure, we have g~M and M=W~ ~G. Choose in M a generator b of the R-module G, and 
suppose ~, ~ ,  are such that ~ = b and ~b = a. Since ~ and B are linear transformations 

of the D-space V, it follows that W and W~ are D-subspaces of dimension I, hence ~W = W~ and 

$WI = W. Therefore ~H~W~G=M and ~M~W:fl G=H[a, W, and H are the same as in 5)]. 

The equalities (~)~ = ~ and (~)b = b show that (~)IW = I W and (~)IW ~ = IW . Let ~' 

(resp., $') be the restriction of the endomorphism ~ (resp., B) to the subgroup H (resp., M). 

Then we can write $'~' = I H and ~'$' = I M. Therefore, ~' is an isomorphism of H onto M. Since 
~, this isomorphism is also a C-module isomorphism. Thus, M ~ H ~ C. 

Assume that all C-submodules of G of C-rank less than k are free, and suppose M is a 
C-pure submodule of G of C-rank k. Put W~=M| Then, as in the beginning of this sec- 

tion, M:W~G and WI is a D-subspace of V of dimension k. We can write W~=W ~oW ~, 
where dim DW' = I, dimDW" = k -- I. Then M~=w'nG and M~=W ~ ~ G are C-submodules of M 
of rank I and k -- I, respectively. By our assumption, these submodules are free. Since the 

ring S is dense in End DV (Set. 3), there exists ~S, acting identically on W' and such 
that ~W" = 0. Choose a natural number n such that n~B; we will show that nM~M~@M~. 
Since the C-modules M and nM are isomorphic, the proof will be complete, inasmuch as M will 
be isomorphic to a submodule of a free C-module. Suppose x~M. Then nx=~(nx)+(~x--~(nxD. 
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Here a(nx)~:W" "and ~ ( n x ) = ( n ~ ) x ~ G .  Thus,  a(nx) E M~. Then n x - - ~ ( n x ) ~ W  ~, n x - ( n a ) x  
G, hence  nx--a(nx)~M2. .  Thus,  nxEM~@M2 and nM~Mi@M2. 

8) Suppose M is a C-submodule of G of countable C-rank. All submodules of M of finite 
rank are free. Since C is a principal ideal ring, we have for C-modules an analogue of the 
well-known criterion of freeness of a countable Abelian group [5, Theorem 19.1]. Therefore, 
M is a free C-module. The theorem is proved. 

Suppose R is a commutative integral domain whose quotient field is an algebraic number 
field. In [4, Proposition 5] conditions were given for R to be strongly homogeneous. We 

denote by ~| the direct sum of ~ groups isomorphic to H ( ~ is some cardinal number). 

COROLLARY I. If G is a strongly homogeneous torsion-free group of finite or countable 
rank over the center C of its endomorphism ring, then G~F| , where F is a free C-module 

and A is a group of rank I. Thus, G~(C(~zA), ~ 0 .  If, in addition, G has idempotent 

type, then G is a free C-module. 

COROLLARY 2. The following properties of a countable torsion-free group G are equiva- 
lent: 

I) G is strongly homogeneous; 

2) G~F| where F is a finitely or countably generated free module over some count- 
able strongly homogeneous torsion-free E-ring T, A is a group of rank I, and if p is 
a prime and pA = A, then pF = F; in this case the center of the ring E(G) is iso- 
morphic to T; 

3) G~eH(~o), where H is an indecomposable strongly homogeneous group. 

Proof. I) = 2). If C is the center of the ring E(G), then, by Theorem I, GmF| 
where F and A are the same as in 2), and C is a strongly homogeneous ring. We need only show 

that C is an E-ring. Since F--~---~| we have G_~| Identify G with ~| 

Then in the notation of the proof of Theorem I we have V :G~zQ:~@(C(~zQ):~eD, where 

D = End SV (Secs. 3 and 4 of the proof). Each endomorphism of the group G is a linear trans- 
formation of the D-space V. Then it is clear that the endomorphism ring E(C| can be em- 
bedded in the ring of linear transformations EndoD~D. By Lemma I, E(C +)~E(C| Thus, 
the ring E(C +) can be embedded in D and, in particular, is commutative. Therefore, C is an 
E-ring by virtue of Proposition 1.2 of [8]. 

2) ~ 3). If F~--~T, ~o, then G_~(T(gzA). Put H=T| The group T + is 

strongly homogeneous; hence, by Lemmm I, so is H. By the same lemma, E(H) ~ E(T +) z T. Con- 
sequently, E(H) has no nontrivial idempotents and H is indecomposable. 

3) ~ I). Let T be the center of the ring E(H). Since H is countable and indecom- 
posable, it follows from Theorem I that H~T| , where A is a group of rank ] and of type 

t(H). Then G~F| where F--~__~QT is a free module over the principal ideal ring T. 

