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In this ar t ic le  we shatl study the admiss ible  ru les  of deduction in modal logics containing 84.3. We prove 
that the  free a lgebras  in the corresponding var ie t ies  of a lgebras  of c losures  have a finite basis of quasiidentities,  
and the re fo re  the problem of admiss ibi l i ty  of ru les  is soluble in all extensions of $4.3. As a coro l la ry  we ob-  
tain a solution t o t w o  problems of Por te  [1] on the ru les  of deduction in the Lewis sys tem 85. The n e c e s s a r y  
notation of definitions is to be found in [2, 3]. 

We begin with the descr ip t ion of f ree  a lgebras  in eq(k) for  k ~84.3 .  Let ~ ,  ] ~ J  be all the finite sub-  
d i rec t ly  indecomposable n -genera ted  a lgebras  in the var ie ty  eq0~). The scales  ~9 + a re  then of the form 
CI~C 2) ,..) C k, where Cj are  clots of eardinal i ty  not g rea te r  than 2 n, and ~ is the operation of sequential com-  
bination of sca les .  Let ~9 + = <Ti, R>, ff-~ = <T~, R, V>, where V(pi) ~-x i and x i, i _< n are  genera tors  of ~ .  
In this case we have 

vzv~  (v0 (., ~ ~ #-~ A (x I~vo (p. . . . . . .  p~) ~=~ ~ l~-r0 (p~ . . . . .  p~)))~.=y).  (1) 

We introduce an equivalence re la t ion  on Z~-~,; x --= y ~ the re  exists an i somorphism of models,  gen-  
era ted in Z~% by x and y, taking x t o y .  We take the f a c t o r - s e t  in Z~J -, with respec t  t o t h i s  equivaience, sad 
introduce a re lat ion R on it sett ing [x]R[y] ~=~ a x l e  [xJay,~ [y](x,Ry,); moreover  we set  Ix] ~ V(p~) -<=>x~ V(p~), 
if- = <T, & V>. We denote the submodel of the a r b i t r a r y  model W, generated by the elemen~ x, by (~). The 
following p roper t i e s  os this  model are  easi ly verif ied:  

(v[xl ~ T)(ai)(<[x]> ~=~F-,), (vi)(a[x] ~ T)(ff ' ,~ <[x]>). 
(2) 

In view of the above, and the fact  that  I is finitely approxhnable  [4], we obtain ~{p,~ ..... p . )~o  ~ - ~  [~- 
to (pl, ., P~)l- There fo re  the subalgebra (V(pl) . . . . .  V(pn)> of the a lgebra  (T, R} + generated by the elements  
V(pi), is a f ree  a lgebra  of r ank  n in the var ie ty  eq( l ) ,  and V(p i) a re  its f ree  genera tors .  Then 9":=(~,) 

(v(p~) . . . . .  v(pn)) .  

The element a in the model W =(W, R, V) is called fo rmula r ,  if there  exists a formula  ~ such that 
V x ~ W ( x  [~ vto ~ x = a). The element a~W has depth 1, if V b ( ~ b  =~ bRa), sad b~W has  depth n + 1 if there  
exists  e~W of depth n such that bRc but not oRb, and for  any z, if bRz but not zRb, then a is of depth k, where 
k_<n.  

LEMMA 1. Any element [x] ~ Y is fo rmula r ,  mud the re  is a finite number  of elements of depth n in 9% 

Proof .  Let the depih of Ix] be equal to 1, and then by (2) we have <[x]) ~gV,, and let xi . . . . .  x n be ele-  
ments  l a t h e  clot gL. Then for  i ~ j there  exists  p~; x~]~-~p~ and -~(x~l~-vpk), orffae co~xary .  Introduce 
the formulas  

,(x,> = ( A p , )  a 

where A~{]]xil~---vpi, ] ~ n } .  Clearly,  x j ! ~ v ~ ( x d . r  ]. Moreover ,  let ~ ( x i ) = r  ~(Vj~'(x~)) A 

