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In this article we obtain conditions for holomorphy of functions in symmetric regions, connected with the 
action of the group of analytic automorphisms of this region. The results proved in Sec. 3 were published in a 

shortened form in [I]. 

i. Formulation of the Results 

Let D be an open region in C n. Denote by G(D) the group of analytic automorphisms, i.e.~ biholomorphic 

mappings of the region D onto itself. We recall that D is called symmetric if each point z~D is the unique 
fixed point of some holomorphic involution G~ E G(D) (~o ot is the identity mapping). Each irreducible sym- 
metric region, excluding two special types of region of complex dimension 16 and 27, is analytically" equivalent 

to one of the classical regions (defined below). 

If F is a compactum in C n, then as usual C(F) denotes the space of all continuous complex functions or. F 
with the sup-norm. The union of the uniform limits on F of sequences of polynomials in complex variables is 

denoted by P(F). 

THEOREM I. Let D be a classical region, and F a compactum lying in D such that P(F) ~ C(F). 

If the function f is continuous in D and for any 0) ~ G(D) the restriction fo WIF belongs to P(F), then f is 

holomorphic in the region D. 

THEOREM 2. Let D be a classical region, and R a compact Riemannian surface with nonempty boundary 
aR, analytically imbedded in D. If the function f is continuous in D and fo w]OR admits holomorphic continuation 
in R for any 0) ~- G(D), then f is holomorphic in the region D. 

For the special case when D = Dn is the unit sphere in C n and f is continuous in the closed sphere D n, 
results analogous to these were obtained in [2, 3]. They are a direct corollary of the following theorem ([2] 

for n = 1 and [3] for n > i). 

Let A be a closed subalgebra of the algebra C(Dn), invariant under the action of the group G(D n) and 
containing all complex polynomials (or at least one nonconstant polynomial in complex variables). Then A coin- 
cides with one of the following algebras: i) p(~n), 2) C(D~), 3) P(D~) �9 C~(D~), where C0(Dn) is the subalgebra of 
C (D n) consisting of functions equal to zero on the boundary of the sphere. 

For the case D = D ~, ] ~ C(D -~) , Theorems i and 2 are obtained easily from the above theorem, if as A 
we take the algebra of all functions satisfying the conditions of the corresponding theorem. 

Nagel and Rudin [4] proved that the above list contains all invariaat, closed subalgebras of C(Dn) con- 
raining constants and nonconstant functions, and they also mentioned its application to obtaining criteria for 

holomorphy. 

In the complex-one-dimensional case, we may give Theorems 1 and 2 the following formulation: if a 
function is continuous in the open unit disk D -~ ~ C ~nd 

f :k/(z) dz=0, k = O , t  . . . . .  (1.1) 

for  s o m e  c losed  contour  7 c D ~ and al l  confo rmal  a u t o m o r p h i s m s  (0 ~ G(D'),  then f is holomorphic  in Dlo 

In [5] Za l cm an  posed the p r o b l e m  of the suff ic iency of condition (1.1) with k = 0 for  f to be ho!omorphic .  
In other  words ,  we a re  Concerned with the val idi ty of 1Viorer's t h e o r e m  for  an a r b i t r a r y  conformal ly  invar ian t  
fami ly  of contours  lying in the region.  
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The following theorem gives a positive answer to this question. 

THEOREM 3. Let ]~ L2(D ', ~) (~ isthe Lebesgue measure), and for some pointwise-smooth closed con- 
tour 7 ~ D' and almost all (in the Haar measure) co ~ G(D ~) , we have 

,f I (z) dx = O. (1.2) 
c0(~) 

Then a lmost  everywhere ,  f coincides with a holomorphic function. 

For  extensions of the functional space to which f may belong, condition (1.2) can be s trengthened:  

THEOREM 4. 
that 

Let / ~ L~o o (D *, ~) and let there exist  c i rc les  Cr~ = {z ~ C- I z J ---- ri},, 0 < r, < i, i = t, 2, such 

I /(z) d z =  I / ( z )dz=O (1.3) 
~(~) ~(~) 

for  a lmost  all co ~ G(Dg. 

Set Jr(s)  = F(2 - is ,  3 / 2 ,  3, - 4 r ( 1  - r)-2), where F is a hypergeomet r ic  function. 