Each element of F can be embedded in a direct summand isomorphic to T +. Since the group T + 
is strongly homogeneous, it is clear that F is also. By Lemma I, G is strongly homogeneous. 

It remains to show that in 2) the center C of E(G) is isomorphic to T. We have G--~___ 
~(TOzA). The center of E(G) is isomorphic to the center of E(T| By Lemma i, 

E(T| and C z T, since the E-ring T is co~mmtative (see the reference pre- 
ceding Remark 2). 

COROLLARY 3. A countable indecomposable torsion-free group G is strongly homogeneous 
if and only if G~R| where R is a countable strongly homogeneous E-ring, A is a group 
of rank I, and if pA = A, then pR = R; in this case, E(G) z R. 

We now consider the endomorphism rings of strongly homogeneous groups. If M is a module 
and R its endomorphism ring, then by taking in R the annihilators of the finite subsets of M 
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as a neighborhood base of zero, we obtain the finite topology on R. It is known that R is a 
complete Hausdorff topological ring in the finite topology [6, Theorem 107.1]; the proof is 
analogous to modules. We regard endomorphism rings as topological with respect to the finite 
topology. 

THEOREM 2. If G and H are strongly homogeneous torsion-free groups whose endomorphism 
rings are topologically isomorphic, then G|174 where B and A are torsion-free 
groups of rank I and of types t(H) and t(G), respectively. More precisely, if G_~FI| 
and II--~F2| are written as in Lemma 1, where FI and F2 are strongly homogeneous groups 
of idempotent types, then the rings E(FI) and E(F2) are topologically isomorphic and any 
topological isomorphism ~):E(F~)---~E(F2) is induced by some group isomorphism (p:Ft'+F2, i.e., 

: TI - +  ~p~l(p -~ ,  T I ~ E ( F ~ ) .  

Proof. Once the second assertion has been proved, Ft~--F2 and G|174174 
(F2|174174 So let us prove the second assertion. By Lemma ], G-~F~| and 
//---F2 | where FI and F2 are strongly homogeneous groups of idempotent types and A and B 
are groups of rank I of types t(G) and t(H), respectively. The mappings ~-+~| ~EE(FI) , 
and ~-+~| ~EE(F2) are ringisomorphisms (EFt) + E(G) and E(F2) + E(H), respectively (Lemma 
I). These are obviously topological isomorphisms. Consequently, the rings E(FI) and E(F2) 
are also topologically isomorphic. 

Suppose ~:E(Fi)--+E(F2) is a topological isomorphism. Put V~=Fi| and S~=E(F~)NzQ 
(i = I, 2). Then V i is a faithful irreducible Si-module (Sec. 2) of the proof of Theorem ]. 
Let D i = EndsiV i and L i = EndDiV i (i = ], 2). Here D i is a division ring and S i is dense 

in the finite topology of the ring L i []0, Chap. 2]. As before, we identify E(F i) with its 
image under the canonical monomorphism E(F i) + S i (i = ], 2). Then the finite topology of 
the ring E(F i) is the same as the topology induced by the finite topology of the ring L i. 
Therefore, ~| is a topological isomorphism of the rings $I and $2, which isomorphism we 
also denote by ~. Since S i is dense in the full ring Li (i = ], 2), ~ can be uniquely ex- 
tended to an isomorphism of Ll and L2, and we again denote this isomorphism by ~. We will 
write ~* instead of ~(~). 

Choose a generator g of the E(F1)-module F1 (Remark ]). Let W be the Dl-subspace of 
Vl generated by g, and let ~:VI + W be a projection. Then ~L~ and 2 = ~. Therefore, 
(~,)2 = ~, and ~*:V2 § ~*V2 is a projection. Fix in ~*V2nf~ some generator h of the E(F2)- 
module F2. 

We define (p:fi--,F~ as follows. If a~F~, then a=~lg for some ~I~E(F~). Put rpa=rl*h, 
We will show that q~ is a mapping. If a = ~ g ,  q ~ E ( F l ) ,  then (~]--~)g, . - - --0.  Consequently, 
( n - n ~ ) g = 0 .  Therefore, (~]*--~]~)7~* = 0  and  (~]*--~]~)]z ( ~ * ,  * ~ h ) g * h = 0 .  

O b v i o u s l y ,  ~ i s  a h o m o m o r p h i s m .  I f  a=rlgV=O, t h e n  ~ g 4 = 0  and ~ * ~ * ~ 0 .  T h e r e f o r e ,  
Tl*h~O , s i n c e  d i m o ~ g * V ~ = t .  T h u s ,  q0 i s  a m o n o m o r p h i s m .  I f  cEF~, we w r i t e  c-~Oh, O~E(F2). 

