ADMISSIBLE RULES FOR LOGICS CONTAINING 84.3

V. V. Rybakov UDC 517.11

In this article we shall study the admissible rules of deduction in modal logics confaining 54.3. We prove
thatthe free algebras in the corresponding varieties of algebras of closures have a finite basis of quasiidentities,
and therefore the problem of admissibility of rules is soluble in all extensions of S4.3. As a corollary we obh-
tain a solution to two problems of Porte [1] on the rules of deduction in the Lewis system S85. The necessary
notation of definitions is to be found in [2, 3],

We begin with the description of free algebras in eq(A) for A ©84.3. Let 9;, j=J be all the finite sub-
directly indecomposable n-generated algebras in the variety eq(r). The scales B are then of the form
Cy4Cyt ...4 Ck, where Cj are clots of cardinality not greater than 28, and 4 is the operation of sequential com~
bination of scales. Let 9 = (T; R), 9;=<I,, R, V>, where V(p;) =X; and x;, i < n are geperators of %,
In this case we have

VaVy(Vo(r,ys T /\ (x ”’—Ve (P oo s Po) = ¥l-v0 (21, - . . Pa)))=>z=7p}, (1}

We introduce an equivalence relation on 397 i3 z=y <> there exists an isomorphism of models, gen-
erated in 277; by x and y, taking x to y. We take the factor-set in 27, with respect iothis equivalence, and
introduce a relation R on it setting [z1RIy]l <> 4z, = [z]9y, = [yl(z.Ry,); moreover we set [zl & Vip) <z Vip,),
g =T, R, V>. We denctethe submodel of the arbitrary model W, generated by the element x, by (x). The
following properties of this model are easily verified:

#
vee 7 (@ &), 1=, @)
(VIzl e INE) (D> = g7, (VDAL e T)(F = Lal),

In view of the above, and the fact that A is finitely approximable [4], we obtain @(py, ..., pa)Eh =T |-
9(py --.» pa).  Therefore the subalgebra {V(p,),..., Vlpp)) of the algebra (T, R)*, generated by the elements
V(p;), is a free algebra of rank n in the variety eq(d), and V(p;) are its free generators. Then F,0) =
(VP eaes V(Pp)) .

The element ¢ in the model W =(W, R, V) is called formular, if there exists a formula ¢ such that
VzeW (| v <z =a). The element g€ W has depth 1, if Vb(aRl = bRa), and b€W has depth n + 1 if there
exists c€W of depth n such that bRc but not cRb, and for any z, if bRz but not zRb, then z is of depth k, where
k =n.

LEMMA 1. Any element [zl =7 is formular, and there is a finite number of elements of depth nin 7.

Proof. Let the depth of [x] be equal to 1, and then by (2) we have <([z>=7", and lef X, ..., %, be ele-
ments in the clot 7. Then for i = jthere exists ps #ill—wvpr and  (z;{~ vps) » or the contrary. Iniroduce
the formulas ‘

¥ = (A ) A (), P

where A={j|z;|vp;, i<<n}. Clearly, z; = le(:ci)‘éizj. Moreover, let @ (@) =9¢{@) A O(V;0@:N A
(/,\ oo V(=)

We show that Vze=J7; it follows from z|—v ¢ (z;) that (%) = (%;). Infact, if Cy is a maximal clot in 77,
attainable from x, then it is easily seen that Cx =~ (X;). Moreover, if zRz z[—v ¥ {(z;) and t€ Cp ¢ [-v ¥(z;) , then
2]=v8(p1s; - <) Pn) == tl~v O (p1, -+ Pn). Then since V(p;) are generators of %, and bearing in mind (1), we have
z =t. Therefore (x) is a clot and (X) = Cy, i.e., (X) = (X;), which i3 what we required. Let [y]€T and let
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[l i—v @ (z:) ., then in view of (2) we have ({y]) =~ (y)and Viv¢(z:) . In view of the above, then (y) = (x),

and [yl = [x;]. Therefore, [ylll—ve ()< Wl ={z;] . Thus any [x] of depth 1 is formular. It is clear from the
form of the distinguishing formulae and from the restriction on the cardinality of the clots (not greater than 24),
that there is only a finite number of elements of depth 1.