Then a lmost  everywhere  on D 1, f coincides with a holomorphic function in each of the two following cases :  
1) Jr1 and Jr2 have no common zeros  in the complex plane, and 2) J r  I and Jr2 have no common zeros  in the 
s t r ip  ;Re s l < 1, and near  the boundary  of the disk f sat isf ies  (almost everywhere)  the est imate  of growth 

J/(z)J < c ( l  - J z j ~ )  - ~  

For  the complex-mul t id imensional  case ,  we have an extension of Theorem 3 in the following form:  

THE(:~EM 5. Let D be a bounded s y m m e t r i c  region in c n  and / ~  i'~(D), and moreover  let 

~ - /~  L 2 (P, pa), k = i . . . .  , n, (1.4) 
Oz k 

where p(z) = K(z, z), and K is the core  function of the region D. Let A be a region lying together with its c losure  
in the region D, with smooth  boundary OA. 

If for all o~ ~ G(D) we have 

/(~) dzl A . . .  A d:,, A d~ A . . ,  A d-~k_, A d-~k+, A . . .  A d~  = O, (1.5) 
c0(0A) 

k =  1, . . . , n ,  
then f is holomorphic in D. 

Clear ly  Theorem 5 contains Theo rem 1 for the case  when f sat isf ies  (1.4) and F is a compact  subregion 
of D. 

2 .  P r o o f  o f  T h e o r e m s  1 a n d  2 

We reca l l  the definition of c lass ica l  regions.  

1) DIp,q is the region fo rmed  by complex p x q - m a t r i c e s  z, sat isfying the condition ep - zz '  > 0, where ep 
is the unit matr ix  of dimension p, z '  is the t ransposed matr ix ,  z is the matr ix  with complex conjugated 
e lements ,  and the sympol  > 0 denotes a positive definite matrix.  

II 
2) Dp is the  region formed by complex symmet r i c  ma t r i ce s  z of dimension p, sat isfying the condition 

ep - zz > 0. 
IH 

3) Dp is_the region formed by complex cosymmet r i c  mat r ices  z of dimension p, satisfying the condition 
ep + zz > 0. 

4 ;D~V={ ~cP : l~§  2 2(Iz~12+.. .+l~pl~)+~>0,1~+.. .+~l<t}.  

LEM1HA 2.1. Let D be a c lass ica l  region,  and K a s ta t ionary subgroup of the group G(D) at the point 
0 ~ D. Then for each point z E D, there  exists an element  k ~ K such that kz = ~. 

Proof .  We ver i fy  this lemma for regions of each type in turn. 
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DI,q the group K consists of transformations of the form i) For the region D 

~u,v : Z ~ UZUI~ 

where u and v are unitary matrices of dimensions p and q, respectively, and moreover detu. defy = I. 

We may represent the arbitrary matrix z ~ D in the form z = uldvt~ where ul and vl are unitary and d 

is diagonal and real. Then k = ku, v is the required element, where u = ulul "~, v = v[iv. 

2) Let D = D~ • or D = D~ I- . Then K consists of transformations 

]r : Z --~ /~Z/s 

w h e r e  u is  u n i t a r y .  E a c h  m a t r i x  z ~ D can  be w r i t t e n  in  the f o r m  z = u s u ' ,  w h e r e  u i s  u n i t a r y  and s i s  r e a l  

[6]. In th i s  c a s e  we take  k = kuu, .  

3) F o r  the r e g i o n  D = D TM, the g roup  K c o n s i s t s  of t r a n s f o r m a t i o n s  

w h e r e  k ~ C, J)~[ = t, and u is  an o r t h o g o n a l  p • p - m a t r i x .  

L e t  z = x + i g ,  x, y ~ R ' .  Set  k = eig ~ w h e r e  ~ = a r c  tan  [2 (x , y ) / l l y l l  2 -]lx]12].  Then fo r  the v e c t o r  w = 
k~/2z, we have  (Rew,  Imw)  = 0. T h e r e  e x i s t s  an o r t h o g o n a l  t r a n s f o r m a t i o n  u of  the  s p a c e  R p s u c h  tha t  u 
(Rew) = R e w ,  u ( Imw)  = - I m w ,  i . e . ,  uw = ~ .  Then the r e q u i r e d  e l e m e n t  i s  kk,u.  

LEMMA 2.2.  Le t  D be a bounded i r r e d u c i b l e  s y m m e t r i c  r e g i o n ,  and  X a f a m i l y  of con t inuous  func t ions  
on D wh ich  a r e  i n v a r i a n t  w i th  r e s p e c t  to a n a l y t i c  a u t o m o r p h i s m s ,  i . e . ,  f o co ~ X fo r  any ] ~ X, ~ ~ C(D). Then 
e i t h e r  a l l  the func t ions  in X a r e  c o n s t a n t ,  o r  X s e p a r a t e s  po in ts  on D. 

