Let v be the midpoint of the geodesic yzl[u, x], and let A=I(¥) be a rotation which takes u into x. Then A(Ly)
and A(L,) are two geodesics which join x with Mw,) = U, However, A(L,) does not coincide to A(Ly), because L,
is not the same as Ly: by Proposition 1 of Sec. 3, ¢(y) # y, while y=L,, and ¢(y) = L,. But the existence of
distinct geodesics which join x with A(wy) contradicts Theorem 3, and this proves (c).

d) Consequently, M is a Buseman G-space. Now we see that Theorem 4 is a result of Theorem B [2].
This completes the proof of Theorem 4.

Proof of the Corollary, The two-dimensional locally Euclidean G-spaces are described in [2], They
are: Euclidean plane, cylinder, Mobius band, torus and Klein bottle, The only two-dimensional locally
spherical G-spaces are the sphere and the projective plane [2], The description of the two-dimensional locally
hyperbolic spaces is given in [7] (see also [2]).
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PROOF OF THE VAN DER WAERDEN CONJECTURE
FOR PERMANENTS

G. P, Erorychev UDC 519.10+3.918.3

1°, We prove (Theorem 1) the validity of the van der Waerden conjecture, formulated by him in 1926
({1; 2, p. 155, Conjecture 1]),regardingthe minimum of the permanent of a double stochastic matrix. In the
course of the proof one answers positively (Theorem 2) the Marcus —Newman conjecture on the permanent of a
doubly stochastic matrix ([2], p. 156, Conjecture 11; [3], Conjecture 11). The proof of Theorem 2, and with
it also that of Theorem 1, is based on the representation of the permanent in terms of mixed diseriminants
and on the subsequent use of a geometric inequality for the permanents (Lemma), which follows directly from
Aleksandrov's known inequalities for mixed discriminants [4]. The reduction from Theorem 2 to Theorem 1
is known and is based on the results of [5, 6]. As a consequence of Theorem 1 we obtain lower estimates, for-
mulated previously by other authors (see [2], Sec. 8.2; 7, 8) under the assumption of the validity of the van der
Waerden conjecture and improving in an essential manner the known estimates for the number of Latin rect-
angles and squares, the number of nonisomorphic Steiner triple systems and for the key constant Aq in the d-
dimensional dimer problem. We indicate some other applications of the results obtained in the paper.

2°. By the permanent of an n X n matrix A = (aj;) over the field of complex numbers we mean the ex-
pression (see, for example, [9])
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perA = 2 @50) - -« tnotn)s
€8,

where 8y, is the permutation group of order n. A nonnegative matrix A is said to be doubly stochastic if the sum
of its elements in each row and in each column is equal to 1; @, is the set of all n % n doubly stochastic ma-
trices; a matrix 4 €@, is said to be minimizing if per4 =;llinllln perX; J.=Q, is the matrix with all elements

&

equal to 1/n; A(i/§) is the (n— 1) X (n — 1) matrix obtained from the n X n matrix A by deleting the i-th row
and the j-th column of the matrix A; A = (44, . . ., 4,), where aj is the j~th column of the matrix A; A(ix’ ;) is

the n X n matrix obtained from the n X n matrix A by replacing the i-th column by the n-vector x 'and the j-th
column by the n~vector y.

3°, The following conjecture has been formulated by van der Waerden {[1]; {2}, p. 1585, Conjecture 1): if
A=Q,, then

perA?Z—i,

and the equality is attained if and only if A = J. The van der Waerden conjecture and the various aspects of its
solution have been devoted a large number of investigations (see the surveys in {2, 3]); there one gives a list of
solved and unsolved conjectures and problems for permanents (at the moment of the compilation of the lists).
In [5] it is proved that: a) if A = (ajj) is a minimizing matrix, then per A(i /j} = per A for all aj; > 0; b) if A is

a positive minimizing matrix, then A = Jj;. Marcus and Newman have formulated the following conjecture ([3],
Conjecture 11; [2], pp. 156-157, Conjecture 11): there exists no matrix 4 = {a;) = Q, such that

per A(i/j) =perd forall - j jEE for some ay# 0,
per A(i/j) = perA forall ¢ je{, n, for some a; =0,
and per A(i/j) > per A for some pair s, t= 1, n. for which agt = 0,
Making use of the results of {5], London has proved [6] that if A is a minimizing matrix, then
per A{(i/j) = per 4 for all i, je=1, n H
We also know the following

