where
D) <e+(1-+e)2e+e (IR (us—~u, v)I4-5) {2+8).

Since & can be arbitrarily selected, we have proved (7). This compietes the proof of the lemma. Equa-
tion (8) can be proved in the same way.

In conclusion the author expresses his gratitude to Yu. F. Borisov for useful remarks,
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CRITERIA FOR THE REMOVABILITY OF SETS IN SPACES
OF Llp QUASICONFORMAL AND QUASI-ISOMETRIC MAPPINGS

S. K. Vodop'vyanov and V. M, Gol'dshtein A UDC 517.544+517.6L1

The problem of removable singularities considered in this paper arises in the work of Ahlfors aad
Beurling [1],

In [1] they considered removable sets in the clags AD(G) of functions that are analytic in a plans vegion,
with finite Dirichiet integral

! uPdz << 0.

Yy

Within the region G, a relatively closed set E < G is removable in the class ADG) if any of the functions
u & ADG\E) is continuable to a function § = ADG).

The class of all such sets (NED-sets) was described in [1] in terms of extremal lengths for famiiies of
curves joining two continua ¥y, F, in the region G; the extremal length of a family coincides with the conformal
capacity of the pair ¥, F; with respect to G [2].

We will use the concept of (1, p)-capacity C4 ,0F ¢, F13 G) for a pair of continua FQ, ¥y lying in a reglon G
of Euclidean space RT,

Ci.p(Fo 713 G) = inf t | Vupdz.

The infimum is taken over all continuous functions v equal to zero on ¥y, to one on ¥y, and having a finite
Dirichlet integral

% [vufrdz < oo,
G

In plape regions, @, 2)-capacity coincides with conformal capacity.
For a region G < R’ a relatively closed set E is an NED-set ifand only if for any pair of continua ¥y,
Fi < G, 04 5(Fo, Fi3 G\E) = Cy »(Fy, Fy; G).

For any pair Fy, Fy, the (1, 2)-capacity is attained for a funetion (an extremal). The extremal funciion
is harmonic in G\ (FyU Fy U E). Therefore, the set £ & NED if and only if any of the exiremal functions can
he continued from G\ E to G without decreasing the Dirichlet integral.

The class NED is removable for plane quasiformai mappings [1, 3].
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In both the removability problems described above, the fundamental difficulty is to prove the existence
of generalized first derivatives in the full region. Therefore, it seems natural to us to pose the problem of
removability for spaces of functions that have generalized first derivatives.

In a region G < R™ we consider the space L:)(G) of locally integrable functions possessing generalized
first derivatives with integrable p-th power p > 1. In Ly(G) we introduce the seminorm

1/
21 = (i | 7ul” dz) p

Regions Gy and Gy Gy = Gy) are called (1, p)—eqmvalent if the restrnctlon operator @: Lp(Gi) e Lp(Gz
(®u =ulg,) is an isomorphism between the vector spaces Lp(Gi) and Lp(GZ)

Reglons G1 and G, are (1,p)-equivalent if any function u & Lp(Gz) can be continued in a unique way to a
function 0 = Lp(Gi)

A criterion for the (1, p)-equivalence of regions Gy and G, is the membership of a set E & G;\G, in the
class NCp in the region G; (Theorem 3.1).

Definition of the Class NCp. In a region G a relatively closed set E is called an NCy-set if for any pair
of continua Fo, F1 =¢ \\ E, Ci’p(FO’ Fi ;G \ E) = Ci’p(FO’ Fi; G)-

The fundamental properties of NCp-sets are simple consequences of this criterion. From them we note
the localization principle: A set E = G is an NCp-set in the region G if and only if it is an NCp-set in any ball
B —G.

On the plane, the class NC, comcxdes exactly with NED, i.e., the removable sets for the classes AD of
quasiconformal mappings and the space L2 are one and the same, In the case of dimension n > 2 and the classes
analogous to AD, the removable sets are smaller than those for the space L} and also smaller than those for
the class of quasiconformal mappings [4-6].

The criterion given above for (1, p)-equivalence of regions is a consequence of a theorem on approxima-
4

ting an arbitrary function v & L%) (o > 1) to any desired degree of accuracy by linear combinations ¢, +i§ Vs
of extremal functions for (L, p)-capacity, whose gradients have pairwise disjoint support (Theorem 1).

The approximation theorem presented in Sec. 1 is the fundamental result of this paper.

The results of Sec. 1 carry over to the space Wb (G) in the case of a bounded region G.

We assume that for a homeomorphism ¢:G —G' of regions G, G' < RI and any pair of continua Fy, F1 <
G the following inequalities hold

K-1Cy 5(Fo, Fi; GY<<Cy »(¢(Fo). @(F1); G')<<KCi o(Fo, F1; G). (*)

where the constant K does not depend on the choice of continua. The homeomorphism ¢ is then called quasi-
conformal for p = n, and quasi-isometric forp #n, p > 1.7 The least of the possible coefficients K in the
inequalities (+) is called the distortion coefficient q(¢) for the mapping ¢.

1t is well known that each quasiconformal (quasi-isometric) homeomorphism ¢:G — G' generates a
bounded operator ¢*: L) Gy) = Lh (@) (IHG") — LH(G), p > 1) by the formula (p*)&x) = f(p)).

In Sec. 2 we prove a result that allows us to compute the norm of the operator ¢ * exactly.

In Sec. 3 we derive some properties of NCp-sets. In Sec. 4 we establish theorems on removability, of
NCp-sets for quasiconformal, and NCp-sets for quasi-isometric mappings.

The removability of compact NCp-sets for quasxconformal mappings is proved by the modulus method
from {8].

The standard theorems on removability for quasiconformal mappings [5, 6, 8] are particular cases of
the theorems given in Sec. 4.

The results in Secs. 3 and 4 were announced in [9].

tWe use the standard definition of a quasi-isometry [7].
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1. AN APPROXIMATION THEOREM
A BASIS OF EXTREMAL FUNCTIONS IN LE(G)

1.1, Preparatory Reduction. The Classes Ep(G) and Ex@G). In a region G = R™ we consider two n-di-
mensional sets F and Fy, relatively closed with respect to the region G. In addition, we assume that there
exists a continuous function from the class Lp(G) equal to 0 on Fyand 1 on Fy.

