TESTS FOR HOLOMORPHY IN SYMMETRIC REGIONS
M., G. Agranovskii UDC 517.5:513.811
In this article we obtain conditions for holomorphy of functions in symmetric regions, connected with the
action of the group of analytic automorphisms of this region., The results proved in Sec. 3 were published in a

shortened form in [1].

1. Formulation of the Results

Let D be an open region in CB, Denote by G(D) the group of analytic automorphisms, i.e., biholomorphic
mappings of the region D onto itself, We recall that D is called symmetric if each point z=D is the unique
fixed point of some holomorphic involution ¢, =G(D) (0, °0, is the identity mapping). Each irreducible sym-
metric region, excluding two special types of region of complex dimension 16 and 27, is analytically equivalent
to one of the classical regions (defined below).

If F is a compactum in C®, then as usual C(F) denotes the space of all continuous complex functions on F
with the sup~norm, The union of the uniform limits on F of sequences of polynomials in complex variables is
denoted by P(F).

THEOREM 1. Let D be a classical region, and F a compactum lying in D such that P(F) # C(F).

If the function f is continuous in D and for any o € G(D) the restriction fow!y belongs to P(F), then { is
holomorphic in the region D,

THEOREM 2. Let D be a classical region, and B a compact Riemannian surface with nonempty boundary
8R, analytically imbedded in D. If the function £ is continuous in D and fowlgp admits holomorphic continuation
in R for any o = G(D), then f is holomorphic in the region D.

For the special case when D = D is the unit sphere in C! and f is continuous in the closed sphere ﬁl,
results analogous to these were obtained in {2, 3]. They are a direct corollary of the following theorem ([2]
for n =1 and [3] for n > 1).

Let A be a closed subalgebra of the algebra C(DR), invariant under the action of the group G(D®) and
containing all complex polynomials (or at least one nonconstant polynomial in complex variables). Then A coin-
cides with one of the following algebras: 1) P(D"), 2) C(D"), 3) P(D*) @ C,(D"), where C,(Db) is the subalgebra of
C DM consisting of functions equal to zero on the boundary of the sphere,

For the case D = D", f= (D", Theorems 1 and 2 are obtained easily from the above theorem, if as A
we take the algebra of all functions satisfying the conditions of the corresponding theorem.

Nage! and Rudin [4] proved that the above list contains all invariant, closed subalgebras of C(-S;l) con-
taining constants and nonconstant functions, and they also mentioned its application to obtaining criteria for
holomorphy.

In the complex-one-dimensional case, we may give Theorems 1 and 2 the following formulation: if a
function is continuous in the open unit disk D*< € and

{ 2f(@)de=0, k=01, ..., a1.1)
o(y)

for some closed contour 7 < Dt!and all conformal automorphisms o = G(D*), then f is holomorphic in D,

In [5] Zaleman posed the problem of the sufficiency of condition (1,1) with k = 0 for f fo be holomorphic,
In other words, we are concerned with the validity of Morer's theorem for an arbifrary conformally invariant
family of contours lying in the region.
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The following theorem gives a positive answer to this question,

THEOREM 3. Let fe L*D* o) (0 isthe Lebesgue measure), and for some pointwise~smooth closed con-
tour Y < D' and almost all (in the Haar measure) o = G(D'), we have

{ f@dz=0. (1.2)

o)
Then almost everywhere, f coincides with a holomorphic function,
For extensions of the functional space to which f may belong, condition (1.2) can be strengthened:

THEOREM 4. Let fe L (D', 0) and let there exist circles Cr, = (s = C: |z| =7}, 0<r<1{,i=1,2 such
that

U jwa= T f@az=0 1.3)