We show that V x E ~  it follows f rom xlt--v(p(x d that (x} ~ (xi) .  In fact, if O k is a maximal clot in g-j, 
attainable f rom x, then it is  easi ly seen that Ck ~ (xi) .  Moreover ,  if x R z z  f~-v~ (x~)and te  C k, t I~-v $(xj), then 
z l~-v0 (Pl,: . . . .  p.) ~ t I~-v O (Pl, . -- ,  P~). Then since V(p i) a re  genera to r s  of ~j and bearing in mind (1), we have 
z = t .  There fore  (x} is a clot and (x} ~_ Ck, i .e. ,  (x} ~ (xi}, which is what we required.  Let [F]ET and let 
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[Y] [~-v ~ (xd ~ then in view of (2) we have ([y]) = (y) and y I~-v~ (xd ~ In view of the above, then (y) -~ (xi) ,  
and [y] = [xi]. The re fo re ,  iY] [~-v~O (xd** [0l = [xd . Thus any ix] of depth 1 is  f o r m u l a r .  It is c l ea r  f rom the 
f o r m  of the dist inguishing fo rmulae  and f r o m  the r e s t r i c t i o n  on the cardinal i ty  of the  clots  (not g r e a t e r  than  2n), 
that  t he r e  is  only a finite num ber  of e l ements  of depth 1. 

Suppose that  we have  proved  that  e lements  of depth not g r e a t e r  than n a r e  f o r m u l a r  and  that  th is  c lass  is 
f ini te,  and then  p r o v e  these  fac t s  fo r  n + 1. Let  [ z j  . . . .  , [z m] be all the e lements  of depth not g r e a t e r  than n, 
and let  q! . . . .  , qn be the  fo rmulae  dist inguishing t hem.  Let ix] be an e lement  of depth n + 1, then  for  some 
j0[x]R[zj0], where  zj0 is  an e lement  of depth n. The e lement  ix] a p p e a r s  i n t h e  clot C, and let  [xJ . . . . .  [Xk] be 
its e l ement s .  As before ,  we choose fo rm u l a s  r (xi) dist inguishing ix i] in the clot.  Set 

A={jI~({xlRIzj)}, 0=  V ~ V v ,  
h ~ A  

i " j ~ A  

Clear ly ,  [xd I~-ve(xi). We show that  e(xi) d is t inguishes  ix i] in T .  Let  [y] I~-ve(xi) ,  then [y]R[zj.] and 
[y]~ [zj0]. Let  Cp be a clot a t ta inable  f r o m  [y] and immed ia t e ly  preceding  the e lement  [zj 0]. Then it  ig eas i ly  
seen  that  Cp ~ C. Suppose that  [y]n[zl,  [zlR[zj0 ] and [zl I~:v*(x~)/~i~ ( V a  ~h) and it] ~ C;, it] I~-v r (~) V 

(h~A%) . It is  eas i ly  seen  that  when [zll~-e0(p~, �9 . ,pn)~=~[tl[~-v0@~,. , . ,  p~,). By (2), (y) _-_ ([y]> and by (1) 

we have  z = t ,  and t h e r e f o r e  [z] = it]. Thus,  the e l emen t  [z] with the above p r o p e r t i e s  mus t  appea r  in Cp. Then 
[y] a p p e a r s  in Cp and Cp = C. The re fo re ,  ([y]) ~_ (ix]) and hr] = ix]. In view of the f o r m  of the f o r m u l a s  e(xi) , 
we m a y  conclude that  t he r e  is  only a finite number  of e l emen t s  of depth n + 1. The L e m m a  is proved.  

Fo r  any sca le  V = (V, R) ,  we denote by V �9 i the sca le  <V 0 {1}, R,>, Vx, y ~ V(xR,y.r xRy), Vx 
V(n!xR~t) A n(IR~x)), tRd.  

LEMMA 2. Fo r  any j, (<Tj, R> + t) + is  a suba lgebra  of the a lgebra  ~:k(~). 

P roof .  Let  g-~ = C~ ~ Cz t ... t C~ , and in view of (2), ~-~ e <[M >. By L e m m a  1, any e lement  ix i (m) ] ~ Cm 
is  dis t inguished in ~ by some fo rm u l a  qo(i, m).  Let  r (i, m) ~-~ ~o(i, m),  for  a) ~=,; = e > t, i < e; ~(t ,  m) A n 0 
r m - -  t) A A nr  for  b ) C ~ =  / > t ,  i= l ,  r e > l ;  A n~( i m ) ~  <) ~0,(l,m), for  e) "6er~=l>t,.i=l.,  