The space Lp(FO, Fy; G) is the set of those functions u Lp(G \ (Fo U Fy)) such that the function a:G —R
equal to u on G\ (Fo U Fy) and zero outside the G \ (F, U F;) belongs to the space Lp(G)

The Dirichlet Probiem. To minimize the integral

) |7 (f +u) | de,
G\(_Z:‘g‘,,Fl'y

where u & "1%)(};0, Fy; G).
There exists (cf., e.g., [10]) a unique function v = f + ‘i%,(FO, Fy; G) such that

U Tede= it U v = wprds,
Gy T wEL!(Fo FiiG) G (FoUF)

The function v is continuous and monotone in the region G \ (Fy U Fy). Its behavior near the boundary of
the sets F; and F; depends on the structure of the boundary.

We extend the function v to be zero on Fy and one on Fy. The extended function will be called extremal
for the (1, p)-capacity of the pair of continua ¥, ¥y in the regxon G, or simply extremal where this will not
lead to confusion. The extremal function belongs to the class LP(G)

If 5F, NG and 8F; © G are smooth manifolds, then the extremal function is continuous in the region G
[11].

Throughout this paper we will understand the Dirichlet problem to mean only the problem described
earlier.

We will be interested in two classes of continuous extremal functions Ep(G) and Ep(ﬁ).

1) Ep(G) is the set of extremal functions for (1, p)-capacity for all possible pairs of n-dimensional con-
nected compacts ¥, F; = G possessing smooth boundary.

2) Among the extremal functions for the (1, p)-capacity of pairs of closed (relative to the set G) sets Fy,
F{ with smooth boundary, in the class Ep(G) two conditions stand out:

a) for each function u = Ep(G) and any number 0 < a < 1 the set ute, a) is connected;

b) the set u~!(a, + =) is connected.

LEMMA 1.1, The set Ep(G) is dense in Ep((_}) in the sense of convergence in L%;,(G).

LEMMA 1.1', There exists a countable set of functions vi € Ep(G), i=1,2,... dense in Ep(ﬁ).
Proof of Lemmas 1.1 and 1.1,

I. If there exists in Ep(G) a countable everywhere dense set, then Lemma 1.1* follows from Lemma 1.1,

We consider the collection of all polynomials P : R} — R with rational coefficients. For each polynomial
we choose in R the countable everywhere dense set A of regular values. The collection % of (n ~1)-dimen-
sional manifolds forming the connected components of the pre-image p-t tt), ¢ = A, is countable,

In Ep@G) we form the set of all functions v, extremal for all possible pairs (F, F;) whose boundaries
belong to %. The set % of such functions is countable.

If u € Ep(G) is an extremal function for the pair (F,, Fy), then 8F;, 8F; are smooth manifolds. They are
level surfaces of smooth finite -valued functions. By Weierstrass' theorem there exists a pair of manifolds
My, Mj=® that lie sufficiently close to 3F;, 8F;. A theorem on the continuity of capacity [12] allows us fo
conclude that % is everywhere dense in Ep(G).

II. We choose a function v from the class Ep(G) We fix ¢ = (0,1 /2). The functlon ve = {mm 1—g,
max (e, v)] — &} /(L = 2¢) is extremal for the pair of connected compacta Fpe=v~ 1o, €], Fy, g =V’ -, 1]
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Therefore, we can construct two sequences {Fy, ot {Fy, b of n—dlmensmnal connected compacta with smooth
boundarles "exhausting" F, ¢ and Fy a in the followmg sense: o) Fl g Fiforallm=1,i=0,1;p) F1
2 for my = my; v) VFlsDIntFl e, 1=0,1.

. . m
The functions v, are continuous, take the value zero on Fglg and the value one on Fy  for all m.

Therefore, the Dirichlet problem for the pair (Ff]fle, F{fls) is solvable and the extremal function vy be~
longs to the class Ep(G).

The following inequality is obvious

(1 Fonlde< 1707 de, m=1.2, ... ®
G G
The sequence {vm} is bounded in I} p(G). We can assume that it converges weakly to some functionn &
Lp(G) The limit function is equal to one on IntFy € and equal to zeroon IntFy¢. By 2 lemma on semi-con-
tinuity (cf., below) we have

n

\ [Tulpdx<l \ | Vv, | dz. 2)

C}

1t follows from (1), (2) that

.
Fuf? de <<

| v ve |7 d.
G

< lIs
G
Since the solution of the Dirichlet problem is unique, ve = u. The sequence {vm} converges to the func-

tion v¢ weakly and fr,, HL, ((_)—+!§ e , therefore vy converges to v in Lé,(G) cf., Temma 1.2). It is obvious
pt

that |ve — vl L) —~0 for £ — 0.

1
L (6)

Thus, for each function v € Ep(é) we can construct a sequence of solutions from Ep(G), converging in
Li) (G) to the function v.

In the proof we made use of the following lemma:

. Lemma on Semicontinuity. Suppose that a sequence of functions {vy = L},(G)} converges weakly to a
function v = Lb(G). Then

\lelpdx<hm HTLm| dz.

G mox G
Proof. If we take the factor space of L%)(G) with respect to subspace of identically constant functions,
the results is a Banach space,

The inequality then becomes a well-known property of the norm for a Banach space.

COROLLARY. Suppose that the sequence {vy = Lp(G)} is bounded in Lp(G) and converges almost every—
where to the function v = LP(G) Then there exists a subsequence {vmk} of the sequence {vp} that converges
weakly in L})(G) to the function v. In addition the following inequality holds

{imol dz<lim [ [V, [ de.
G

m-~roo G

Proof. Since the sequence {vp} is bounded, we can select from it a weakly convergent subsequent
{Vm }. By an embedding theorem, the sequence {vmk} converges to its weak limit u in Ly in any ball B Bc
G). Tnerefore we may assume that vy —u almost everywhere, i.e., u =v. The inequality follows from the
lemma on semicontinuity.

TLEMMA 1.2, If the sequence {vm}» Vm € Lp(G) converges weakly to the function v and | tml 1—+11UEL1,
then vy, converges to v in Lp(G)

For the proof it is sufficient to note that the factor space L%,(G), p > 1, with respect to the identically
constant functions is uniformly convex.

Iet ¥y, Fy = G be two closed sets for which the Dirichlet problem is solvable in L%)(G).

We assume that F, may be represented in the form of a countable union of disjoint n-dimensional sets
{F,i= G},1=1,2,...,closed with respect to G.
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It is clear that for any pair \/Fn L= ‘ VP Fl\. the Dirichlet problem is solvable in LE(G)

17:1

LEMMA 1.3. The extremal functions vy for the pair {F(, ks ¥4} converge in Lp(G) to an extremal fuaetion
v for the pair {F,, Fy}.