P r o o f .  C o n s i d e r e d  wi th  the  topo logy  of u n i f o r m  c o n v e r g e n c e  on c o m p a c t a ,  the g r o u p  G(D) i s  a s e m i -  
s i m p l e  Lie  g r o u p .  F i x  the  po in t  z0 ~ D .  The s t a t i o n a r y  s u b g r o u p  K a t  the po in t  z 0 i s  a m a x i m a l  c o m p a c t  s u b -  
g r o u p  of  G(D). Se t  Dc = {z ~ D  : ] ( z ) =  ](Zo) fo r  a l l  ] ~  X}, and l e t  H be the s u b g r o u p  c o n s i s t i n g  of a l l  e l e m e n t s  
of G(D) w h i c h  m a p  D o into i t s e l f .  S ince  fo r  any  ] ~ X  and  k ~ K  we have  / o l d - X ,  then K ~ H .  Since  D O is  
c l o s e d ,  the  g r o u p  H is  c l o s e d  in G(D) and t h e r e f o r e  H is  a L ie  s u b g r o u p .  

A s  D is  i r r e d u c i b l e ,  the  L ie  a l g e b r a  3 of the  g r o u p  K i s  a m a x i m a l  s u b a l g e b r a  of  the L ie  a l g e b r a  
of the g r o u p  G(D) [7, p. 337],  and  s i n c e  the L ie  a l g e b r a  @ of the g roup  H c o n t a i n s  3, then  e i t h e r  3 = , ~  o r  

= ~. In the  l a t t e r  c a s e  H = G,  and h e n c e  D O = D and X = C. If  ~ = @, then the g r o u p s  H m~d K a r e  l o c a l l y  
h o l o m o r p h i c  and the f a c t o r - s p a c e  H / K  = D o is  d i s c r e t e .  S ince  K is  c o n n e c t e d  and t a k e s  D o in to  i t s e l f ,  then i t  
fo l lows  f r o m  the f ac t  tha t  D o i s  d i s c r e t e  tha t  e a c h  po in t  of  D o is  f i x e d  wi th  r e s p e c t  to K. H o w e v e r ,  the  i n v o l u -  
t ion az0 a t  the  po in t  z 0 has  a unique  f i xed  po in t  z 0. T h e r e f o r e ,  D o = {z0)  , and th is  m e a n s  tha t  X s e p a r a t e s  po in t s .  

LEMMA 2 . 3 _ _  Le t  D be a c l a s s i c a l  r e g i o n ,  l e t  f s a t i s f y  the  c ond i t i ons  of T h e o r e m  1 and  fo r  any  z ~ D and  
k ~ K , l e t  

Then f is constant. 

](kz) = ](z). (2.1) 

Proof. Denote by X K the algebra of all the functions satisfying the conditions of the lemma. It is easily 

seen that for any / ~ X~, the function z -- f(~) belongs to X K. But by (2.1) and Lemma 2.2, f(z) = f(z) and there- 

fore f ~ X~. Then the algebra X formed by polynomials in the functions [ o ~), / ~ X;,, e ~ G(D), is closed with 

respect to complex conjugation, and therefore does not separate points on F, since otherwise by the Stone- 

Weierstrass theorem XIFiS dense in C (F), and it would follow from the inclusion X lv c P(F) that P (F) = C (F) 

which contradicts the condition. Applying Lemma 2.2, we obtain X = C, and hence X K = C. 

Proof of Theorem i. Denote by X(F) the space of functions satisfying the conditions of Theorem i. Let 
f ~ X(F), and suppose that / ~ C~(D). Set 

]'(z) - - . I  ].(kz) dk 
K 

(dk i s  the  H a a r  m e a s u r e ) .  Then  f ~ X(F) and  s a t i s f i e s  (2.1) .  By  L e m m a  2 . 3 ,  f = c o n s t .  S ince  f (z  0) = f(z0) , then  

/ (zo) ~ ( f (kz) dk. (2.2) 
k 
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C o n s i d e r  the G (D)- invar ian t  Lap lace  o p e r a t o r  

A = 
~ 02 

Apply ing  the d i f fe ren t ia l  o p e r a t o r  A to both pa r t s  of equat ion (2.2) and bear ing  in mind that  A c o m m u t e s  
with the ac t ion  of  K, we see  that  fo r  z = z0, (Af)(z 0) = 0. Since z J ~ X ( F ) ,  k =  1 . . . . .  n, then we a l so  have A(Zkf) 
(z 0) = 0. T h e r e f o r e  

J=~ gkj  (z0) 0;--~ (z0) = zx (zhD (z0) - -  ZohAI (z0) = 0. 

As the ma t r i x  (gkj(Z0))k,J =l is i r r e d u c i b l e ,  (0 f /0z j ) (z  0) = 0, j = 1, . . . ,  n. Apply ing  the s a m e  a r g u m e n t s  to the 

funct ions  ] o c0, r ~ G(D), as D is homogeneous  we see  that  3 f / 0 z j  = 0 iden t ica l ly ,  i . e . ,  f is ho lomorph ic .  