~ - < l  i < /  

m =1,  Otp(l,  m ) , f o r d )  ~ = l , m = l ; ~ ( ~ ( L  m) A n. (~(~(1, m -  t) , and for  e) C~---L m > ' l .  I t i s e a s i l y  
seen  that  -ix] I ~ v  ~P (i, m)~=~[x] = [~, (m)] for  a),, [M -- [zgin)] V. ([x]R[x~(m)l A n([x]trt[X,(m - i)l D f o r  b), ix]  ~ [ari(m)] V: 
([-x]R[xt(m)] A v/([x] ~'[x~(m)])) for  e),~ [x]R[x,(r~)] for  d), and [x]R[z,(m)] A~([z]R[x~<m-i)] for  e). Let  
V (~ (i, m)).~ {[z]/ ix] [~- V~ (i~,~ rn)} and ~ be the suba lgebra  of the a lgeb ra  (V(p I) . . . . .  V(Pn) ) genera ted  by 
the e l emen t s  V(~(i ,  m)). Take a mapping f (V(p~), .. . .  V(pn) ) into (<T~, B> �9 i) § where  

](,~(V(p~), .... V(p,,)) = V(~p(p . . . . . .  p~)) 0 (<[xl> U <[yD, 

where  <y>=<{i}, R> and <y>~C~. Clear ly  <[x])U<[y]')'~<T~, 1 l ) + t .  Clear ly ,  f i s a h o m o m o r p h i s m ,  a n d i n  
view of the choiee of r (i, m) , maps  ~ "onto" (<[xD~<[y]>) + . In o rde r  to p rove  that  f is  one - to -ane ,  t t i s s u f -  
f icient  to show that  z:~O=~l(z) ~ Q ,  and this  follows f r o m  the choice of the fo rmu la s  ~(i, m).  The L e m m a  is  
p roved .  

LEMMA 3. If the quasiidenti ty q is fa l se  in ~ ( L ) ,  then  for  some j,  ((gr-~, R} (9 i)+J~ - ~q. 

Proof .  Suppose that  ~ 'n(L)I[-  ~(1 = l = ~ g  = t ) ,  i .e . ,  t he r e  exis t  goj(V(Pi)) such that  f(goi(V(Pi))) = 1 and 
g ( q j ( V ~ e  1. T h e n t h e r e  ex is t s  ix] ~ r - ,  [x]l~_gng(~) and for  all [ y ] ~ W [ y l l ~ - v l i e i ) ' .  By (2), <[x]>~J'~ 
a n d t h e r e  ex i s t s  Y '~({~} ,  R, g > ,  and m o r e o v e r ,  n([xl/~tt]) . T h e r e f o r e ,  ~(Y-~ ~-v~g(q~)) and Y - ~ t I ~ / ( ( P 0 :  
and t h e r e f o r e  (<T~, B> + t )+~ n ( ] = t  = ~ g =  t); the  Lerama  is  proved.  

LEMMA 4. If ~ is f initely genera ted  and ~ 1 ~  0 x A  O'~x=*,-y=l, then i n t h e  Stone r ep re sen t i ng  set  ~ 
t h e r e  ex is t s  a s ing l e -e l emen t  m ax i m a l  clot .  

P roof .  We r eca l l  that  Q~ is  the se t  of u l t r a f i l t e r s  on B, 

and Im:  ~ - +  Q-~, where Im Ca) = {V/a ~ v} is  an i somorph ic  embedding of ~. 
of ~ and V(p,) = {V/a,~ V} ,  then 

M o r e o v e r ,  if a i a re  g e n e r a t o r s  

(3) 
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By Zorn's lemma, any clot Q~ is contained in some maximal clot. it follows from (3) that maximal clots 
have no more than 2 n elements and that the set of maximal clots is finite. Suppose that there are no single- 
element clots among the maximal clots C I .... , Ck. Fix an elemens Vi, i _< k from each cloto Let ~ (~i) be an 
element in V i but not in the clot C i, and let []~(i, /) be an element in V i but not in the clot Cj, i ~ j. 