The proof is analogous to the proof of Lemma 1.1,
1.2, THEOREM 1. For each function u = L%‘)(G) and for every ¢ > 0 there exists a linear combination

i
Y c.vn of functions vi = Ep(G) satisfying the conditions
ﬂ) u_h§1chuk L;(G)<S,
[ 3 y ! @)
Y N ___ V
b) iihélchbhii";w) s lentlvs ”L @

We will carry out the proof in several stages.
A. 1t is sufficient to prove the theorem for the class C* 1 Lp(G) since this class is everywhere dense in
Lp(G [13].

B. The Approximation of Smooth Bounded Functions from I%(G) by Piecewise Extremals. The concept
of a piecewise extremal function to be introduced below will only be used in the proof of Theorem 1.

In the region G we consider open sets Vi & Vy <...< V;. We assume that for each pair (Vk 1, G\‘Vk)
the Dirichlet problem is solvable in Lp(G k=1,62, . L.

The function v is called a piecewise extremal function, associated with the set V,, Vy,. .., V7 and the
real numbers ag,ay,. . .,aqy, if

b4~

\ 33
= a() - (ak — Op1} Vg,

Il
-~

2

where vi is an extremal function for the pair Vi, G\ V).

To determine a piecewise extremal function it is sufficient to give the choice of sets {Vy} and the choice
of numbers {al}. A piecewise extremal function satisfies

7
re Ly (6) and (v a, —a
Ai § Rk h—11 I Uy "LI(G)

We fix a smooth bounded function f = L%,(G) and a partition 7 of the interval [mig f(zx). max f(z)] by ihe
T e T Ee=
real numbers minf{) < a4 < a( < ...< a7 < maxf(x) where we require f‘i(ai) to be smooth manifelds. By
Sard's theorem, this condition is satisfied for almost all values of the function f.

The open sets V. = =, ai) form a monotone sequence. For each pair (Vk, G \ Vi) the Dirichlet
problem is solvable. Therefore for the choice of sets {Vy} and numbers {ay}* we have the piecewise extre-

mal function v, = a, — 21 (o, — a1} vy
[y
In each of the open sets V). \Vj._; the following inequality holds

I rnre<@—any™ | v,
vy \‘T..’ Vk\_T’k— 1
Therefore, the following inequality holds throughout the region G

Vv de<< 1 f P de. @)

\

A sequence T, of partitions of the interval [min f(z}, max 7(3@)} corresponds to a sequence vy = Vrm of
piecewise extremal functions. i TE6

*Here and throughout the proof of the theorem, closure will be understood relative to the region G.
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It is clear from the construction that the piecewise extremal functions satisfy

|H{z) —vn] <diam 1., diam rm=m§[ai—a¢—1 l.
=11

In addition, we assume that diam Ty, — 0 for m —«, In this case the sequence {vyy,} converges uniformly
to the function f. The lemma on semicontinuity, inequality @), and Lemma 1.2 allow us to assume that the
sequence {vm} converges to f in the space L{,(G). Therefore, it is sufficient to prove the theorem for piece-
wise extremal functions.

l
C. The piecewise extremal function v=a, - 2-1 (an— a—1) vx is given on a sequence of open sets {V|}
k=

each of which may be written as a countable union of connected components.
We wish to show for every ¢ > 0 there exists a piecewise extremal function v, satisfying the conditions

a) v — ve] <z

{
Ly(©)

b) the sequence of open sets {Vi_i} that determines v consists only of sets with a finite number of con-
nected components, therefore the open sets G\Vﬁ consist of a finite number of connected components k =
1,2,...,L

The proof will proceed by induction on the sequentially constructed sets Vi1, G\ Vg, k=1,2,...,1L

We fix € > 0.
1

The Induction Assumption. We assume that there exists a piecewise extremal function u = a, 4 > (an —
a,__{) u, satisfying the following conditions h=t

a) forl =q =r > 0 the sets Vg_i* and G\\_/& consist of a finite number of connected components;

b) HV—uilL;(G)<s(1—r+ 1)L .

The Induction Base r = I. We assume that the set G \V; consists of a finite number of connected compo-

nents Ui, i=1,2,... . Foreach pair(Vl_l, f) 51) the Dirichlet problem is solvable. By Lemma 1.3 the
i=1

extremal functions vy j of these problems converge to a function v; in the space LE,(G).

Jg — :
We set V‘l” equal to G\ U U;, where j, is so large thatv;;, — v, HLi(G) <&/ 20(a; — aiy) .
i=1 P
We construct a new piecewise extremal function with respect to the set Vg, Vy, ..., V], V‘l” and the
numbers ay, ay, . . . , 4y
It is clear that v — w| L@ <efel,
Now suppose that V;_; consists of a countable number of connected components Uj, i=1,2,.... For

each pair( L]j U.. G\V‘,") the Dirichlet problem is solvable. By Lemma 1.3 the extremal functions ug j of cor-
i=1

responding pairs converge to a function w; in the space L%,(G).

We setV,_, ;= [j U, and V,; = VinV,_,; forall0 <k =1—-1. We consider the sequence of piecewise
i=1

extremal functions
{
u; = a; - 121 (ap —ap_upj j=12....

The functions ug,jare extremal functions for the pair (vk—1,j , G\ Vg, j) for allk < I and forallj =1, We will

show that|w — u"ﬂLé(G)_) 0 as j=eo In fact,
I—1
7 + l'p
Jw—u; UL;,(G) = 21 (ay — ar—1) Ei" Vi — Vg, [P dz 4w, — UiilLler
=

*The index u on the set V}i means that V} is a set from the sequence corresponding to the function u.
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By Lemma 1.3, the last term converges to zero. For k < [, if follows from the formula

¢ o
(I Ty — Vi, | de = A | Vuy, — Vniltde = § [ Vuy P de = E (,1 [ Vug |t dz
¢ ViNVi,i VENVE,j MRS
that Jup — Us, :[fL L converges to zero as j — e,

We choose j, so that

| 7 Y— . H
Jw uJoﬂL£<G>< 8/20-
We have constructed a piecewise extremal function u = uj, for which the induction hypothesis holds for
r = [: the set 'V?.b G\ \7? consists of a finite pumber of connected components and the estimate v— ui’lii(a)Q
L

o —w ﬁL;,(G) Flw— ”"°”L§,(<;> <&/l holds.