Suppose that we have proved that elements of depth not greater than n are formular and that this class is
finite, and then prove these facts for n + 1. Let [z;], ..., [zyy] be all the elements of depth not greater than n,
and let ¢y, ..., ¢ be the formulae distinguishing them. Let [x] be an element of depth n + 1, then for some
]o[x]R[z 0], where zj, is an element of depth n. The element [x] appears in the clot C, and let [x,], ..., [xk] be
its elements As before, we choose formulas z/)(xl) distinguishing [x1 in the clot. Set

A={| (=1 Rz)}, 6= h¥A¢k Vv,
v = \{ (\P ) A O @i A /,\ v (1P @) A\ O 9i A -](h;/;l(l)h)))"
e(x;) = /]\ T A\ jé\A 70 95 A Q% Awix) A D8
Clearly, [#:]|—v e (z;). We show that ¢(x;) distinguishes [x;] in T.. Let [yl|~ve(z;), then [yIR[z; 0] and

[y]:[z] . Let Cp be a clot attainable from [y] and immediately preceding the element [z] ]. Then it is easily
seen that Cp = C. Suppose that [yIR[z], {zIR[z; ] and [2] -y iz A ( VA%) and [¢] Ec,,, =y o () V

(k;/A (Pk) . It is easily seen that when [z]|~+6(p,, ..‘.,pn)<=>-[t]h-»v 8(p1, ..-»Pn)- By (2), (¥) = (lyl) and by (1)

we have z =t, and therefore {z] = [t]. Thus, the element [z] with the above properties must appear in Cp. Then
[y] appears in Cp and Cp =C. Therefore, ([yl) = ([x]) and [y] = [x]. In view of the form of the formulas £(x{),
we may conclude that there is only a finite number of elements of depth n + 1. The Lemma is proved.

For any scale V =(V, R), we denote by V®1{ the scale <VU{l}, R, Vz, ye VzR,y = 2Ry), Vz e
VW zRA) A TUR2)), 1R,

LEMMA 2. For any j, (T, R>@®1)* is a subalgebra of the algebra F.(A).

Proof. Let 7;=C1Ct-1C,, and in view of (2}, ;=<lz]>. By Lemma 1, any element [xj(m)] € Cy
is distinguished in 7~ by some formula ¢(i, m). Let ¢ (i, m) == ¢(i, m), for a) C,=e>1,i<e; o1, m) A7
e(t,  m—DAA Ql,m), for b) Co=I>1,i=l, m>1; A 9@ m)A O o,m), forc) TCp=1>1i=Il,

i<t i<l

m=1; Oot,m),ford) Cu=1,m=10 ¢, m) A7 GO, m—1),and for e) T, =1, m>1. It is easily
seen that {z] |- ¢ (i, m) <[z} = [z; (m)) for a), Izl = [z:(m)} V (L) Rlzi(m)} A\ "WzIR[z,(m = DI forb), [zl =lxim)] V
(Bl Rlzi(m)] A Vi(lz] = {z;(m))) for ¢), [zlRizi{m)] for d), and [z]Rlxz,(m)} A Wz]Rlz{m —1)] for e). Let
V(b @, m))={iz) [@]l~ v$ (@, m)} and ¥ be the subalgebra of the algebra (V{Pys «..s V(py)) generated by
the elements V(y (i, m)). Take a mapping f(V(p,), ...,V(py)) into (T}, R> ® 1)*, where

He(Vip, ..., Vip.)) =Viglp, ..., p) 0 K> U <yhd,

where <y>=«{1}, R> and <y> #C,. Clearly <([z1>U<Klyl>=<(T; R>®1. Clearly, f is a homomorphism, and in
view of the choice of y (i, m), maps & "onto" (K[z]> U {yI>»)*. In order to prove that f is one-to-one, it is suf-
ficient to show that 2+ 0= f(z) %0, and this follows from the choice of the formulas p(i, m). The Lemma is
proved.

LEMMA 3. If the quasiidentity q is false in & ,(0), then for some j, ((F7,R)® 1) - “q.