Proposition 1. (See, for example, [2], p. 101, Problem 18). Let A be an arbitrary minimizing matrix for
which we have the equality

per A(i/j) =per 4 forall i, je1, n. @)
Then, A =Jdy.
4°, The purpose of the present paper is the proof of the following statements.
THEOREM 1.

. J
a) min perX = —.
XeR, r

3

b) XeQ,, perX= f‘— if and only if X = Jy,.

THEOREM 2, If 4 =@, and the inequalities (1) hold, then the equalities (2) hold.
LEMMA (a geometric inequality for the permanent),

a) Let £, ..., fh.1 be n-vectors with nonnegative elements and let g be an n-vector with real elements.
Then

per: (f;, .y fn-z, fﬂ—lg g) >Per (fn “ ey fn—zs fn—-h fn—t) per (ji, L] f‘n—z’ E) g)' (3}

b) Let £y, . . ., fn—1 be n-vectors with positive elements, Equality in (3) is attained if and only if g =
Afn-1, A being a constant,

5°. The result of the lemma presents an independent interest for the investigation of the permanents, non-
negative matrices and also in information theory. This result is based on the representation of the permanent
in terms of mixed discriminants and follows directly from Aleksandrov's known results on mixed diseriminants,



for whose formulation it is necessary to introduce the following definitions (we adhere to the notations of Sec. 1

of [4]). Let f, ..., fm be quadratic forms of n variables:
n
fo= > aPz;.
=1

Their linear combination f = Af; +. .. + Apfyy, is also a quadratic form of the same n variables with coeffi-
cients ajj = 7\141(}) +...F )\mai(]m). The discriminant D(f, . . ., f) of the form f is the homogeneous polynomial

of degree n with respect to Ay, . . ., Ayt

D(f, ...,f) = X Zk 7\4;1 .. -'kknD (fhl’ .. "fh‘n)'
10 0afin

Here the coefficient D(fk,, . . ., fi,)) of the product Ak,, . . ., Akp, called the mixed discriminant of the quadratic
forms fkp . + «» fky, depends only on the forms fk,, . . ., fk, and it is chosen in such a way that it does not de-
pend on the orders of the forms fx, ..., fk,, while the summation is taken over all indices k¢, . . ., kn which
run independently through all the values from 1 to m.

THEOREM. (Aleksandrov's inequality for mixed discriminants [4].) a) Let f;, ..., fy— be positive defi-
nite quadratic forms and let g be a quadratic form, Then

Dz(fh sy fﬂ—ﬁa fn—h g) >D(fh vy fn—21 fn—h fﬂ'—i)D(ih ey fﬁ-Zs g1 g)- (4)
b) Equality in (4) is attained if and only if g = Afy_4, A being a constant,

Since a nonnegative definite form is the limit of a sequence of positive definite forms, it follows that
statement a) of the theorem is valid also for the case when f;, . . ., f5-; are nonnegative definite forms.

Gy - - i
per(: : . : :>=D(f17-'-’jn)n!’

Gny « -« Qpn

We prove that

where f; is the quadratic form with the matrix

Indeed, in this case we have

f=Mhfr4 ... + Aafa = §1(7V1au+ +7mﬂin)z§;

n
== H (Maiy + ... + Anin),

=1

May+ .. + y Y. 0
D(f,...,)=det .
Alnt + ...+ Ap@an
and, as it can be easily seen, the coefficient of Ay, . . ., An in the last expression is equal to per A. Now, in-
equalities (3) follows directly from the inequalities (4).

