CONDITIONAL IDENTITIES IN FINITE GROUPS

A. Yu. Ol'shanskii UDC 519.4

A theorem of Oates and Powell [1] states that all the identical relations in a finite group are conse-
quences of a finite number of identities in this group. Here we shall consider conditional identities (quasi-
identities), i.e., relations of the form

vilTyy T, .., Tn) =1&0 (24, T3, . . ., Tp) =1&. ..
& (T4, Ty - TRy =AW (2, Ty .., 2) =1 (1)

Let us recall that the class of groups given by a system of formulas of the type (1) is called a quasivariety.
We shall denote by qvar G the quasiprimitive closure of a group G, i.e., the smallest quasivariety con-
taining the group G (it is defined by all the conditional identities which hold good in G). The quasiprimitive
closure of a finite group G is constructed rather simply (see [2], p. 295): It consists of the subgroups of
the cartesian powers of the group G. (In this sense the'smallest variety var G containing the group G is
complex since according to a theorem of Birkhoff we must also add all the homomorphic images of the sub-
groups of the cartesian powers of the group G). Therefore it is interesting in the first place to clarify as
to when these classes are finitely defined, i.e., in which cases the set of all the conditional identities of

a finite group is equivalent to a finite subset (has a finite base). In the present note we shall prove the fol-
lowing theorem.

THEOREM. The conditional identities of a finite group G have a finite base if and only if all the
Sylow subgroups of the group G are abelian.

Proof. 1. "Only if". Let us assume that the group G contains a nilpotent nonabelian subgroup.
Let us choose a minimal such subgroup H. Let p be a prime divisor of the order of the group H and Fp, be
the free group of rank n in the variety var H, which, as we know, lies in qvar H and hence also in qvar G.

LEMMA 1. For n> 4m + 3 there exists an element ¢ in the commutant [F,, Fp] of the group Fn
which is not equal to

[-Z':, z:] [ 23, 1»'11] ‘e [xZM—h zzm]y" (2)

for any x;, X5,..., X;m, Y€ Fp.

Proof. By virtue of the minimality, the subgroup H is nilpotent of class 2 and |[H, H] | = p. Hence
it follows that the values of the commutator [x, y] and the power zP in the variety var H depend only on the
cosets relative to the product of the commutant with the pth power of the group which contain the elements
x, y, and z. Since |Fn/F,P [Fy, Fp]l = pn, the product (2) does not assume more than p(2M + 11 giffarent
values in the group Fy. On the other hand, [Fy, Fpl is generated by the commutators {fj, fj]. i > j, of the
free generators of the group F, where these commutators are independent over Zp = Z/pZ (in the contrary
case we would easily get the identity [x, y] =1), so that |[Fp, Fy]l = p(n-1)/2, whence the lemma is
proved,

Moreover, let us observe that if b = @X = 1, then the element b also cannot be represented in the
form (2) since gp {a} =gp {b}, and in a nilpotent group of class 2 a power of the produce (2) is again a
product of the same form.

LEMMA 2. Let L be a group with generators gy, g,,..., gt lying in var H. Every element of the
Frattini subgroup of the group L can be represented in the form (2) if m = t (t—1)/2.
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Proof. Let 1€ &(L), where & (L) is the Frattini subgroup of L.. As we know (see, e.g., [3], p.
198), &(L) = LP[L, L] for the nilpotent p-group L, so that { = yPk, where y€¢ L and k€ [L, L]. It remains
to observe that [gi, gj], 1 < i<j=t, generate [L, L] and that every power of a commutator is a commu-
tator in a nilpotent group of class 2.