Proof. Suppose that F (M| (f=1=-g=1), i.e., there exist ? (V(pi)) such that f(goJ(V(pl))) =1 and
gly; (V(pl))) = 1, Then there exists [zl e, [2]|v" g(cp,) and for all Wed wvie) . By (), (z>=g
and there exists = (i}, R, V>, and moreover, “I([zIRlil) . Therefore, "(7;|~y g(9)) amd 7 ;& LI f(9),
and therefore (T H) ® 1)*= (j=1=g=1); the Lemma is proved. ‘

LEMMA 4. If 8 is finitely generated and 3|~ 2/ O 'z=-y=1, then in the Stone representing set Gy
there exists a single-element maximal clot.

Proof. We recall that Qg is the set of ultrafilters on 9,
LAYE 72 = Qaa (V1Rv2 S (0zeV=>0re Va2

and Tm:8->Q%, where Im(a}={V/a=V} is an isomorphic embedding of 8, Moreover, if ay are generators
of 8 and V(p)=1{V/g,=V}, then

Vi-ve(p)+=e@)ev. 3)

796



By Zorn's lemma, any clot Qg is contained in some maximal clot. I follows from (3) that maximal clots
have no more than 22 elements and that the set of maximal clots is finite. Suppose that there are no single~
element clots among the maximal clots C;, ..., Ck. Fix an element V;, i <k from each clot. Let P (V;) be an

element in Vj but not in the clot Cj, and let De(i, /) be an element in ¥; but not in the clot Cyp 175

Take an element a = \/; (q;(vi)) A ( ATl ]))‘)‘. Suppose that 'Das Q. Then ‘0, appears in some

ultrafilter V, and V is contained in some max1ma1 clot Cry. Inthis case Oae=A for any A €Cm. Let A€ Cy
and A = Vy, then OgeA and for some i, (Vi) A (/\ Oe(, 7)) & &, From the definition of Dgli, j) we see that
A€Cj, i.e., m =i, Then P(V)&A; contradiction. Thus Og==10.

Suppose that [O7g=0.. Then as befare, there exists a maximal clot Cp,, where VAe( (O07z=A). Let
A =V, Then $(V,)=v, and Og(m, eV, for m = j, in this case ¢ € Vi, which contradicts 0Tee9,,.
Therefore Da=0, Dg=0 and <aAQ Ta=1, which contradicts B)}~ Oz A O "z=1=>y=1. Thus the
assumption that there do not exist any single~element clots leads {o a coatradiction. The Lemma is proved,

. THEOREM 5. For any A=843 &,(x) has a finite basis of quasiidentities, obtained by joining the quasi-
1dent1ty Sz A == y="1 to the basis of identities of &F.,(.).

Proof. We know that the basis of identities of &.() is finite [4]. The truth of the quasiidentity <z A
OTlz=1=y=1 on F.() follows from Lemma 3. Suppose that there exists a finitely generated algebra
Be=eq(A) , on which the quasiidentity in the formulation of the Theorem is true and

Bl="(f(Z1y oo ortn) =4 =g (79, ..., &0y = 1).

Moreover, we may assume that B is generated by the elements a4, i = n, where f(ai, vess an) =1 and giays...
an) = 1. In this case Of-Ug¢A and since A is finitely approximable [4], there ex1sts ‘J¢  such that 7 (9‘ -
[0f—[1g), and then there exists J; such that Vze. 7 2|=y 0f and Iy=7{y!-v O g). Thus (Tp Ry =
“ .

(f="T=g=41).

Consider the embedding of B in the algebra Qf. By (3}, VIv/{py, ... Pa) forall Vedy and by
Lemma 4, {p contains a single-element maximal clot, so therefore the formula { is satisfied on the single-
element scale. Together with the above, this gives us «KT;, R ="(f= 1=g=1). Then by Lemma 2 we
have ‘& ,(Ml="(f=1= g=1). The Theorem is proved. From this theorem and Lemma 3, we have:

COROLLARY 6. If A D 84.3, then the quasiequational theory F (3 and the admissibility probiem of the
rulés for ) are soluble.

Proposition 7. Let A D284.3 and let f/g be an admissible nonderived rule of A; then for any ¢;, i <n,
Tfp) &A1) , where 1 is a single-element scale, in particular ) &A.

Proof. As in the Theorem, we show that for some j, <T;, P) {="(=1{=g=1). Suppose that gy is
satisfied on a single-element scale. Then ((7;R)® H =" =1=>g= 1), which by Lemma 2 implies that
FoMl=" (f=1=g=1) , and therefore {/g is inadmissible, which is a contradiction. The Propositicn is
proved.