@(Cry) @(Cry)
for almost all o = G(DY).
Set Jp(s) = F@ —is, 3/2, 3, —4r(l — r)"z), where F is a hypergeometric function,
Then almost everywhere on D!, f coincides with a holomorphic function in each of the two following cases:
1) Jr, and Jr, have no common zeros in the complex plane, and 2) Jr, and JIr, have no common zeros in the
strip IRes| <1, and near the boundary of the disk f satisfies (almost everywhere) the estimate of growth
2 < eld — 1251
For the complex-multidimensional case, we have an extension of Theorem 3 in the following form:
THECOREM 5. Let D be a bounded symmetric region in C® and fe C,(D), and moreover let
X e 12(D, po), k=1 n (1.4)
6;k b 1 LR | H .

where p(z) = K(z, z), and K is the core function of the region D, Let A be a region lying together with its closure
in the region D, with smooth boundary 9A,

If for all o = G(D) we have

)\ F@dz N\ o NdsNda A A By A A A dz, =0, (L.5)

w(8A) ke 1
=1,...,n

then f is holomorphic in D,

Clearly Theorem 5 contains Theorem 1 for the case when f satisfies (1.4) and F is a compact subregion
of D,

2., Proof of Theorems 1 and 2

We recall the definition of classical regions.

1) Dp ,q is the region formed by complex p X g-matrices z, satisfying the condition ep ~ zz' > 0, where ep
is the unit matrix of dimension p, z' is the transposed mafrix, z is the matrix with complex conjugated
elements, and the sympol >0 denotes a positive definite matrix,

2) Dg[ is the region formed by complex symmetricmatrices z of dimension p, satisfying the condition
en— 2z >0
p .

3) DpII is the region formed by complex cosymmetric matrices z of dimension p, satisfying the condition
e, +2Z2 >0
p .

) Dy =z |2+ .+l —2(aP+ .. 2B+ 10,2 + ... 23 <1).

LEMMA 2.1, Let D be a classical region, and K a stationary subgroup of the group G(D) at the point
0 = D. Then for each point z€D, there exists an element % < K such that kz = Z.

" Proof. We verify this lemma for regions of each type in turn.
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1) For the region D = D%,,q the group K consists of transformations of the form

Koyt z— uzv’,
where u and v are unitary matrices of dimensions p and q, respectively, and moreover detu-detv =1,

We may represent the arbitrary matrix z< D in the form z = udvy, where u, and vy are unitary and d
is diagonal and real. Then k = ky v is the required element, where u = u1u1'1, v = v'{iv.
2) Let D = Dg or D= DgI. Then K consists of transformations

!
kot z— usu/,

where u is unitary, Each matrix ze< D can be written in the form z = usu', where u is unitary and s is real
[6]. In this case we take k = kyyt.

3) For the region D = D%)V, the group K consists of transformations

ki .1z huz,
where A= ¢, |A] =1, and u is an orthogonal p X p-matrix.

Let z=z+iy, z, y=R®. Set A = el®, where ¢ = arctan[2(x, y) /llyl? — Ixl?]. Then for the vector w =
AL/ %7, we have (Rew, Imw) = 0. There exists an orthogonal transformation u of the space RP such that u
Rew) =Rew, u(Imw) =—Imw, i.e., uw = w. Then the required element is k) y.

LEMMA 2.2. Let D be a bounded irreducible symmetric region, and X a family of continuous functions
on D which are invariant with respect to analytic automorphisms, i.e., fro=X for any f=X, o =C(D). Then
either all the functions in X are constant, or X separates points on D,

Proof, Considered with the topology of uniform convergence on compacta, the group G(D) is a semi-
simple Lie group, Fix the point z =D. The stationary subgroup K at the point z, is a maximal compact sub-
group of G(D). Set D, ={z =D : {z) = f(z,) for all fe= X}, and let H be the subgroup consisting of all elements
of G(D) which map D, into itself. Since for any fjeX and k=K we have f-k=X, then K< f, Since Dy is
closed, the group H is closed in G(D) and therefore H is a Lie subgroup.