Let us now fix a natural number tand put m =t (t—1)/2, n =4m + 4, s = 2 IGl+1. We take s copies
of the group Fp: Dj = Fp, i =1, 2,..., s; moreover, aj are the images of the element a of Lemma 1
under these isomorphisms. Let us form the direct product C of the groups D; with the amalgamated
central subgroups gp {aj}.

t-NZpf.c st

is the corresponding exact sequence, where D =D; X Dy X ... XDg and ajf = ajB =¢{=1inQC), 1 =i,

j = s. Let K be a subgroup of C such that the number of its generators is = t, L be the minimal preimage
of the subgroup K under the epimorphism 3. It is clear that L has not more than t generators and Na 0t L
< ¢(L) (otherwise we would be able to find a maximal subgroup M of L such that L. = M (Na NL), i.e., MB
= K contradicting the minimality of 1). According to Lemma 2 every element of & (L) can be represented
in the form (2). On the other hand, Na<=gp{a,} x gp {ay} X ... xgp{ag}. Therefore, by virtue of
Lemma 1 and the choice of n, no element of N, other than the identity, can be represented in the form (2).
Consequently, LNNo =1 and K = L. This means that K¢qvar H=gvar G.

Let us now ghow that C €gvarG. Indeed, in the contrary case the group C would be contained in a
direct power of the group G, and consequently, there would exist a homomorphism ¢ such that C — G,
co #1. Since s = 21Gl +1, we can find an index i = j such that Dijfe = Dj,BqJ. In this case

[D§, Dplo=[D:pe, Dpo]=[D;, D;]1po=1,

where c¢ =1 since ¢ = a;8€[D, Di]B. The contradiction (ce # 1, ¢y =1) so obtained proves that C ¢ qvar
G.

Thus, if G has a nonabelian Sylow subgroup, then for an arbitrary natural number t there exists a
group which does not belong to the quasivariety qvar G whereas every i-generated subgroup of it belongs
toqvar G. It is clear that this cannot happen if the quasivariety qvar G is finitely defined.

II. Sufficiency. Let us formulate at first some lemmas. Let p be a prime number, q = p€, Zgy be
the quotient ring, G be a finite group such that p X |G| and, finally, let the group ring R = ZyG.

LEMMA 3. The number of nonisomorphic nondecomposable modules over R is finite.

Proof. Let M be a nondecomposable R-module. Let us recall that the ring R is quasi-Frobenius
(see, e.g., [4], Exercise 58.2 (2)), and observe moreover that the right socle of the ring R is equal fo
pe-iR since p® 'R is the lowest stratum of the additive group of the ring R and it can be regarded as a
module over the semisimple ring Z,G. Therefore, if pe M = 0, then it follows from Theorem 58.12 and
Lemma 59.1 of [4] that the module M is isomorphic to a principal right ideal of the ring R. This means
that IM|= |R|. I p®!M =0, then M can be regarded as a Zpe_1Gnmodu1e and the proof of this lemma 3
is completed by induction over e.

LEMMA 4. K N is a submodule of a finite R-module M, then N is contained in a direct summand D
of the module M, where the order of the submodule D is bounded in terms of |NJ| and R.*

Proof. Let M = Z M;, where Mj are nondecomposable submodules., Let @¢ij, 1 =j, be an isomor-
IS

phism of Mj onto M; if such an isomorphism exists. Moreover, we choose these isomorphisms such that
?ij ¥jk = ¢ik- If the isomorphism ?ij closes the graph of the projections of the submodule N onto M; and
Mj upto commutativity, then we put i and j in the same equivalence class T.. Corresponding to this parti-

tion we can represent M is the form of the double sum: M = Z Z M;. The number of classes is
o €T,

bounded chviously in terms of INjl and IM;l; which means (according to Lemma 3) in terms of |N| and R,

* I.e, |D| is bounded by a quantity which depends only on |N| and R.
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The diagonal D of the "block™ M, = Z Mj, determined by the isomorphisms ¢jj, is a direct summand
€T,

of My, and the sum D = Z Dy, is a direct summand of the module M containing (according to the definition
o

of the classes T) the submodule N. The lemma 4 is proved.