If  we do not  suppose  e a r l i e r  tha t  f is d i f fe ren t i ab le ,  we have to c o n s i d e r  the modif ied funct ions 

G(D) 

w h e r e  ~ a r e  finite funct ions  on G(D) in the c l a s s  C `r These  convolu t ions  a p p r o x i m a t e  f in the topology of un i -  
f o r m  c o n v e r g e n c e  on c o m p a e t a  and belong to X(F) .  The i r  d i f fe ren t iab i l i ty  fol lows f r o m  the ex i s tence  of  a dif-  
f e ren t i ab le  r i gh t  i n v e r s e  of the mapping  p : G(D) ~ m ~ cO(Zo) & D .  By the above ~ . f  a r e  ho lomorph i c ,  and t h e r e -  
fo re  f is a l so  ho lom orph i c .  

The p roo f  of  T h e o r e m  2 is comple t e ly  ana logous .  

3 .  P r o o f  o f  T h e o r e m s  3 ,  4 ,  a n d  5 

1. The g roup  G(D 1) of  c o n f o r m a l  a u t o m o r p h i s m s  of the open unit  d i sk  D 1 in the c o m p l e x  plane is i s o m o r -  
phic to the g roup  of c om p l e x  m a t r i c e s  of the f o r m  

with the condi t ion  oz~ - ~ = 1. The ac t ion  on the d i sk  is defined by the f o r m u l a  

~z = (az + ~)6z +-~)- ' .  

Ke l l y ' s  t r a n s f o r m a t i o n  w ~ (w - i)(w + i) -1 of the upper  half  plane ll+ induces  on D 1 an i s o m o r p h i s m  of g roups  
of c o n f o r m a l  a u t o m o r p M s m s .  The g roup  G(D) under  tb.is i s o m o r p h i s m  goes  to the group SI~ (1%) of un imodu la r  
r e a l  m a t r i c e s  of o r d e r  2, which  ac t s  on II+ by the ru le  

( z )  - cz + d" 

It  wil l  be conven ien t  fo r  us to p a r a m e t r i z e  c o n f o r m a l  mappings  of  the d i sk  by the s t a n d a r d  method:  

r = e ~ ~  -~, O ~  [0, 2n], ]sl < i. (3.1) 

I f  ~ = cOO,s, then wr i t e  0 = 0(~), s = s(w). 

Set  a l so  ~z  = aJ0,z- The e l e m e n t  ~z  c o r r e s p o n d s  to the m a t r i x  

~= = \ ~  ( i  - I~ [ ~ ) - : / ~  ( i  - I ~ I~) -~/~ ]"  

2. Let  7 be a p o i n t w i s e - s m o o t h  cu rve  lying in D 1. Denote by H(T) the subspace  of L2(D 1, : )  cons i s t ing  of 
funct ions  f fo r  which  

f f ( z )  dz = 0 (3.2) 
r 

fo r  a l m o s t  all  (in the Haa r  m e a s u r e )  ~ ~ G(D'). 

Let  L~ol be the subspace  of  ho l om orph i e  funct ions  in L 2 (D 1, or). By C a u c h y ' s  t h e o r e m  L~ol ~ H (7). Denote 
by H• the o r thogona l  c o m p l e m e n t  of L~o 1 in H(T). Le t  ] ~  H~(~). Then the funct ion 

(R~f)(z) = r((o, z)l(o~-'z), (3.3) 
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F o r m u l a  (3.3) de f ines  a u n i t a r y  r e p r e s e n t a t i o n  of the g roup  G(D l) in the s p a c e  H• 

Set  p(z) ~-- (i - IzP) -2. We note tha t  the m e a s u r e  f~ is G(D1)- invar ian t .  

LEMMA 3.1. The o p e r a t o r  ~ = p - l ( 0 / 3 z )  m a p s  the dense  s u b s p a e e  H~ ~ H a (~) into the s p a c e  L 2 (D l, f~). 

P r o o f .  F o r  e a c h  f ini te  funct ion ~ on G(D i) in the c l a s s  C ~,  s e t  

B c f  = ~ (p (o)) B J d ( o ,  f ~ H ~ (7). 
~(~) 

The  func t ions  R~f  belong to H• and t he i r  l i n e a r  hull  H~ is  dense  in H• 

Us ing  the change  of v a r i a b l e s  ~ = ~ - lWz,  we r e w r i t e  (3.4) in the f o r m  

(3.4) 

(RCf) (~) = .)~ , ( ~ u - ~ )  f (~ (0)) ~ ( ~ - ~ ,  ~) d~. 
G(D~) 

It  fo l lows f r o m  this  no ta t ion  tha t  R, f  ~ C~(D~). It  r e m a i n s  to p r o v e  tha t  0 R j  ~ L~(D ~, p(~). 