Take an element a~ V~(~(~Ti))A (i~i [:]~(i']))) " Suppose that 'Da~ 0. Then []a appears in some 

ultrafilter V, and V is contained in some maximal clot Cm. In this case Da ~ A for any ~ ECm. Let A 6 C m 
and A # Vm, then Da~A and for some i~ (~7~) ~ (jA ~ ~(i,]))E A From the definition of D~(i,/) -we see that 
AECi, i.e., m =i. Then ~(v~)r contradiction. Thus [3a-----0 

Suppose that E3qa # O. Then as bef~ce, there exists a maximal clot C m, where VA ~ C~(Dqa ~ A). Let 
A = V m  . Then ~(v~)~v,,~ and D~(m, j) ~ v,~ for  m ~ j ,  irl this  case  a E Vrn, w h i e h  contradic t s  D-]a ~ V ..... 
Therefore  ~ - ] a = 0 ,  12a=:O and < ~ a A < > - 3 a = ~ , w h i e h e o n t r a d i c t s  ~ l ~ - Q x A O n x = l = > y = ~ .  T h u s t h e  
assumption that there  do not exis~ any s ingle-e lement  clots leads to a contradiction. The L e ~ a a  is proved.  

THEOREM 5. For  any Z--= $4.3 ~ ( ~ )  has a finite basis  of quasiidentities,  obtained by joining the quasi-  
identity ~ x ]\ ~ - t x  = l =~ y =: t  to  the basis of identities of 5~(7Q. 

Proof .  We know that the basis  of identities of 8r~(~) is finite [4], The t ru th  of the quasiidentity <>x A 
~ x  = t =~ y = l on ~:,f~:) follows f rom Lemma 3. Suppose that there  exists a finitely generated algebra 

~ eq (k) , on which the quasiidentity in the formulat ion of the Theorem is t rue and 

l = ~ ( / ( x ~  . . . . .  z ~ )  - -  1 :~g(x~ . . . . .  z , , )  = ~). 

Moreover, we may assume that 19 is generated by the elements ai, i_< n, where f(a I ..... a n) = 1 and g(a I ..... 
an)# i. Inthis case of'-+mg~)~ and since A is finitely approximable [4],there exists i~ such tha~ ~(g-il~ 
~ / - + E ] g ) ,  and then there exists  ~r~ �9 s u e h t h a t V x ~  :7 -~x l=v~ /  and ~ y ~ - ~ ( y l ~ v . ~ g ) .  Thus <T~,R>~]~_~__ 

"~(1-__'f =,- g =~).  

Consider  the embedding of ~ in the a lgebra  Q~. By(3) ,  ~7]F-v/(p~ . . . . .  pD f o r a l l  ~ 7 ~ Q e  a n d b y  
Lemma 4, Q~ contains a s ingle-e lement  maximal  clot, so there fore  the formula  f is sat isf ied on the sh~gle- 
element scale :  Together  with the above, this gives us (<T~, .P,>)~]~--~(f= l ~ g  = l) . Then by Lemma 2 we 
have : g ' ~ ( L ) [ ' "  ( / =  l=~ g = t). The Theorem is proved.  F rom this theorem and Lemma 3, we have: 

COROLLARY 6. If A D_ $4.3, then the quasiequational theory  ~-~(2~) and the admissibi l i ty  problem of. the 
ru les  for  k a re  soluble~ 

Proposition 7. Let kDS4.3 and let f/g be an admissible nonderived rule of A; then for any gPi' i ~< n, 
-~/(~J ~ k(l-) , where ~ is a single-element scale, in particular ](~p~) ~ ~~ 

P r o o f .  As in the Theorem,  we show that for some j, <Ti, R > + I _ ~ ( / =  i=~g  = t ) .  Suppose that f(~i) is 
sat isfied on a s ingle-e lement  scale .  Then (<T~,R> ~ l ) + I = ~ f =  l=~g  = t ) ,  which by L e n ~ a  2 implies that 
~r~ (~) ]~1 (/= i =~ g = i) , and therefore f/g is inadmissible, which is a contradiction. The Proposition is 

proved. 

In [1], Por te  posed two problems:  

a) Does an admissible nonderived rule of the Lewis system $5 always have an unsatisfiable premise? 

b) is the system S5toge~her withthe rule of deduction q(<>z~x)/y structurally complete? 

An affirmative answer to problem a) follows from Proposition 7, and an affirmative answer to problem b) 

is given by the following: 

Proposition 8. For all I ~_ So4.3, the logic k together with the rule of deduction 4) x/k <>qx/y is ~ruc- 
rurally complete. 