The Induction Step. We assume that the induction hypothesis holds for r=8 <!, s > 1. We will con-
struct a function w for which the induction hypothesis holds for r = s — 1.

et Vlsl..g consist of a countable number of connected components Ui. For each pair of ( U U, 6\VE )
=1

the Dirichlet problem is solvable. By Lemma 1.3 the extremal functions ug-y,j for the corresponding pairs
converge to a function ug-¢ in the space Lp(G)

U; and V5= VN V,.s; forall 0 =k < s —2. We consider a sequence of plecewise
1

WesetV . ;=

i

[[[f g

extremal functions

i I

3—1

Uz ==y - ‘gi ((Ik — ak—l) up,j -+ kgs ((lk — ah_i) Up. j= i, 2, e

7

The functions vy ; are extremal functions for the pair(Vk__i’j,G\Vk’j) forallk < s—1and forallj=1,
We will prove that|ju — u]-!]L;(G)—>O.

In fact,

i Z{J L G) E (ak'— 0!—') % IVUA — Vg, 7%pdw - ;I'ae—-t —— U3 ’}BIX((')

By Lemma 1.3 the last term éonverges to zero. For k < s —1 it follows from the formula

Jlj Vup — Vi ;| dz = \ | Vuy — Vug ;| de = S‘ | Vu, P dz = V S | vu, " dz
- J

NE T R =il
Vi~Vi,i Vi Vg j ]+ Ui

that jux — i, ¢ o converges to zero for j — .
-

We choose j, so that
fu— “m 1 <e/21 {5)

We will construct a piecewise extremal function w = Uj, for which the induction function will hold for
r =g, the set VW , Will consist of a finite number of connected components, and inequality (5) will hold.

The complement of the set VW ; may consist of a countable number of components W;, j=1,2,.... In
this case the set VW must undergo a further manipulation.

By the mductlon assumption, each of the sets G\Vk G\V‘I’é’ for k = s consists of a finite number of
connected components. The inclusion G\ Vk G V¥ oy k = s, implies that for j larger than some j,, Wj 1

G\V}) = ¢ forall k = s. From this it follows Wj = V¥ for j > jg.

We consider the sets Wg_y j representing the interior of the closure relative to G of the set V;’L U( J
for j > j. B

)
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The number of connected components of the set Wg_y i does not exceed the number of connected com-
ponents of the sets V¥_ for all j > j,.

~ o~

It follows from the inclusion Wj = V& = V{ for j > j, that the extremal funetion for_the pair (V§_{, G\ VY)
vanishes on Wj. Therefore, it is an extremal function for any of the pairs (Ws_l’j,G\ V‘g) for j > j,.

For such a pair (V3_,, G\WS_1,J-) the Dirichlet problem is solvable. The extremal functions wg—y, j for
these problems converge to an extremal function wg_; for the pair (V_,, G \V§.y) in the space Lé) G). This
allows us to choose a j; > j, such that the piecewise extremal function w for the decomposition V‘}W c...C
V¥, = Wsa,j, © Vg = ...c VY and the numbers ay, a4, . . ., a] satisfies the inequality

~

fo—wl,s <2t

From this and inequality (),
fu—wh g <Selt
This proves the induction hypothesis.
D. In the preceeding three sections we proved the possibility of approximating an arbitrary function

1
u e L%,(G) by piecewise extremal functions w = ¢, + k% (ar — ar—1) w,. Each of the functions wi is a solution of

the Dirichlet problem in LE)(G) for the pair of closed, relative to G, sets (Fl(f‘, FF), whose interiors consist of

a finite number of connected components and ¥y =G/ IntFk, Ff=GN IntFF. The functions wy are continuous

and “w"):.;,((}) = kgi‘ ap —Apy ”_]wﬂL}J(G) .

To complete the proof of the theorem it is sufficient to demonstrate the possibility of representing any of

5% iz
the functions wy in the form w, =cf — X cfw}, where the functions uf = E, (G) and |w, It = e fwt I, &
i=t “Lp i=1 p(

We consider a continuous extremal function v for the pair of closed (relative to G) sets ¥, Fy.

For a real number a, we choose a corresponding pair of sets V, = vi(~w, a), W, = v(a, ©). We will
study the behavior of the two functions: 74 = Tov{a), equal to the number of connected components of the set V,,
and 11 = 11y(a), equal to the number of connected components of the set W,,.

1, If IntF, and IntFy consist of a finite number of connected components, and if ¥y =G IntF,, F; =
G\ IntF,, then 0 = 15 = ky, 0 = 71 = ky, where k; is the number of connected components of the set Fy, ky is the
number of connected components of the set F;.

We assume the opposite: that there exists a number a, for which the set V, consists of I > k connected
components. Clearly, 0 <a <1, V; © F;. Thus, there exists a connected component V of the set V, disjoint
from F,. For the function u = v outside V and u = a on ¥,

(]Vulpdx< \nvalpdx.
G .G

It follows from the uniqueness of extremals that u = v — a contradiction. The proof for 7 is analogous, -

2. The function 7, is nonincreasing, while 7y is nondecreasing.
3. fO=ry=1land 0 =7 =1, thenv e Ep(G). Property 3 is a reformulation of the definition of the
class Ep(G).

4. Ty = 791~y fOr any extremal function v for a pair of closed (relative to G) sets Fy, Fy.

We assume that the function 7, is not constant on the interval (0,1). Iet 0 =ay < a; < ... <ag < 1 be the
points of discontinuity of 7(, and ag+ =1.* The corresponding functions vy = (ak _ak—1)_1 min [max (v, ak—1),

s+1

a] for the discrete functions 7 k = To,v 2T€ constant on (0,1),k=1,2,...,s+ 1. Clearly, v =h§ (ar, —

@p—1) Vx, Where vy are the extremal functions for the pair of sets Fy i = vﬁi(O), Fik= vE‘(l) for all k and
s-1
vl

8 | i
o g;i Loy — an—tl]val Ly(G) *

*The point 1 might not be a point of discontinuity for 7.
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For the functions wi =1 — vy Wi constant, 7o wy = 71 ,1-wy,= Tivje Repeating the arguments given
above, we obtain
Sg
wy = 2 (ap,j — @r,i—1) Wi
j=t
where wi j = {ak,j "ak,j-1)'1 min [ag j, max {ag,j-1, Will, 0=@agj <ayj<...< agy -1, < 1arethepcints of
discontinuity of To Wi and agy,j = 1,

The functions TIW and 74 wi,j are constant for all k, j on (0,1) and

Jwy | L ;lak — ap it | wn sl
Consequently,
s+1 / “ s41 Sa FER )Y
=k2'1( ) 1*‘ S‘ (@r3 — Gpj—1) Wrj | = 1—h21 D@y~ apg) (Qpj— Ay i) W = ’1—-k ”Z €k, Whi s
= = ] o

where cg 5 = (ak‘ak—i)(ak,j —ak,j_g. It is clear that

s+1 S{;
i = ¥ Nlegsllws . N
hU”L;(G) k.:“:il ri Ll h,aIJL}i}(G) {6)

Proposition 1,4. Each continuous extremal function w with corresponding functions 7, W, Tiw constant on
]
(0,1) can be represented in the form w= >w,., where Wy are continuous extremal functions corresponding to
h=1

the following conditions: a) for alla < (0, 1), T1Wk(a) =1lforallk=1,2,...,5b) Tﬁ,wkia) =T wia) forall

a; ¢) Towy 1s constant on (0,1); d) | w}}L, - ZI hUL Loy’

Proof. The set G\V‘1 (0) consists of a finite number of connected componenis Gy, Gy, . . ., Gy, since
each of the connected components of this set must intersect the set W, = v‘l(a, <} forall 0 < g <1, while W,
by assumption has a finite number of components.