F r o m  (3.5) we have  

(3.5) 

(3.6) 

We e s t i m a t e  the t e r m s  unde r  the i n t e g r a l  s e p a r a t e l y .  Set  00 = 00?-l), s o = s (~- l ) .  Then 

F r o m  (3.7), 

e~0(o:~ ~ )  = (~~ + ~0~) (~ + ~ % 0 ~ ) - ~  

s (o)~_~1-1) = (e~~ + z) (e i~176 + -soz) -1. 

L 0 (o~n-~) = Ze~~ (t + ~%0~)= ~, 
az 

0 -  
- -  ~ ( ~ - ~ )  = e-~~176 (~ - I~o I ~) (~ + e%o?)  -~ Oz 

(3.7) 

H e n c e ,  b e a r i n g  in mind  tha t  Is  0] _< 1, lzl  <_ 1, we have 

Since s o = e-i00WzlW(0) , then  

o (o)~ -1) [<~ 2 (~ - t ~o I:)-~, 

t . - i s 0 P - - - - i -  leo(0)-  z P l i -  (o(0)~1 - ~ =  

- - (1-1zP)(1- ] (o(0)  P) l t -~ (0 )~ I -~>( t - [ zp ) ( l - l ( 0 (0 ) l ) ( t+ [0 ) (0 ) [ )~ , .  

The i n t e g r a t i o n  in (3.4) t akes  p lace  o v e r  the c o m p a c t  s u b s e t  G(D1)~ and t h e r e f o r e  in the d o m a i n  of i n t e g r a t i o n  
we  have  f w (0)! - cl  < 1. F r o m  the above  i n e q u a l i ~  we  have  1 - Is012 -> (1 - el)(1 + el) - l (1  - l z  t2). Subs t i tu t ing  
th is  inequa l i ty  in (3.8), we  obta in  

o (~-1) [ ~ ,  2 (t + c,) (t - -  c,) -* (t - -  t z ]2)-*, IZ 0 
1 

(3 .s) 

In t roduc ing  the funct ion  ~(0, s) = ~@O,s), on the b a s i s  of  the l a s t  two inequa l i t i e s  we  obta in  

175 



+ ~ ( o  (~,~-'), ~ (~o~-')) ~ - -~ < 2 ~0-'(~ . ~  ( ~ o ~ )  (l + ~,)(i - - tz l~) - 'x  

We e s t i m a t e  the funct ion (O/az)r(aJz~7 -1, z). We have  

r(~o~l -l, z) ------ (i - [zl~)[(a~ - ~)z + (a + ~z)] -~, 

I~r  (o):,l-~, ~)[< I r (<o:~-', ~ ) i ( t -  I~1~) -~ + ~ lal(t--I~l~)-'/~lr (o):'l - ', ~)["/'. 

(3.9) 

(3.10) 

F r o m  the r e l a t i o n  ~7 - I  = WztW we def ine  the e l e m e n t  a of the m a t r i x  It -i  : a  = (l - izj:)-'e=((o, - z'~2), w h e r e  w = 
$ 

((o I c%). AS a r e s u l t  of the c o m p a c t n e s s  of the doma in  of i n t e g r a t i o n  in (3.4), the e l e m e n t s  wl, ~2 and the func-  
,g= ~ 

r 

t ion r(~z77 -1,  z) a r e  bounded:  IcoII , fw2t , Ir{ <-: c 2. Then f r o m  (3.10) we have  

Us ing  f o r m u l a  (3.6) arid i nequa l i t i e s  ( 3 . 9 ) a n d  (3.11), we obta in  

w h e r e  F ( z ) =  ~ ~ (o~)I / ((o-lz) ld~ and @ is  s o m e  cont inuous  funct ion on the g roup  G(9  ~) wi th  c o m p a c t  c a r r i e r .  

' 2 a L 2 (D 1,~ ( i  - -  I z 1 2 ) - ~ ) .  Since ]~ L~(D ~, (~), then  F ~  L2(D ', c~) and by the l a s t  inequa l i ty ,  ( t -  I zl ~) ~ R ~ ]  

Proof of Theorem 3. Denote by H~(~/) the subspace of the space H(~) consisting of all f ~ H• such that 

/(e~~ = e-~/(z), z ~ D ~, 0 ~ [0, 2n). 