As D is irreducible, the Lie algebra & of the group K is a maximal subalgebra of the Lie algebra &
of the group G(D) [7, p. 337], and since the Lie algebra $ of the group H contains &, then either 8 = § or
$ =06, In the latter case H =G, and hence Dy=D and X = C, If & =§, then the groups H and X are locally
holomorphic and the factor-space H/K = Dy is discrete. Since K is connected and takes D, into itself, then it
follows from the fact that D is discrete that each point of D, is fixed with respect to K. However, the involu-
tion Oz, at the point z, has a unique fixed point z, Therefore, D, = {zo ;» and this means that X separates points,

LEMMA 2.3, Let D be a classical region, lef f satisfy the conditions of Theorem 1 and for any z= D and
ke K, let

flkz) = j(z). 2.1

Then f is constant.

Proof, Denote by X the algebra of all the functions satisfying the conditions of the lemma. It is easily
seen that for any f= X«, the function z —>E) belongs to Xg. But by 2.1) and Lemma 2,2, f(z) = f(E) and there-
fore f e X.. Then the algebra X formed by polynomials in the functions f- @, j = Xz, o = G(D), is closed with
respect to complex conjugation, and therefore does not separate points on F, since otherwise by the Stone—
Weierstrass theorem X|ris dense in C(F), and it would follow from the inclusion Xy = P(F) that P(F) = c(®),
which contradicts the condition. Applying Lemma 2.2, we obtain X = C, and hence Xg=C.

Proof of Theorem 1, Denote by X(F) the space of functions gatisfying the conditions of Theorem 1, Let
f=X(F), and suppose that = D). Set

T(@) = | f(ka) dk
)

(dk is the Haar measure). Then 7 < X(F) and satisfies 2.1). By Lemma 2.3, f = const. Since f(zo) = f{zy), then

7 (z0) = { £ (iz) ak. @.2)
K
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Consider the G(D)-invariant Laplace operator

n

A= 2 gi;(2)

82
=1 6ziz9zj

Applying the differential operator A to both parts of equation (2.2) and bearing in mind that A commutes
with the action of K, we see that for z = z, (Af)(z¢) = 0. Since zf=X(F), k=1, ..., n, then we also have A(zyf)
(zy) = 0. Therefore

S a
2 84 (80) 2 () = A (3af) (2) — 7w (20) = 0.
i=1 i
As the matrix (gkj (z(,))llf'jz1 is irreducible, (Bf/BZj) (zy) =0, j=1,...,n. Applying the same arguments to the
functions fow, » = G(D), as D is homogeneous we see that Bf/BZj =0 identically, i.e., f is holomorphic.

If we do not suppose earlier that f is differentiable, we have to consider the modified functions
@sN@= [ ¢@7(o™)do,
G(D)

where ¢ are finite functions on G(D) in the class C*, These convolutions approximate f in the topology of uni-
form convergence on compacta and belong to X(F), Their differentiability follows from the existence of a dif-
ferentiable right inverse of the mapping p: G(D)= e —~ w(z) €D, By the above ¢ *f are holomorphic, and there-
fore f is also holomorphic.

The proof of Theorem 2 is completely analogous.

3, Proof of Theorems 3, 4, and 5

1. The group G(D') of conformal automorphisms of the open unit disk D! in the complex plane is isomor-
phic to the group of complex maftrices of the form

o—(2 )
P o
with the condition @a — 88 = 1. The action on the disk is defined by the formula

0z = (oz+ B)(pz + o).

Kelly's transformation w — (w — i)(w + i)~! of the upper half plane Il induces on D! an isomorphism of groups
of conformal automorphisms, The group G(D) under this isomorphism goes to the group SL,R) of unimodular
real matrices of order 2, which acts on 1y by the rule

a b az -+ b
(c d) @ =53

\

It will be convenient for us to parametrize conformal mappings of the disk by the standard method:
@, +(8) =€”(z+ )1 +52)7, 010, 2n, Isl <1 (3.1)

Ifw= Wg s then write 8= 6(w), s = s(w).
Set also wy = wg 7. The element wy corresponds to the matrix

((1 — ]z z(1—| ZF)’“)
2(l— [z (L —|zp” [

2. Let vy be a pointwise~smooth curve lying in Dy, Denote by H(y) the subspace of 1*(D!, o) consisting of
functions f for which

Jﬁ f(a)dz=10 (3.2)
o(y)

for almost all (in the Haar measure) @ = G(D").