Remark 1, Inequalities (3) can be carried over immediately to the permanent of a rectangular matrix
(for the definition and the properties of the permanent of a rectangular matrix, see, for example, [9]). In [4]
(Sec. 3), one has obtained the following statement: let £;, . . ., fn be given positive forms of n variables. We
have the inequality

{D(flf .. -1fn)}m>;=:[lD(fkv .. -’fhv fm+11 .. -’fn)v (5)

where equality prevails if and only if all the forms fi, . . ., f)x are proportional to each other. From the repre-
sentation of the permanent in terms of mixed discriminants and from the ineguality (5) we obtain by continuity
the following proposition,

Proposition. a) Let A = (@, . . ., an) be a nonnegative n X n matrix. We have the inequality

m 6)
{per(ay, .-, a,,)}ﬂt}!__]_; per (a;;», cuvs @Ry Gty + o oo On)s ¢
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b) Let A = (a4, . . ., ay) be a nonnegative n X n matrix, Equality in (6) is attained if and only if the n-vectors
ay, . . ., ay are proportional to each other,

Remark 2. The possibility of the proof of the result of the lemma, using the relation between the per-
manent and Minkowski's mixed volumes, has been mentioned by the author in [10]. The role of the geometric
inequalities (3) in the proof of the Marcus—Newman and van der Waerden conjectures for the permanent is
the same as the role of their corresponding Brunn— Minkowski and Aleksandrov— Fenchel inequalities for mixed
volumes, yielding the solution of many important extremal and uniqueness problems (see the survey in [11]}.

6°. Proof of Theorem 2, By virtue of Birkhoff's known theorem, a matrix A=, can be represented in
the form of a convex combination of permutation matrices, From here it follows that if 4 Q,, then

perd =0.

By the Laplace formula for permanents, applied to the elements of the j-th column, we have

per A (l’ ! ) = zahi per A (k/), @)
a5y @4 [
and, similarly,
perA(i’ j ) = 3 0y per 4 (k1) @)
aj, @ [3

Making use of the conditions of the theorem, of the geometric inequality (3) for the permanents

i ] i j i i R
per A (a‘_, ai) >perd (di, ai) perA( _), i, j=1,n,
and of_t_he equalities (7), (8), we obtain the following system of inequalities relative to the numbers per A(i/j),
i,j=1,n:
pert A> (2 agper A (k/j)) (% ax; per A(k/ i)),
k

per 4 (i/]) > per 43>0, ©)

forall i, je1, n
We show that the inequalities (9) have the solution ‘
perA(i/j) =perd forall i, jei, n.

We assume the opposite, i.e., there exists at least one pair r, s=1, n such that

per A(r/s) > per 4.

Since A=Q,, there exists t=4, n such that art > 0. Then, by virtue of (3) we have

s, ¢
— ! Ak
per*d = per* 4 (an ae) > (% aps per A (k/t)) (%} apper 4 ( /S))
n n n
= (% ap. per 4 (k/t)) (RZ‘I ax per A (k/s) + a- per 4 (r/s)) > (hz @y per A) ( 3 au: per A) = pert 4,
= =1 h=1
hskr

where the strict inequality follows from the inequalities per A(i/j) = per 4, apt > 0, per A(r/s) > per A, per A >
0. The obtained contradiction proves Theorem 2.

7°. From London's results [6] [see inequalities (1)] and Theorem 2 we obtain the following prdposition.
Proposition 2. If A is a minimizing matrix, then equalities (2} hold for A,
From Propositions 1 and 2 there follows the validity of Theorem 1,

The proof of statement b) of [5], given in 3°, is, in our opinion, somewhat tedious and complicated (the
complexity of the construction, the limiting process, etc.). In the following section we give another short
geometric proof of this statemient. This proof, with the use of Proposition 2 and of the geometric inequality
(3) for the permanent, allows us to obtain a more transparent, geometric proof of Theorem 1,



8°, First we prove

Proposition 3, (See [6], Lemma 1), Let 0 = A =1, l?t A be a minimizing matrix and for each i, jéi, n
the matrix A' = (aj, . . ., ay), where a{ =Aa; + (1 — Maj, aj=Aaj + (1= Na; and ai{ = ag (k # i, j). Then: a)
A'=Q,; b) per A' = per A; ¢) A! satisfies the equalities (2), '