The o p e r a t o r  n 1 def ined by the f o r m u l a  

2z~ 

0 

is  a p r o j e c t o r  of  the s p a c e  H• onto the s u b s p a c e  H~(7). The  o p e r a t o r  ~r 1 is con t inuous ,  and t h e r e f o r e  s i nce  
H~ is  dense  in H• the s u b s e t  HSf] U~ (7) is  dense  in H~(7). 

L e t  f ~ H~ f] H~ (7). Apply  G r e e n ' s  f o r m u l a  to (1.2). We obta in  

d(!)o~ dz A dz= f /(z)dz=O, 
r 

w h e r e  A is  the r e g i o n  bounded by the c u r v e  7. We r e w r i t e  the l a s t  equa t ion  a s :  

S 0/ 'Xa~176 d(~ = 0, (3.12) 
D1 

where XA is the characteristic function of the region A. 

Denote by p : G(D i) --~ D i the natural projection, P(Q)) = (o(0), (0 E G(DI). Using the mapping p, we may 

carry Eq. (3.12) over to the group G(Di): 

,I 0Sop)(~) (x~op) (~-%) a~ = o, 
G(D~) 

(d~ is the Haar measure). The latter expression can be written as an equation of convolutions: 

(~f o p ) .  ( ~  o p)~ = 0, 
w h e r e  (Xa ~ p)~((o) = (Xa ~ P )((~ 

(3.13) 
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Finally, using the isomorphism of the groups G(D I) and SIc(R) induced by Kelly's transforn~.tion of the 

upper half plane into a disk, we carry the function ~f~p, (7~ op) ~ over to SIC(R). By (3.13) the functions f~ and 
X' that we obtain are connected by the relation 

/ '  ~ 7~' = O. (3.14) 

The  function • is f ini te ,  s ince  XA has c o m p a c t  c a r r i e r  ly ing in D ~. 

Let  K = S0(2) be an o r thogona l  subgroup  of the g roup  SIc(R) .  It follows f r o m  the ea s i l y  ve r i f i ed  r e l a t i o n  

OR~f = ~ / o  o -~, 0) ~ G(D~), (3.15) 

that if f ~ H~ (7), then ~f is invariant with respect to rotations of the disk. Then f' is biinvariant with respect 
to K, i.e., f'(klwk 2) = f'(w) for all k~, k~ If, ~ ~-SL2(R). Moreover, by Lemma 3.1 f' ~L2(SL2(R)). 

We apply the K-spherical Fourier transform to (3.14) (see, e.g., [8]). Bearing in mind that one of the 
functions in the convolution is K-biinvariant, we obtain 

7 '  ~ = 0 (3.1~) 

Recall the Harish-Chandra formula for calculating K-spherical transformations: 

~ g )  / ' ' N  2 r = Hgr(s),  g ~ L (SI,~(R)), 

w h e r e  on the r i g h t - h a n d  s ide  we have the o r d i n a r y  F o u r i e r  funct ions  

(3.17) 

--oo 

and gK is obtained by carrying the following function over to the upper half plane It+ = SIc(R)/K: 

K 

and this is cons tan t  on two- s ided  r e s i due  c l a s s e s  by K. Since the funct ion HX 'K  has c o m p a c t  c a r r i e r ,  ~ can  
be cont inued  to the c om pl e x  plane as  an en t i r e  funct ion.  T h e r e f o r e ,  the s e t  of  z e r o s  of  the funct ion ~ 'on R has 
m e a s u r e  z e r o .  By (3.16), ~' = 0 a l m o s t  e v e r y w h e r e .  The P l a n c h e r e l  m e a s u r e  fo r  a F o u r i e r  t r a n s f o r m  on 
SIc(R)  is abso lu te ly  cont inuous  r e l a t i ve  to L e b e s g u e  m e a s u r e  on a r e a l  s t r a i g h t  l ine.  S i n c e  ]" ~L~(SL~(R)) ,  i t  
follows from f' = 0 that f' = 0. Returning to the original function, we obtain 0f = 0. The operator :~ is one-to- 
one on H• and therefore f = 0. The function f ~ H o f~ H~ (7) was taken arbitrarily, and therefore we can 
conclude that H5 (l H~ (7) = 0. 

Now let f be an arbitrary function on H~NH'" (7). From (3.15) we have the relation 

2 ~  

where  (n0~i)(z).= i .l (0S)(ei~ dO. Since 0-g,S=0, then Oi(0)= r = 0. The s a m e  is t rue  fo r  the funct ions  
0 

B~[, (o ~ 6(D') ,  and t h e r e f o r e ,  us ing  (3.15), we obtain  0f(0)-'(0)) ----0 and as w is a r b i t r a r y ,  ~f = 0. Then  f = 0 
and we see  that  H5 N//-~ (7) = 0. Hence ,  s ince  H 5 N H ~ (7) is dense  in H• we have H• = 0, i . e . ,  H(~) = 

L~o I. 