For the pair Fo k= G\ Gy, Fy,x =Gk 1 F4) the function wy, equal to zero on Fy,k and equal to w at the
remaining points, is extremal. Clearly,
121 6= Z 1ol g
The functions 1y i = 7 W are constant. In fact, pick a fixed but arbitrary function wy. We assume that 74
is nonconstant. We consider the point of discontinuity a, closest to the origin, The set Vi ,ay = Wk {—o, ai)
{a; < a) has a larger number of connected components than Vi Jay = Wk {—=, a3) (ay > a). Therefore, as we
cross a, two connected components. of Vi ,a, must unite. Then two connected components of the set Va, =

(—*oo, a1) must unite as we cross a, i.e., 7; is discontinuous. From the construction of the function Wik,
0,10 wi0,1]=¢, if k » j. Therefore,

b
Iha-

T = e Ti,ﬂl'k-
The functions Tiw) are nondecreasing, while 7y are constant, the}efore, it follows from this that
TLW are constant, k=1,2,..., .
We assume that for some k,, 74 Wi, > 1. Then for any ¢ = (0,1) the set W, = wgé(a, w0} is not connected.

Clearly || W,= w,:‘ (0,11 =G4, . The set G, is connected, therefore || W, is also connected, which is
0 - ¢ 0<a<i
not possible if any of the sets W, is not connected.
In conclusion, the functions 11,Wk(a) =1 for any k and alla e [0, 1). This proves the praposition.

For each of the functions wy . in representation (6), we can apply Proposition 1.4, to obtain & represen-

tation for the function v in the form of a2 sum { - 2 cyU , where Vk are continucus extremal functions with the
following properties:
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a) T1,Gk(a) =1foralla [0, 1);

b) 79,5 (a) is constant on (0,1);

r

=23 [eplfonls

c}! L«;) Py} L6y "

Applylng Proposmon 1.4 to each of the functxons 1 - vk, we obtain a representation for the function v in
the form ¢, + 2 cxUr, where u,=E,(G) and [(vﬂL 6 = Z . U;vﬁﬂL " This proves the theorem.

Remark, If the function u = L%,(G) is bounded, then the function constructed in Theorem I w=¢, pIRAA
is also bounded and Iw ()| < 2iuf)! for all x = G. =

COROLLARY. The linear hull of Ep(G) is everywhere dense in Lp(G)

This follows from Theorem I and Iemma 1.1',

1.2, THEOREM II. Each function u & LI,(G) is representable in the form u= ¢, -+ _Z ¢;v; , where cj are

u—ZCU,‘I —0

real numbers, and the functions v; belong to the class Ep(G) for all i = 1. In addition, Il
== )

ag [ — =,

Proof. We fix ¢ > 0. According to Theorem I there exist functions ?71, ;2, e ‘71 = Ep(G) for which

I
“u — 20 D ! L1(G)<8/2 Iemma 1,1 allows us to find for each of the functions vj = Ep(G) a function vi = Ep(G)
|' i=1 I lo
such that ll v,|]L1 ©S <e&/2le;ll,. We set u;=u ——_Ziciv,- . Obviously, |
=

€,
us] L, (G)<

Suppose that ui has been constructed and flugll < ¢ /2k-1, Applying Theorem I to ug we construct func-

p

ions v v G i — S e, Sez i

tions Vigg+o e - o0 Vig = Ep(G) for whichju, i::}_“ﬁi €;v; L;(G)\ / . Lemma 1.1 allows us to find for each
of the functions ,‘\,’i = Ep(ﬁ) a function vi € Ep(G) such that Jv; — v, HLx(G)ée/ZhHCi (lp — lpes), =l 1, o0 L

4
Iy
We define w1 =up— X ¢;. Clearly, juyq] 1 <&/2*
i=lk—i+1 4 LP(G)

The series 3. ¢;i; converges absolutely in L%_,(G).
i=1

Iy 3 ! r
In fact, by constructxon{ S epi|, <e2'-e2"" and by Theorem I‘ E il . = .
f==lp g+l Lp(G) [P ,+1 le(G) i==lp g4t

lesl]vel, 2 g, Then

N Ip
N el <Up=minl)L X
] 1 =minl,)<< 2 lewy]
i=‘ITf . '}L © = (5 LN z)\i=lo+ zlL )
§ 4 (s :
=3 N e <> N RN IR )
i eSS S levd o= =)

e \

| ~ . & S/ 8, & . ®

(12 i, *W)<2«1(z—f——ﬁzfﬂ*?f+ﬂ<%/2-
i= /

X
ey I‘Lp(G)

F=1

Since N is arbitrary, the series converges absolutely and we can combine similar terms. By [14] the sum of
the series differs from u by some constant ¢,. This concludes the proof.

THEOREM III. There exists a countable collection of functions vi & Ep(G), i=1,2,...,*%such that for
any function u I%,(G) and any & > 0 there exists a representation of u in the form v =¢, + ig}icgvi for which

0

< Xlews Lul s

f 1 -
Lp«;) = i L (@ Lp(G)

*We can choose the countable set {vi} so that it is linearly independent. Then {vi} will be a Schauder basis.



Proof, If in the proof of Theorem Il we were to use Lemma 1.17 in place of Lemma 1.1, we would prove

<Jul s, . -+&. Onthe other hand, w,th <2

the existence of a basis satisfying the mequallty MM; L
a»-=i

6)
gc T ,JlL L - This concludes the proof. gl

1.3. For a bounded region G, the corollary to Theorem I carries over to the space Wé((}) of fone~
tions whose p-th power is integrable over G, with generalized derivatives in G whose p-th poweyrs are inte~
grable. In the space Wé we consider the norm

fuf 1

Wi =[ulr 0+

T, [

THEOREM II'. The linear hull of the set Ep(G) is everywhere dense in the space W1 G).