Proof. Let f/g be an admissible rule in the logic ~+(<:>x/~ r then by Theorem 5 f/g is ad~issible 
in ~'. Then by Proposition 7, f/g is derived in h, or -]/(~) ~({)~ In the latter case [3 }-+ ~ V (~ P~/\ 

:<~ n p~) ~ k (where Pi are the variables of f)~ since otherwise there would exist ~, on which the above formula 
is not true, and then ~[~(~) ; contradiction. Consider :~'~(~)o By Lemma l~ any elen~ent (T, R, V} is 
formular. Choose one elemen~ from each maximal clot, and let goi, i _< k, be the formulas distinguishing them. 

Then 
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and there fore  the latter f o r m u l a i s  a f o r m u l a i n X .  Then 0 [ -~  09./~Oq1~k, where ~ ; = V ~ ,  a n d t h e r e -  
fore  f rom the p remise  of f, using the rules  and axioms of k ,  we obtain ~ A O ~ ,  and using the rule <> x A 
O'nx/y, from the lat ter  we obtain g. Thus, f / g  is derived in %+ ( O x  A ~nx/Y) .  The Proposi t ion is proved.  

If as well as finite ru les  of deduction we also consider  ru les  with infinite p remises ,  we get negative an-  
swers  to the above problems;  namely,  it is  eas i ly  seen that the rule 

is admissible and nonderived in $5 + ( ~  x A r and c lear ly  its p r emise  for  x = p --. p consists  of formulas  
in $5. 
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H I E R A R C H Y  O F  L I M I T I N G  C O M P U T A T I O N S  

V.  L .  S e l i v a n o v  UDC 517.11:518.5 

In [I] and [2] Ershov introduced a hierarchy of subsets of the natural sequence N and, in particular, es- 
tablished a connection between this hierarchy and limiting computations. In [3] a certain hierarchy of func- 
tions computable in the limit was proposed and defined in analogy with Ershov's hierarchy. In the present 
paper we shall prove two propositions about the hierarchy of limiting computations. The first of them will im- 
ply the possibility of a natural extension of the results in Sec. 5 of [I]. The second proposition establishes an 
interest ing proper ty  of closedness of the h i e r a r chy  of limiting computations.  

"Function" means "an everywhere  defined function f rom N into N 2 If ~0 is a part ial  function, then dom q0 
is its domain c~ definition, while (0(x)~ and ~o(x)~ mean that ? is respect ive ly  defined and not defined at the point 
x. Let Xx, y . (x ,  y) be the Cantor function ceding pai rs ,  I and r be the i r  inverse  functions, ~ the Kleene n u m e r a -  
tion of all pa r t ly  r ecur s ive  functions (prf), and (0; <o) the Kleene system of ordinal notations (see [2, 4, and 5]). 
The symbol [] means the end of a proof.  

To any part ial  function ~0 and any m E N we shall ass ign a function f called the m-extens ion  of the func-  
t ion ~o, and defined as follows: f(x) . ~ m  when r and f(x) ~- ~o(x) otherwise.  To every par t ia l  function q0 
and every a E 0 we shall assign a new part ia l  function r called the a -minimizat ion of the function q0 and defined 
for any xEN as follows: 

I f ' i f  ~<~,x>f for~ny "<o~, 
(X) ~-~ [r <U, X> otherwise, 

where u is the <o-smal l e s t  element of the set {bIb <ca}, for  which q0 (u, x>~. 

m Definition 1. For  any aE0  and ms  we define the sets  P a ,  C a ,  and Da as follows: Pa  is the set of all 
a -minimizat ions  of all prf;  C m is the set of all m-extens ions  of functions in Pa  ; Da is the c lass  of all eve ry-  
where defined functions in Pa -  

The basic objects of study in the present  paper  are  the c lasses  of everywhere defined functions C m and 
D a .  We note some of the i r  p roper t ies :  l) D,--~C~' for a n y a E O a n d m ~ N .  2) Da=CYNC~ for  a n y a E O ,  
m , n ~ N ,  m ~ n .  3) C'~C~, for  any a E  O , m , n  E N , m ~ n .  4) Fo r  any a , b E O a n d m  s N, i f a < o b ,  then 
Ca ~ Db . 5) The class  U {C m [ a ~ O, m ~ N] ---- U {Da I a ~ O} coincides with the c lass  of all functions T - c o n -  
vergent . to  the crea t ive  set,  and also with the c lass  of all functions computable in the limit.  
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