The condition a) is obvious; condition b) follows directly from the multilinearity and the symmetry of
the function per A relative to the column vectors of the matrix A, from Proposition 2 and from Egs. (7), (8);
condition ¢) follows at once from a), b) and Proposition 2,

Now we show that if A is a2 minimizing matrix, then A = J,. Clearly, the matrix A cannot be (to within
a permutation of rows and columns) a matrix of the form

A_(1 0)
S\ 4,/

where A,.,€ Q.. ; in this case, according to Proposition 2, per A =perA(1/i)=0(i=2,...,n), whichis a
contradiction. We fix some column of the matrix A, for example the n-th one, and we show that

i/
i/n
a' = - -

1/n

Making use of Proposition 3, it is easy to see that the matrix A can be transformed in n — 2 steps into the
matrix B= (by, ..., by-4, ay), satisfying the properties a)-c¢) of Proposition 3 and such that the elements of
its first row, excluding perhaps a;p, are equal among themselves. We setd = (a;; +... + @-1) /(n—1) and

@p,= Min 8y, ¢y, = WX 8y, h=(d—a1,) /(@1 —a1,) <1. With the aid of the transformation from Proposition 3
1€i<n—1 1<i¢n—1

for i =1, j =iy we obtain a;i1 =d, etc., We note that the mentioned transformation, applied to the first n—1
columns of the matrix B, does not change the elements of the first row. Applying the same process to the ele-
ments of the second row, we achieve that its elements, excluding perhaps a,,, will be equal among themselves,
etc. As a result one obtains a matrix C = (¢4, . . ., Cp-s 9p) in each row of which the first n — 1 elements are
equal among themselves (and positive) and the matrix C satisfies the conditions a)-c) of Proposition 3, From
the condition of the strict equality in 3) C = Q. it follows immediately that ¢;=... =cp-1 = apn, i.e., A=Jy.
The proof is concluded.

9°, The permanent arises in the solutions of a series of important mathematical and physical problems
[2], making use of its fundamental characteristic property, namely it gives the number of systems of distinct
representatives of sets. In spite of the wide applicability of the permanent, there exist difficulties related to
its computation and in connection with this there follows the importance of the estimation of the permanent for
classes of matrices. In this circle of questions, van der Waerden's problem occupies a key position. From the
statement of the lemma, from our proofs of Theorems 1 and 2 and from the validity of the van der Waerden
and the Marcus~Newman conjecture, there follows the validity of a series of statements which have arisen in
connection with the attempts of settling these conjectures and their generalizations (see [2], Sec. 8.4). These
results, together with the description of the geometric characteristic of the permanent as Minkowski's mixed
volume, the natural generalization of the van der Waerden conjecture to the multidimensional case and to
mixed volumes, lower bounds for some combinatorial functions, other than the permanent, will be considered
in the future. Currently, we can formulate a corollary to Theorem 1 in which we obtain lower bounds for cer-
tain combinatorial quantities which admit a representation in terms of the permanents of block doubly stochastic
matrices of 0 and 1. These estimates, stated earlier by other authors (see [2], Sec. 8.2; [7, 8]), improve in an
essential manner the known estimates.

COROLLARY. Let L(r, n) be the number of Latin rectangles, r = n, and let L{n, n) be the number of
Latin squares of order n; let N(v) be the number of non-isomorphic Steiner triple systems of order v; let Ag
be the key constant in the d-dimensional dimer problem. Then

r—1
L(r, n) > (nty pra-n JT (n — t)7,
t=1
L (n, n) = (nl)2 =%,

N () > (e~sv)™/s
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and for each & > 0 and for sufficiently large v we have
N (v) > (33262 — &) v)*/5;
ha > 5 logd — 0,153,
Since [12]
N < (e—x/zv)n2/ ¢

and [7]
re<51nd,

it follows that for v — « we have
InN@) o (v¥/6) Inv
and for d — « we have

KdeZlnd.
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