Proof. We consider a bounded function u = Wp {G). By Theorem II and the remark below Theorem I there
exists a uniformly bounded sequence of functions {uy}, each of which is a linear combination of elements from
the set Ep(G), converging to u in L @) 4

Then by [14] we can choose a bounded sequence of real numbers {ck} such that the sequence {up + ck}
converges to u almost everywhere, By Lebesgue's theorem {uj + ck} -y in I5(G). This proves the theorem.

2. THE INVARIANCE OF THE CLASSES L) (L)) FOR QUASI-ISOMETRIC
{(QUASICONFORMAL) MAPPINGS

The standard proof of invariance is well known; it uses the metric definition of the mappings and their
differential properties.

We present a new proof of this result {using Theorems I and II), allowing an exact computation of the
norm of the operator induced by the mapping.

THEOREM 2.1, Iet ¢:G —G'be a K-quasi-isometric (K-quasiconformal) mapping of a region G < RB
onto G' © R%. Then the operator ¢*, defined by the formula (p*u)&) = u{p()) almost everywhere for any func-
tion u = Lé(G')(L%i(G')), is a bounded operator from LE(G' (L1 {G")) onto L%;(G (L%l(G)) and lp*ll = K!/p

Proof. For any paxr of n-dimensional continua with smooth boundaries Fg, F{ < G', ¥ (1 F{ = ¢ and their
images Fo=¢~ (Fo) (F1) the following inequality holds

'\[Vv]i’dxglf_{]vztlpdx {7}
G & .

for extremal functions v, u corresponding to the pairs (F;, Fy), (F&, Fi), respectively.
1, We extend inequality (7) to a broader class of functions.

Let F{, F{ — G' be closed (relative to G') connected sets, satisfying the condition IntF,_ = Fp i=0,1,
We construct two sequences {Fg m = F§}, {F{ ;y = F{} of n~dimensional connected compacta "exhaustmg"

Fo,and F{, ie., L IntF.,o>IntF.. IntF,.>F., fork> 1,i=1, 2,

me=t

If 4 is an extremal function for the pair (F}, F{), and Uy, is an extremal function for the pair Fy,mo
F{ m), then the following inequality holds

ftvanray<livalray. (8)
éy G’

The pre-images Fi m = go‘i(Fi' m) of the sets F{ m "exhaust" the sets Fj = “1 (FU i=0,1.

For the extremal functions vm related to the pair (Fy m, Fi, m), itfollows from (7) and (8) that [em s i) (m<

KM, :1 (G)<AJ 1l L The boundeduness in LH(G) of the sequence {vpy} allows us to assume that it con-

verges weakly to some function v = Ip(G) equal to zero on IntF, to one on IntFy, 0 = v(x) =1forallx &G,
From the above, and the lemma on semicontinaity we obtain

U <lim| 7 ' <A \~J .
-L,f() — ! ’”[ "l

2, We return to the beginning of the proof, We fix ¢ > 0 and a natural number ! > 2. The function
Ug = {min[max (v, €),1 — €] —&} /@ — 2¢) is extremal for the pair Fy ¢ = ug 10), Fye= ugl(l). We associate
with the numbers &, ! two systems of sets
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Fyi= Foe Foo=u (10,40), ..., Fop=uw" (10, (1 — 1)/l);
Fio=us (WL, .oy Flaci=ul (=D)L, Fri=us!
and
Foi=¢= (Foi) Fio=0(Fi;), i=12,....L

Usmg part one of the proof, each of the extremal functions uj = min (i, max ({ —1, lug) — (i —1) for the pairs

(F0 i F4 i) corresponds to a function vj = Lp(G) equal to zero on IntF, j, to one on IntFyj and satisfying the
conditions

<KP|ugl

0y (2) <L, sl L(G) ©)

Lp(G)

This can be done, since by the monotonicity of the function u. on the region G'" (Fy,¢ UFyg), the pairs (Fy i,
F{ ) satisfy the conditions of part one. ’

4 4

14
It is easy to see that u, = 1" N u; Ju.| 1 =1 2lu;f s As ] — o, the functionu; ="' X v, con-
i=1 L& i=1 LG’ =1
verges uniformly to ¢*u; = ug°¢ [this follows from (9)]. Using (9), we obtain
l I
”“lqz’(c)<l 11:“-1 gy LG >\<KW :v"‘“ Ity =& e L a0)
From (10) and the corollary to the lemma on semicontinuity we obtain
el KK u <K ufi(l — 2e). 1)

Ly(G)

As ¢ =0, u; — u uniformly and <p*u5 — g*u uniformly. From inequality (11) it follows that the following

sequences are bounded! Bea 1 g\ 1§ ¥Ue II (G)1 e, —0, Taking the sequence {¢*ug,} as converging weakly in
F—IJ iy 1] n

L{;(G), it follows from (ll) and the lemma on semicontinuity that we finally obtain

Y]

az2)

N oepsieg, < 1
ST
F '!L;( ) == 1 (G)

for any function u = Ep(G').

3. We pick an arbitrary function u € L%,(G') and ¢ > 0. By Theorem III the function u is representable in

the form u = ¢, =- _‘_’ ;v v Ep(G'). Thus, the following inequality holds
‘\':‘ i (13)

gl Ne <Jul L e.
’u‘L1(G)< Pl Ci ”’Lic) “ “Li(G') .
L 4

o

The series ¢, — E c;v; (y) converges to u almost everywhere. As is well known, quasi-isometric and quasi-
i=1

conformal mappings take sets of measure zero into sets of measure zero. Therefore, the series ¢, -~ _\ cu;
(¢ (z)) converges almost everywhere to the function ulp)), x € G. =t

From (12) and (13) we obtain

oo 20

o
\'cu (¢ (2)) ], ~l,cly vl 1( < KN {cu]
1

e N 2
Lp®

-
<KEYul e KV

Lp(G7)

L, b6 (14)

x

Consequently, the series ¢, — ._\_“ c;0%s; converges in Lz)(G) and its sum coincides with the function u(p)) =
(@*u)x),x = G. -
From (14) we obtain the estimate

Lp*u <K ul
F HL ) A fip 1

since in (14) ¢ is arbitrary.