Let L%]ol be the subspace of holomorphic functions in 1 (D1, o). By Cauchy's theorem L{y < H (y). Denote
by H*(y) the orthogonal complement of 1‘12101 in H(y). Let f= H*(y). Then the function

(Rof)(2) = e, 2)flo~'2), (3.3
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where r(o, z) = (= pz+a)?, o' = ( ¢ B), also helongs to H* (7).
—f «

Formula (3.3) defines a unitary representation of the group G({DY in the space Hl(y).

Set p(z) = (1 — |z|>)=%, We note that the measure po is G(D!)-invariant,

LEMMA 3.1. The operator 8 = p~!(3 /5z) maps the dense subspace Hy < H* (y) into the space

Proof. For each finite function ¢ on G(Di) in the class C%, set
Rof= | o(0)Rofdo, fe H*(y).
(DY)
The functions Rf belong to H'(7), and their linear hull Hj is dense in H*(3).

1

Using the change of variables 1 = w™ wy, we rewrite (3.4) in the form

EBeN@= | oo™ O)rlom™ 2)dn.

G(pl)
It follows from this notation that R,f = C=(D'), It remains to prove that 9R.f = [X(D", pol.
From {3.5) we have

8 9 - - -1 8 -1 A\
= (Bof) (2) =H;<P (o™ 7 (0™ + @ (o™ 527 (0™, 2] | F(n(0) dn.
We estimate the terms under the integral separately. Set 6, = oY), Sy = s(m~!). Then

e 0™ = (¢ 1 52) (1 4 €%5,2) 7Y,
s (007 = (%05, 4 2) (¢ 4 5,2).

From (3.7),
% 6 (0.m™) = ie'0s, (1 + £™%s,7) 71,

a - — —i i “\_.
25 (0™ = ¢ (1 — [, 1) (1 + €%05,7) %

Hence, bearing in mind that |sy)l <1, |zl =1, we have

;g-e (wm"l)l<2(i — 5B

l 5%5 (0m™)

<4(—|s P
Since sy = e'wo@;’w(o), then ‘

t—lslP=1—1a(0) —z*l1 —a(0)z]?=
={1-1z2I" -0 (051 —-e0)z]"2=U—12])1—lo0) {1+ (0) )=

12D, pol.

{3.4)

(3.6)

3.7

The integration in (3.4) takes place over the compact subset G(D'), and therefore in the domain of integration
we have |w(0)| = ¢y <1, From the above inequality we have 1 —lg,? = (1 ~¢) (1 + cj}'l(l ~1z1%), Substituting

this inequality in (3.8), we obtain
s .
I:?Te ((Dz’f] 1)
Z

L2 +ce)—e)T (= [sP)7,

1% s (‘”zn—1> <44 eyt —e) T (1 — [z~

Introducing the function <,~o( 0, 8) = qﬂ(wg,s), on the basis of the last two inequalities we obtain

=B (0 (@™, s(0m™)-28 (007 +
Z

\% ¢ (0.n7")
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+ 0 (o), s (0725 (o)
g

We estimate the function (8 /8z)r(w,n™!, z). We have

<2+t — 01)_1(1—*fzi2)_1><

gg—f (6 (0n™), s(0n™)

2 l g‘;?g (8 (0™, s(om™)

}. (3.9)

rlon™, 2) = (1 — [2|))[(aZ — bz + (a + B2)] 2,

-1__ (@ b
where 7' = (_5 5). Hence
ARG |<Ir {on™, )t — 297+ 2l r (07, AP (3.10)

1

From the relation 7-! = wz'w we define the element a of the matrix n™':a= (1 — [z1*)""(e, — z0,), where w =

(91 ?2) As a result of the compactness of the domain of integration in (3.4), the elements wy, w, and the func-
Wy W1