In [1], Porte posed two problems:
a) Does an admissible nonderived rule of the Lewis system §5 always have an unsatisfiable premise?
b) is the system S5 together with the rule of deduction W<z — Hzl/y  structurally complete?

An affirmative answer to problem a) follows from Proposition 7, and an affirmative answer to problem b)
is given by the following:

Proposition 8. For all 2 D 8.4.3, the logic A together with the rule of deduction &z A O zfy is struc-
turally complete.

~ Proof. Letf/g be an admissible rule in the logw A+{Ox A OTe/y), then by Theorem 5 /g is admlssxbze
inx. Then by Proposition 7, £/g is derived in ), or  "{g) eall), Inthe latter case 17— 0O \/ {OpA

O'pi)e=) (where p; are the variables of f), since otherwise there would exist 7;, on which the above formuia
is not true, and then & A(1); contradiction. Consider F.{A). By Lemma i, any element (T, R. V) is
formular. Choose one element from each maximal clot, and let ¢;, 1 =k, be the formulas distinguishing them.
Then

(T,R, V|- O (V(OmAO P> OV el A O (V 92
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and therefore the latter formula is a formula ina. Then Of—+ S$ A e, where v=V g, and there-
fore from the premise of f, using the rules and axioms of A, we obtain SV A O™, and using the rule Oz A
& Tz/y, from the latter we obtain g. Thus, £/g is derived in A+ (O 2z A OTlz/y) . The Proposition is proved.

If as well as finite rules of deduction we also consider rules with infinite premises, we get negative an-
swers to the above problems; namely, it is easily seen that the rule
(A0 (p A (/\,7 pi)))V Oz n<o/dz
i<n J#*i
is admissible and nonderived in S5+ (O« A< Tx/y) and clearly its premise for x =p — p consists of formulas
in S5.
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HIERARCHY OF LIMITING COMPUTATIONS

V. L. Selivanov UDC 517.11:518.5

In (1] and [2] Ershov introduced a hierarchy of subsets of the natural sequence N and, in particular, es-
tablished a connection between this hierarchy and limiting computations. In [3] a certain hierarchy of func-
tions computable in the limit was proposed and defined in analogy with Ershov's hierarchy. In the present
paper we shall prove two propositions apout the hierarchy of limiting computations. The first of them will im~
ply the possibility of a natural extension of the results in Sec. 5 of [1]. The second proposition establishes an
interesting property of closedness of the hierarchy of limifing computations.

"Function™ means "an everywhere defined function from N info N If ¢ is a partial function, then dom ¢
is its domain of definition, while ¢(x){ and ¢(x)t mean that ¢ is respectively defined and not defined at the point
x. Let AX, y.(X, ¥) be the Cantor function coding pairs, ] and r be their inverse functions, » the Kleene numera-
tion of all partly recursive functions (prf), and (0; <o) the Kleene system of ordinal notations (see [2, 4, and 5]).
The symbol ] means the end of a proof.

To any partial function ¢ and any m € N we shall asgsign a function f called the m-extension of the func-
tion ¢, and defined as follows: f(x) =m when @)t and f(x) = ¢(x) otherwise. To every partial function ¢
and every g € 0 we shall assign a new partial function ¢, called the a-minimization of the function ¢ and defined
for any x€N as follows:

b,if glv )t forany v<lga,
p<u, x) otherwise,

@ =]

where u is the < -smallest element of the set {blb <oa}, for which ¢ (u, x)i.

Definition 1. For any ¢ €0 and mé€N we define the sets P, C, and D, as follows: P, is the set of all
a-minimizations of all prf; CJ! is the set of all m-extensions of functions in P,; Dg is the class of all every-
where defined functions in P, .

The basic objects of study in the present paper are the classes of everywhere defined functions Cgl and
D,. We note some of their properties: 1) D, < (7 for any a €0 and m€N. 2) D.=Ci'NC; for any a €0,
m,n€N, m=n,3) Crgcr forany € O, m,n € N, m=n.4) Forany a,b€Oand m € N, if a<qyb, then
C™=Dy . 5) Theclass U (CF|a=0, me N} =U{D.|a= 0} coincides with the class of all functions T-con-
vergent.to the creative set, and also with the class of all functions computable in the limit.
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