3. (1,p)-EQUIVALENCE OF REGIONS AND NCp-SETS

3.1, THEOREM 3.1. Regions Gy and G, (G; = G,) are (1, p)-equivalent if and only if the set Gy \G, is an
NCp-set in Gy.
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Proof. Necessxl Let the spaces Lp(Gq ) and Lp(GZ) be isomorphic as linear spaces under the restriction
map fu = u(G2 ue Lp(GI) Passmg to the factor spaces Lp(G;) /R and Lp(Gz} /R, and using Banach's theorem,

we see that the operator & ™ is bounded.

We will show that m(Gy \G,) = 0. Suppose the opposite. Then the set G\ G, has at least one point of
density x;. We consider the sequence of open cubes Qm = Q{&,, 1 /m) with centers at the point x,, with edge of
length 1 /m, and boundaries parallel to the coordinate planes. We consider the functions um, equal to zero
outside the cube Qm,, equal to 1/2m atthe point x;, and linear on each segment joining the point x, with an arbi-
trary point of the boundary of the cube Q. It is clear that | Vup (x)| =1 almost everywhere in Qp,.

It follows from the boundedness of the operator @ ' that

m(Qn) = | [V, lrde<<]o ]|
G, G

| it [P da =071 m (@ \(G1\ )

If the point x; is a point of density, then as m — « the inequality fails. This contradiction shows that
m(Gi\ Gy) = 0.

Consequently, @ is an isometric operator and G{\GZ is an NCp-set.

Sufficiency. Let E =Gy\ G, be an NCp-set in G;. For pairs of connected compacta with smooth boundary
¥y, F1 < Gy, Fy 1 Fy = @, we consider the extremal functions u; in Gy and 4y in Gy. From the definition of NCp-
sets,

“Vulfl’dx—- \ | Vu, [P dr.
Gy

The function u; is equal to zero on ¥y and equal to one on Fy, with

S‘ [Ty Pdr<C g. | Vu,lpdr = ~ | Vu, [P dz.
G2 Ga

Gy

By the uniqueness of the extremal function, u; = uy on G,. Therefore, each function u & Ep(Gy) can be
continued to the region Gy with preservation of norm. Lemma 1.1 and the lemma on semicontinuity allow us to
extend this conclusion to the entire class Ep(G,).

We choose an arbitrary function v & L%)(Gz).

i

By Theorem I, for each & > 0 there exists a functionv, = Z Chelre , satisfying the conditions: a) |v —
{

<a><‘°‘ b) I ve ”Li(G) = ;ilf?z{,ei | vrel s €) vic e € Ep@G,) for all k. It follows from the above that each of the
p '8 b ==

functions v ¢ is continuable to G, with preservation of norm. For the continuation v, of the function v, the
following inequality holds
[ l

4

~ | i
Cp.elhog!

P h’euh’e[{r‘}z(al)gfz!ckS"L'”“ ; vl

{
_ N
.—ichslqvke‘! hL(G) Ly +e

LG~ o= Lp(G2) =|ve

Choosing a sequence ey — 0 as n — =, we construct a sequence of fuactlons Vep VY {m Ip(Gz)] such that
the sequence {V Ch,e,Uhie " weakly converges in Lp(GI ) to some function v. Therefore [14], v -v = T = const on

G,. Setting v = v —T, we obtain an extension v of the function v onto Gy. By the lemma on semicontinuity,

izl . =lv)

I3R! UATCRY

We have shown that each function v = Lé)(Gz can be continued to G; with preservation of norm.

To complete the proof of the @,p)-equivalence of the regions Gy and G,, we have to show that the extension
operator is bijective. For this it is sufficient to show that the measure of the set G; \G; is equal to zero,

Let x = 8(G; \Gy) N Gy. We choose a spherical ring D = {y = R2:0 < g < |y —x| <b}, a<b, lying in G;. The
set Fy = {y € R%:|y — x| < a} has a nonempty intersection with the region G,. For sufficiently small b the set
Fo={y € RM:|y - x| = b}

The gradient of the extremal function u for the pair (F,, Fy) is different from zero on D. By the above,

the function ulg, may be continued to a function d & L} (Gy) with [11IﬁL1 = T I!Li(G)

47



Therefore,

[ Ivapdz=o. 15)

G, \G:

Ifm(G1\Gz) # 0, then | V| = 0 almost everywhere on G4\ G,, i.e., |Val=0a.e. on FyU F;,i=0a.e.
onFy, u=1a.e. onFy (since Fy(1Gy # O, F1 N Gy = ).

The fact that the function 4 is zero on F,, one on Fy, and that |IEHL1 =|uf s  _, leads to the inequality
p

L (G
(IvaPde< {[vulp da.
D I

It follows from the uniqueness of the extremal function that 4 = a. Inequality (15), and the fact that | vul>
0 on D, imply that m@ N G;\ Gjy)) = 0. The countable additivity of the measure and the arbitrary nature of the
ring D allow us to conclude that the set Gy \ G, has no interior points and therefore has measure zero.

This completes the proof.

COROLLARY. The restriction operator in the definition of (1,p)-equivalence of regions is an isometry
of the spaces L%)

It follows from this that the measure of the difference of (1,p)-equivalent regions is equal to zero.

3.2. Properties of NCp-Sets. The Localization Principle. A set E < G is an NCp-set in G if and only if
for any open ball Bfx, r) = G the set E (| B(x, r) is an NCp-set in the ball B, r).

Proof, Sufficiency is obvious.

Necessity. We choose an arbitrary ball By = B(x, ry) (0 < r; < r) and a function v € L%,(B\ E). Multiply -
ing v by a smooth finite-valued function #, equal to one on the ball By and equal to zero outside the ball B, r),
and defmmg v = v- ¢ in the ball B(x, r) and v = 0 outside the ball B, r), we obtain a function that belongs to
the class Lp(G\ E). By Theorem 3.1, v can be continued with preservation of class and without 1ncreasmg the
norm, to a function w defined on the region G. Thus, we obtain a unique extension of a function v & Lp(B(x
ri)\ E) to a function w Lp(B(x ri)). Since r; was arbitrary, it follows that the regions B, r) \ E and B{,r)
are (1,p)-equivalent, i.e., E is an NCp-set in B(x, r).

We fix a region G and a set E « G. With the exception of Property 3.2, the properties of NCp-sets are
consequences of the localization principle.

Property 3.2. If there exists a sequence {Bnjn>1 covering a set E — G, and if the set En =E (1 By is an
NCp-set in By, then E is an NCp-set in G.

Property 3.3. Any closed subset of an NCp-set is an NCp-set.