\

tion T(w,n~!, z) are bounded: |w;l, | wyl, I 7| = ¢,. Then from (3.10) we have
a -1 a1 5/2
| @™ )| <ealt— 1207 6= e, 4t (3.11)
Using formula (3.6) and inequalities (3.9) and (3.11), we obtain

| 2@ @] < —121)7F @)

where F(z) = 5 ¥ (@)|f(0™'2z) |dey and v is some continuous function on the group G(D!) with compact carrier.,
&{p1)
Since j= (D', o), then Fe L*(D, 0) and by the last inequality, (1 —| z}*)zf_—B@;‘e L2 (D', (1 — |2} %0).
Z

Proof of Theorem 3, Denote by Hj (y) the subspace of the space H(y) consisting of all f = H-(y) such that

fle?z) == e~®f(z), ze= D', 810, 2n).
The operator m; defined by the formula
2%

(0h) () = = | 7(e™z) a0

2n
9
is a projector of the space H(y) onto the subspace Hf“(?). The operator m; is continuous, and therefore since
Hj is dense in HY(y), the subset H;(\HY (y) is dense in Hi ().
Let fe Hz HY (y). Apply Green's formula to (1.2). We obtain

f g-f dz \ dz = f (8 dz =0,
« z
o(4) olv)

where A is the region bounded by the curve y. We rewrife the last equation as:
§ 3f-xac0pdo =0, @3.12)
nl

where x4 is the characteristic function of the region A,

Denote by p: G(D') — D! the natural projection, p(e) = w(0), o = G(D'), Using the mapping p, we may
carry Eq. (3.12) over to the group G(DY:

§ (8fop) () (xaop) (@™ 'n) dn =0,
a(pt)

(dn is the Haar measure). The latter expression can be written as an equation of convolutions:
@f ° p} % (XA ° p)'v . 0, (3.13)
where (ya°p)~(e) = (xa° plla~t).
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Finally, using the isomorphism of the groups G (D! and SIi,@®) induced by Kelly's transformation of the
upper half plane into a disk, we carry the function 3fsp, (3. p)~ over to SLy(R). By (3.13) the functions f' and
x' that we obtain are connected by the relation

frey’ =0, (3.14)

The function x' is finite, since x o has compact carrier lying in Dl
Let K =80(2) be an orthogonal subgroup of the group SL,([R). It follows from the easily verified relation
OR.f=3f o 0", 0 = G(DY), (3.15)

that if fe= Hi (y), then 8f is invariant with respect fo rotations of the disk. Then f' is biinvariant with respect
to K, i.e., f'(kwky) = f'(w) for all &, k,= K, o = SL,(R). Moreover, by Lemma 3.1 ' &€ LXSL,(R)).

We apply the K-spherical Fourier transform to (3.14) (see, e.g., [8]). Bearing in mind that one of the
functions in the convolution is K-biinvariant, we obtain

7oy =0 (3.16)

Recall the Harish—Chandra formula for calculating K-spherical transformations:

~ VAN
gls) = Hg"(s), g= LA(SL(R)), (3.17)
where on the right-hand side we have the ordinary Fourier functions

o0

(HeE) () = e [ g% (a,e") da

—00

and gK is obtained by carrying the following function over to the upper half plane liy =SL,R)/ K:

£ (o) = ‘U ¢ (kyoky) diydley,
and this is constant on two-sided residue classes by K, Since the function Hx'K has compact carrier, x' can
be continued to the complex plane as an entire function. Therefore, the set of zeros of the function )'z’on R has
measure zero, By (3.16), f' = 0 almost everywhere, The Plancherel measure for a Fourier transform on
S1, (R} is absolutely continuous relative fo Lebesgue measure on a real straight line. Since § E"LZ(SLz(R)) it
follows from f' = 0 that f' = 0. Returning to the original function, we obtain 3f = 0, The operator § is one-to-
one on HY(y), and therefore f = 0, The function f H, o Hi (v) was taken arbitrarily, and therefore we can
conclude that H; N Hi (y) =0.