4. P r o o f  os T h e o r e m  4. F i r s t  le t  [ ~ C ~ ( D ' ) .  Apply G r e e n ' s  f o r m u l a  to (1.3): 

.! ~1.%,io60-i-~)d~ = 0, i = i ,  2. (3.18) 
D 1 

Here Xr is the characteristic function of the disk with radius r and center zero. Bearing in mind the invariance 
of the functions Xri under rotations of the disk, as in the previous section, we obtain 

(0fop) �9 (Zriop) = 0, ~ = i, 2. (3.19) 

We find the F o u r i e r  t r a n s f o r m  of the funct ion •  in exp l ic i t  f o r m .  To do this we go ove r  to the funct ion ~r(W) = 
)@[(w-  i ) / ( w  + i)], defined in the upper  half  plane.  Us ing  (3.17) and e l e m e n t a r y  t r a n s f o r m a t i o n s ,  we find 

: e . %~ kx § ie t) dxdt = t6r  e (1 - -  r ) '*- '  (t + r) --is t' [t -{- 4rt ( t - -  
0 

- -  r) -2] i~-2tx/~ (t - -  t)l/:dt = 2gr ~ (i - -  r) i~-a (i -~ r) -i~ F(2 - -  ~s, 3/2, 3, - -4 r  (t - - r ) -~) ,  (3.20) 

177 



where  F is a hype rgeom e t r i c  function. 

Suppose now that condition 1) of T h e o r e m  4 is sa t i s f ied .  By (3.20), the functions ~rl ,  ~r2 have no c o m -  
mon ze ros  in the complex plane. Consider  the space  ~Kof finite K- invar ian t  dis t r ibut ions on D ~, i .e . ,  the dual 
space  of C~(D1), the space  of infinitely d i f ferent iable  K- inva r i an t  functions in the disk D 1 with the topology of 
un i fo rm convergence  on compac ta .  We r e c a l l  that he re  K is the group of rota t ions  of the disk. 

Let  ~Kbe the space  of F ou r i e r  t r a n s f o r m s  

T(s) = <T, %) 

of dis t r ibut ions  T ~ ~(D~) .  Here  g0 s is the K- sphe r i ca l  function cor responding  to the value of the p a r a m e t e r  s .  
The space  ~K(D ~) cons is t s  [9] of ent i re  even functions with the following conditions on the growth: 

a~,n (1) = sup (1 -k [ z I)-~e -hI Iraqi[ f (z)] < oo. 
z E E  

The s e m i n o r m s  Zn,R define a topology in ~'K(D') in which Four i e r  t r ans fo rma t ion  is a topological  i s o m o r -  
phism.  This topology coincides with the topology in the space  ~(R) of o rd inary  Four i e r  t r ans fo rmat ions  of 
finite dis t r ibut ions on a s t r a igh t  line. 

Since the functions ~r~, ~r 2 have no common z e r o s ,  then by Schwar tz '  t h e o r e m  [10], the ideal genera ted  
by the functions • • 2 is dense in ~(R).  In this case  the ideal  genera ted  by these functions in the subspace  
XK(D ') c ~(R) of even functions is dense in g~(D~). T h e r e f o r e ,  by (3.19) we see  that the mean (~00f) (z) ---- 

I S (~f) (e~~ dO = O. Then ~f(0) = O, and taking the function Rcof instead of f, by (3.15) we obtain 0f(co-l(0)) = 0. 

0 

Since ~0 ~ G(D ~) is a r b i t r a r y ,  we have 0f = 0, i .e . ,  f is holomorphic .  

The case  f~L~oc(D~,o) can be reduced  by a s tandard  method to the smooth  case .  We may choose a s e -  
quence go n of smooth  finite functions on G(D 1) such  that the functions R~nf converge  as n - -  ~ to f in the L l - n o r m  

on each  compac t  subse t  of D 1. The functions Rq~nf belong to C~(D l) and sa t i s fy  the conditions of the theorem,  

and by the above proof ,  a r e  holomorphic .  On a l m o s t  eve ry  c i r c l e  l zL = r ,  0 < r < 1 the sequence R~onf converges  

to f in the L l -no rm.  Hence,  on the basis  of Cauchy ' s  in tegra l  fo rmula ,  i t  follows that f coincides with a holo- 
morphic  function a l m o s t  eve rywhe re .  