Proof. LetE, be a closed subset of the set E. We choose an arbitrary function v = Lp(G \\Ey). Then
v e Lp(G\E) and by Theorem 3.1 it is continuable in a unique way to a function v e Lp(G Consequently,
the regions G and G “E; are (1 p)-equivalent, and by the same theorem E; is an NCp-set.

Property 3.4. The intersection of any number of NCp-sets is an NCp-set.
COROLIARY 3.5. IetG be a region inR%, {Em}, m=1,2,..., Mbe NCp-sets in G. Then their union

M
E= | E, isan NCp—set.
m=1

It is sufficient to carry out the proof for two NCp-sets Ey and E,. The intersection E; 1'E, is an NCp-set
by Property 3.3. We consider the region Gy = G \(E; ﬂ E,). In this reglon the set (E; U Ey) \ (E4 U E,) satisfies
the conditions of Property 3.2. We choose an arbitrary function v & Lp(G \(E1 UE,)). In the region G;, we can
apply Property 3.2 and Theorem 3.1 to continue vtoa contmuous function v = Lp(Gi) Since E; 1 E, is an NCp-
set in Gy, it follows that v can be continued to a function w = Lp(G) This completes the proof.

Property 3.6. Let Gy be a subregion of G and E an NCp-set in G. Then Eq = Gy N E is an NCp-set in Gy.
This follows from the localization principle.
Property 3.7. Each compact subset and NCp-set E in the region G is an NCp-set in any region.

Proof. It follows from Property 3.6 that it is sufficient to prove that any compact subset of a set E is an
NCp-set in RR. This easily follows from Theorem 3.1,
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Property 3.8. Every NCqg-set E in a region G is an NCp-set in G for all p > q.

Proof. By the localization principle, it is sufficient to verify the assertion of the theorem for a hall
B < G. If the functionv = LE)(B \E), thenv = L(il(BE g < p. By assumption E is an NCq-set in B. There-
fore v has a generalized derivative in the ball B. Since m(E) = 0, it follows that v = Lp(E)

Property 3.9. ILet E be a closed set in the region G. Then

a) ifE isan NCp-set, it follows that m(E) = ¢

b) if E is an NCp-set, then dimE =n —2;

c¢) if the (n —1)-dimensional Hausdorff measure Ap—s(E) = 0, then E is an NCp-set.
Proof. Property a) was proved in Theorem 3.1.

It follows from the localization principle that the intersection of the set with any ball B < G is an NCp-~
set in B. We assume that there exists a ball B dividing the set into two nonempty open sets Byand By B\E =
By U By). We choose in each of these sets B, and B, a closed ball ¥; — By, F1 © By. Then there is a function
v that is equal to zero on ¥ and equal to one on Fy and attains the capacity Cp(F,, Fi; B\ E). Consequently,
Cp(Fyg, Fys B\E) = 0. At the same time, it is well known that Cp{F,, Fy; B) > 0. This contradicts the fact that
E B is an NCp-set in B.

This contradiction shows that for any ball B < G the set B\E is connected. This proves assertion b).

If the set E satisfies property c), then each function that has generalized derivatives in the region G\ E
can be continued to a function v which has generalized derivatives in the region G. Since m(E) = ¢, it follows
that the regions G and G \E are (1,p)-equivalent. Therefore, E is an NCp-set.

Remark. Property 3.9, for the case p = n and G = R2, was proved in [15].

Remark. There exists an example of an NCp~set which has nonzero (n — 1)-dimensional Hausdorff mea~
sure [186].

4. REMOVABILITY OF SETS FOR QUASICONFORMAL AND
QUASI-ISOMETRIC MAPPINGS

In this section we will show that NCy-sets are removable for quasiconformal mappings. Theorems on
removability that appear in [5, 6, 8] are particular cases of this result. We also show that NCp-sets are re-
movable for quasiconformal mappings.

THEOREM 4.1. Let G be a region in RB, and let E be an NCp-~set in the region G. Then any quasicon-
formal homeomorphism ¢ of the region G\ E onto the bounded region G' < RN can be continued to a quasi-
conformal homeomorphism @:G — RD without increasing the distortion coefficient.

Remark. This result is also true for unbounded regions. To show this it is sufficient to carry out the
arguments below on a sphere.

THEOREM 4.2. LetG be a region in R®, let E be an NCp-set in G, and let ¢:G\ E —R" be a mapping
with bounded distortion [17]. We assume that for any point x € E there exists a ball Bz, r) such that ¢ belongs
to the class Lh(B \E). Then there exists a unique continuation of the mapping ¢ to & mapping with bounded dis-
tortion ¢:G — R® with no increase in the distortion coefficient.

Proof of Theorems 4.1 and 4.2. Theorem 4.1 follows from Theorem 4.2, In fact, in the case of a sphere
the condition is satisfied for any quasiconformal mapping. By Property 3.9 the set G\ E is connected, and
therefore a quasiconformal mapplng ¢ is on G\ E a mapping with bounded distortion. For each compact region
V '\ < G) the mapping ¢ = Ln(V \E) By Property 3.6 and Theorem 3.1, ¢ can be contlnued to 2 mapping
oy :V —R%, belonging to the class Ln Therefore, ¢ can be contmued to a mapping ¢:G — R™?, belonging to the
class Ln loc (G).* Since E has measure zero, it follows that (p is a2 mapping with bounded distortion [17]. If the
mapping ¢ is a homeomorphism, then ¢ is also a homeomorphism. [This easily follows from the fact that
m(E) = 0 and the fact that the mapping ¢ is open.] :

Remark. Theorem 4.1 contains a corresponding result from [8] for the particular case when E is com-
pact. ’

*With regard to the definition of a mapping with hounded distortion and the properties used here, cf., [17].
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THEOREM 4.3. 1etG be a region in R?, and let E be an NCp-set { > 1) in the region G. Then any
quasi-isometric mapping ¢:G\ E — RD can be continued in a unique way to a quasi-isometric mapping ¢:G —
Rn

Proof, Applying Property 3.8, we can reduce the proof to the case p > n. The mapping O‘1¢* Lp(G') —
@), , where G' = ¢G); ¢*: Ly (G") = LhG \E), ¢* =fog, f SLHG; €:1H(G) ~ LpG\E), 6g =glG \ E.
g = Lp(G), is a structural isomorphism between the space Lp(G') and Lp(G) [18]. By a result from [18],
@ 1p* can be continued to a quasi-isometric mapping ¢ which is obviously the continuous extension of the
mapping ¢.

In conclusion, the author would like to take the opportunity to express his appreciation to V. V., Aseev
who kindly provided a preprint of [8], and to A. P. Kopylov for his consultation.
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