Now let f be an arbitrary function on HzN\ H* (y). From (3.15) we have the relation

”067 = 5ﬂxf

27

where (s,8f) () Y (37) (¢'°z) 0. Since Fm,f=0, then 8(0) = (m,d/)(0) = 0. The same is true for the functions

o
R.f, ® € G(D"), and therefore, using (3.15), we obtain df(0~*(0)) =0 and as w is arbitrary, 3f = 0, Then f =0
and we see that H;NH* (y) = 0. Hence, since H-QHL (v) is dense in H'(y), we have H'(y) = 0, i.e., H{y) =
hol
4, Proof of Theorem 4. First let f=C=(D'). Apply Green's formula to (1.3):

[ %f g0 pdo =0, i=1,2. (3.18)

Dt

Here x,. is the characteristic function of the disk with radius r and center zero, Bearing in mind the invariance
of the functions Xr; under rotations of the disk, as in the previous section, we obtain

(0fop) * (4riop) =0, i=1,2. (3.19)

We find the Fourier transform of the function x,. in explicit form. To do this we go over to the function Xr( ) =
Xplw—1)/(w + 1}], defined in the upper half plane, Using (3.17) and elementary transformations, we find

% (s) = j BT, (a + ie') dadt = 16r2 (1 — ry- A )i ﬁ' 14 4rt(1—

—00
[

— )RR (g ogpe A—n"" 1+ F@2—is, 8/2,3, —4r (1 —r)™%), {(3.20)
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where F is a hypergeometric function,

Suppose now that condition 1) of Theorem 4 is satisfied. By (3.20), the functions irw )Zrz have no com-
mon zeros in the complex plane. Consider the space &y of finite K-invariant distributions on D!, i.e., the dual
space of Ci‘z(Dl), the space of infinitely differentiable K-invariant functions in the disk D! with the topology of
uniform convergence on compacta. We reecall that here K is the group of rotations of the disk.

Let gK be the space of Fourier transforms
T(s) =<T, @

of distributions T = &«(D'). Here ¢g is the K-spherical function corresponding to the value of the parameter s.
The space & .(D') consists [9] of entire even functions with the following conditions on the growth:

On,r () = sup (L4 [2) eV | £ ()| < oo

The seminorms on,R define a topology in &x(DY) in which Fourier transformation is a topological isomor-
phism, This topology coincides with the topology in the space &(R) of ordinary Fourier fransformations of
finite distributions on a straight line,

Since the functions ¥y n )Zrz have no common zeros, then by Schwartz' theorem [10], the ideal generated
by the fun}gtions Xrys Xr, 1S dense in &(R). In this case the ideal generated by these functions in the subspace
Z (DY) = &R) of even functions is dense in &x(D*). Therefore, by (3.19) we see that the mean (w,0f) (2) =

3%5 (37) (¢®®z) d8 = 0. Then 5£(0) = 0, and taking the function Rf instead of f, by (3.15) we obtain af(w=1(0)) = 0.
o]

Since o< G(DY) is arbitrary, we have 8f = 0, i.e., f is holomorphiec.

The case f& Lis (D 0) can be reduced by a standard method to the smooth case. We may choose a se-
quence ¢, of smooth finite functions on G(DY) such that the functions R‘Pnf converge as n — = to f in the L!-norm

on each compact subset of D'. The functions Rg, f belong to C*(D') and satisfy the conditions of the theorem,
and by the above proof, are holomorphic. On almost every circle fzl =r, 0 <r <1 the sequence R‘Pnf converges

to f in the L!-norm. Hence, on the basis of Cauchy's integral formula, it follows that f coincides with a holo-
morphic function almost everywhere.