To prove T h e o r e m  4 for  condition 2), we cons ider  the space  L ~  of K- invar ian t  functions belonging to 
LI(D 1, ~). This space  is a commuta t ive  Banach a lgebra  with r e s p e c t  to the operat ion of convolution 

(f * g) (~) = f f (~ (0)) g (~-~)  d~. 
~(D ~) 

The space  of max imal  ideals  of this a lgebra  coincides with the s e t  of bounded K - s p h e r i c a I  functions % ,  and 
m o r e o v e r  the mul t ip l icat ive  l inear  functionals ms on the a lgebra  LK a re  of the f o r m  ms : f ~ f(s). The bounded- 
hess  of the function ~s is equivalent  to the condition ]Res l  < 1, and the re fo re  condition 2) of T h e o r e m  4 to-  
ge ther  with fo rmula  (3.20) means  that  Gel ' land  t r ans fo rma t ions  of the e lements  Xh, ~ ~ L~ do not vanish  
s imul taneous ly  on the space  of max imal  ideals .  Hence it  follows that  the ideal I()/rl, • genera ted  by the e l e -  

ments  •  • 2 is dense in the a lgebra  Lk .  

Let  f, r l  and r 2 sa t i s fy  condition 2) of T h e o r e m  4. Consider  the function R J  [see (3.4)], where  ~ is a 
smooth  function on G (D 1) with compac t  c a r r i e r .  It  follows f r o m  condition 2) for  the function f and the finaI 
e s t ima te  for  ( 0 / ~ z ) R ~ ,  obtained in the proof  of L e m m a  3.1, that the function 0 R ~  is bounded. Moreove r ,  an 
equation of the f o r m  (3.19) holds for  the function g R ~ ,  s ince the function R ~  sa t i s f i es  condition (1.3). Hence,  
and f r o m  the fact  that (• • is dense in L k ,  we see  that the mean by the group of rota t ions  7r0(gR ~ )  = 0. 
Then 0R~f(0) = 0, and s ince (I.3) is a lso  sa t i s f ied  for  the function RcoR~,  then a lso  ~RcoR~f(0) = 0. As co was 
a r b i t r a r y ,  f r o m  fo rmula  (3.15) we obtain gRq~f = 0. Approximat ing  f by functions of the f o r m  R ~ ,  as we did 

above,  we obtain the r equ i r ed  resu l t .  

5. P roof  of T h e o r e m  5. This is comple te ly  analogous to the proof  of T h e o r e m  3. By Stocks '  t heo rem,  

condition (1.5) is equivalent  to the following: 

D h 
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where • is the characteristic function of the region A. The conditions placed on the derivatives of the function 
f mean that the functions 1/p �9 (~f/0~k) belong to L2(D, pal Therefore, the holomorphy of f is proved, if we 

prove that the equation 

S g (z) ;~a (o)-lz) p (z) d(~ (z) = 0, o) ~ G (D), (3.22) 
/9 

has no nontrivial solutions is the space L2(D, p~). We note that the measure p~ is invariant with respect to the 
action of the group G(D). Denote by K the stationary subgroup of G(D) at some fixed point z0, and set (g~g) (z) = 

I g (uz) du, where du is the Haar measure. Let g ~ L2(D, pa) satisfy (3.22). Then 
14 

( ~ g )  (~) (~:x~) ( (o-~)  p (~) d~ (~) = 0 (3.23) 
D 

The left-hand side of (3.23) can be rewritten as the convolution of two functions on the group G(D). To this 
equation [of type (3.13)], we may apply the K-spherical Fourier transformation (see [7]) on the symmetric 
space G(D) / K. This transformation is defined on K-invariant functions h ~ L2(D, p(~), and is connected with 

/\ 
the classical Fourier transformation using the Harish-Chandra formula: h(s) = 17dh(s). Here s belongs to the 
Caftan subalgebra 5g -R p of the Lie algebra of the group G(D), /~d is the Harish-Chandra transformation: 

(Jdh) (~) = • (~,) .[ h (z exp E. zo) dz, ~ ~ A, 
Z 

Z is the subgroup in the Iwasawa decomposition G(D) =Zexp~ -K, and ~(~) is some factor. It is easily estab- 

lished that the function /~nKX~ has compact carrier in RP, and therefore g~X~ =~r may be continued to an 
/\ 

entire function in C p. Hence it follows that the set of zeros of the function g~Z~ in RP has zero Lebesgue men- 
/\ /\ 

sure, and it follows from the equation :~Kg �9 n~%~ = 0, obtained from (3.23) by applying the Fourier transforma- 
/\ 

tion, that nKg = 0 almost everywhere. Since gKg~ L2(D, pc), then by Plancherel's formula we obtain ~Kg = 0~ 
and in particular, g(z 0) = 0. For any c0 ~ G(D), the function goa) also satisfies (3.22), and therefore g(~(z0)) = 0 
and thus g = 0, by the homogeneity of the region D with respect to the group G(D). The theorem is proved. 
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