Pu t  ~ = ~ - ~ ( 0 )  and a=~lg. Then q)a=~l*h=Sh=c, i . e . ,  q~ i s  an  i s o m o r p h i s m .  

I t  r e m a i n s  t o  show t h a t  q0 i n d u c e s  r  S u p p o s e  ~ E ( F ~ ) .  W r i t e  t h e  e l e m e n t  c~F~ a s  Oh 
f o r  some O~E(F~). Pu t  a = ~ - ~ c  and  w r i t e  a = ~ g  f o r  some rI~E(Fi). Then c = 4 * h .  Now 
~*c = ~*~*h = ( ~ ) * h  = ( p ( ( ~ ) g )  = q0~(~g) ---- qv~(q0-~c) = (q@q~-~)c. T h e r e f o r e ,  ~(~) = ~* = q0~q~ "~ f o r  any  
%~E(FI), and  q0 i n d u c e s  ~ .  The t h e o r e m  i s  p r o v e d .  

COROLLARY 4.  I f  G and  H a r e  s t r o n g l y  h o m o g e n e o u s  t o r s i o n - f r e e  g r o u p s  o f  i d e m p o t e n t  o r  
e q u a l  t y p e s  whose  e n d o m o r p h i s m  r i n g s  a r e  t o p o l o g i c a l l y  i s o m o r p h i c ,  t h e n  any  t o p o l o g i c a l  i s o -  
m o r p h i s m  b e t w e e n  E(G) and  E(H) i s  i n d u c e d  by  some g r o u p  i s o m o r p h i s m  b e t w e e n  G and  H. 

P r o o f .  I n  t h e  c a s e  o f  i d e m p o t e n t  t y p e s ,  we may a s s u m e  G = F~ and  H = F2 i n  T h e o r e m  2.  
I f  t ( G )  = t ( H ) ,  t h e n  G~-F~| and H-~JF=| ( i n  t h e  n o t a t i o n  o f  T h e o r e m  2 ) .  We i d e n t i f y  
t h e  l e f t -  and  r i g h t - h a n d  s i d e s  i n  t h e s e  i s o m o r p h i s m s .  S u p p o s e  @:E(G) § E(H) i s  a t o p o l o g i c a l  
i s o m o r p h i s m .  I f  aEE(F~) and ~ p : ~ | 1 7 4  ~ E ( F ~ )  , t h e n  ~ ' : e  § B i s  a t o p o l o g i c a l  i s o -  
m o r p h i s m  E ( F z )  + E ( F ~ )  ( s e e  t h e  b e g i n n i n g  o f  t h e  p r o o f  o f  T h e o r e m  2 ) .  S u p p o s e  t h e  i s o m o r -  
phism ~p:F~-+FB induces ~' Then for each a~E(F~) we have ~(~|174 (q0c~p-~)| = 
(q~|174174 Consequently, the isomorphism q~| between G and H induces @. 

The requirement that the isomorphism @ in Corollary 4 be continuous is necessary. If 
G and H are periodic groups, then any isomorphism @:E(G) + E(H) is topological. The same is 
true if G and H are separable torsion-free groups [6, Sec. 87]. This follows from the fact 
that the finite topology on E(G) can be defined by taking the left annihilators of primitive 
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idempotents of E(G) as a neighborhood subbasis of zero [6]. Since a homogeneous separable 
torsion-free group is strongly homogeneous [6, Proposition 87.2], we have: 

COROLLARY 5 (see [117 ]2]). If G and H are homogeneous separable torsion-free groups 
whose endomorphism rings are isomorphic, then G|174 , where B and A are groups of 
rank ] of types t(H) and t(G), respectively. 

COROLLARY 6. Any topological automorphism of the endomorphism ring of a strongly homo- 
geneous torsion-free group is inner. 
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THE EQUALITY PROBLEM AND FREE PRODUCTS OF LIE ALGEBRAS AND OF 

ASSOCIATIVE ALGEBRAS 

G. P. Kukin UDC 519.48 

The class of groups with soluble equality problem is closed under free products. It 
follows immediately from Shirshov's work [1] that a free product of Lie algebras with recur- 
sive basis again has a recursive basis. The analogous statement for associative algebras 
holds as well. 

Let Pi be a class of finitely presented (f.p.) Lie algebras over a field F, in which 
the problem of linear independence is soluble for an arbitrary set of c ~< i elements. The 

class Pl consists of f.p. Lie algebras with soluble equality problem, and the class P-----~ Pi 
~=I 

consists of f.p. Lie algebras with recursive basis. The concept of recu~si~e basis was in- 
troduced by Bokut' [2]. 

The inclusions 

p~ ~ P ~ . . . ~ P ~ -  q), 

are obvious, ~ being the class of residually finite dimensional algebras. The inclusion 
P~(D is strict over every field (see the example in [3, p. 229]). Over a finite field, we 
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