To prove Theorem 4 for condition 2), we consider the space Li{ of K-invariant functions belonging to
L!(D!, 0). This space is a commutative Banach algebra with respect to the operation of convolution

Fra@= | foO)e©)do.
¢(ph)

The space of maximal ideals of this algebra coincides with the set ?f bounded K-spherical functions ¢g, and
moreover the multiplicative linear functionals mg on the algebra Lk are of the form mg:f— f(s). The bounded-
ness of the function ¢g is equivalent to the condition |IRes! <1, and therefore condition 2) of Theorem 4 to-
gether with formula (3.20) means that Gel'fand transformations of the elements Xr, ¥, & LY do not vanish
simultaneously on the space of maximal ideals. Hence it follows that the ideal I{xr,, sz) generated by the ele-
ments xr,, Xr, i8 dense in the algebra Lk.

Let f, ry and r, satisfy condition 2) of Theorem 4. Consider the function Ryf [see (3.4)], where g is a
smooth function on G(Di) with compact carrier, It follows from condition 2) for the function f and the final
estimate for 8/ BE)R(/,E, obtained in the proof of Lemma 3.1, that the function 5R¢f is bounded, Moreover, an
equation of the form (3.19) holds for the functlion BR¢f, since the function R¢f satisfies condition (1_.3). Hence,
and from the fact that (xri, sz) is dense in Lk, we see that the mean by the group o_{ rotations 7 (8Rf) = 0.
Then 8Rq;f(0) = 0, and since (1.3) is also s_atisfied for the function RuRyf, then also OR,Rf(0) = 0. Ag w was
arbitrary, from formula (3.15) we obtain BR(pf = 0. Approximating f by functions of the form Ryf, as we did
above, we obtain the required result.

5. Proof of Theorem 5. This is completely analogous to the proof of Theorem 3. By Stocks' theorem,
condition (1.5) is equivalent to the following:

5 lo (Z)J’IT,Q"(Z) %a(07'2) p(A)do(2) =0, 0= G(D), k=1, ..., n, (3.21)
D Zr ’
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where x A is the characteristic function of the region A. The conditions placed on the derivatives of the function
f mean that the functions 1/p - (9f/9Z) belong to L?(D, po). Therefore, the holomorphy of f is proved, if we
prove that the equation

(2@ (o) pa)do(n) =0, 0= G (D), (3.22)
D . ’

has no nontrivial solutions is the space L*(D, po). We note that the measure po is invariant with respect to the
action of the group G(D). Denote by K the stationary subgroup of G(D) at some fixed point z,, and set {(5nyg) (2) =

S g (uz) du, where du is the Haar measure, Let g IA(D, po) satisfy (3.22). Then

®

{ (x8) () () (©™3) p (2) do (3) = 0. (3.23)
D

The left-hand side of (3.23) can be rewritten as the convolution of two functions on the group G(D). To this
equation [of type (3.13)], we may apply the K-spherical Fourier transformation (see [7]) on the symmetric
space G(D) /K. This transformation is defined on K-invariant functions k<= L*(D, po), and is connected with

~ N\
the classical Fourier transformation using the Harish—Chandra formula: h(s) = J#h(s). Here s belongs to the
Cartan subalgebra & = R? of the Lie algebra of the group G(D), # is the Harish—Chandra transformation:

() (0) = % () [ h(zexphrez)dz, he 4,

z

Z is the subgroup in the Iwasawa decomposition G{(D)=Zexp s - K, and n(}\) is some factor. It is easily estab-

VAN N
lished that the function #nx¥s has compact carrier in RP, and therefore mnxys==37%mx}s may be continued to an

N
entire function in CP, Hence it follows that the set of zeros of the function nxya in RP has zero Lebesgue mea-

VA NVZANE
sure, and it follows from the equation mgg - mxys =0, obtained from (2.23) by applying the Fourier transforma-

VAN
tion, that mxg =0 almost everywhere, Since nxge XD, po), then by Plancherel's formula we obtain g = 0,
and in particular, g(zy = 0. For any o = G(D), the function g-w also safisfies (3.22), and therefore g(w(zg)) =0
and thus g = 0, by the homogeneity of the region D with respect to the group G(D}. The theorem is proved,
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