LEMMA 5. If G is a finite group with an abelian Sylow p-subgroup G;, and M is a normal factor in
G, where M =Gp and MY =1, then there exists a normal factor L contamec? in M and having a complement
in the group G whose index is bounded in terms of I1G/M| and q.

Proof. Let H be the smallest subgroup such that G = HM. It is easily seen that in this case the
intersection M N H is contained in &(H). Therefore |H/®(H)| = [G/MI and the number |H| is bounded in
terms of |G/MI| and q. Since the subgroup Gp is abelian, we have GpEC =Cg(M)andp 7 IG/Cl. We can
transform M into an R~module in a standard manner, where R = Z, (G/C) and use Lemma 4 for the sub-
module MNH: MNH=D, M =D x L, where D < G, L <G and the order of the group D is bounded for
fixed 1G/M/| and q since C 2 M. The product G = (HD) L is semidirect by virtue of the inclusion MNH =D,
and the index of HD is bounded, which was to be proved.

In the sequel we shall use the following lemma due to W. Gaschiitz (see [5], p. 426).
LEMMA 6. If N is a normal factor of a finite group G with the following properties
1) G/N is a p-group,
2) N has an abelian Sylow p-subgroup,
3) N has no nontrivial factor p-group,

then N has a complement in G.

LEMMA 7. If M is a normal factor of a finite group G having an abelian Sylow subgroup Gp and G™
=1, then there exists a normal factor L of the group G such that

1) L =M and M/L is a p-group,
2) Gp 1.1 has a complement in Gp,
3) the index of the subgroup L is bounded in terms of 1G/MI|and m.

Proof. Let N be the smallest normal factor of the subgroup M such that M/N is a p-group. Obvi-
ously N is normal in G and the pair N'q GpN satisfies the conditions of Lemma 6. Therefore N has a com-
plement S in GpN, where according to Sylow's theorem we choose S E'Gp. In such a case Gp =8 (Gp Ny,
where the product is semidirect. Now, applying Lemma 5 to the group G/N we have G/N = (H/N) (L/N),
where L. < G, the product is semidirect, L. =M, and the index |G: Ll is bounded in terms of |G/M| and
m. Since SN/N is a Sylow subgroup of the group G/N, the subgroup H/N can be chosen such that (SN NH) N
is a Sylow subgroup in H/N; whence SNAN = (SN N H/N) (SN N L/N). The natural isomorphism of the last
equation onto S (since SN N =1) gives a semidirect factorization 8 = (S N H) (S N L). Hence from the equa-
tion Gp =8 (Gp i N) we obtain the semidirect product Gp =(SNH) [(SNL) (Gp NN)] =(S NH) (Gp'ﬂ L), which
completes the proof of the Lemma 7.

) The following lemma is the statement of L. A. Shemetkov's theorem [6]. Here Gp is a Sylow p-sub-
group of a finite group G.

LEMMA 8. A normal subgroup K of a group G has a complement in G if for every prime factor p of
the index | G: K | the subgroup Gp NK is abelian and complemented in Gy.

LEMMA 9. If M is a normal factor of a finite group G, the orders of whose elements divide m and
all of whose Sylow subgroups are abelian, then there exists a normal factor K of the group G such that

1) KM,
2) K has a complement in G,

3) the index | G: Kl is bounded in terms of |G/Ml and m.
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Proof. Letp, Py, ..., Dg be the different prime factors of the number {G/Ml. Letp=p and L
= 1, be a normal factor taken according to Lemma 7. Let us once more apply Lemma 7 now for p = p, and
the normal factor Ly, i.e., let us find I, < Iy such that Gp, N L, has a complement in Gp, and the index
1G: Iyl is bounded in terms of |G:1Ly| and m, which means, also in terms of |G: Mi and m. Since L;/L,
is a py-group, we have Gy, N Ly = Gp, i Ly, i.e., this intersection is complemented in Gp, . Let us now
construct L, ..., Lg in a similar manner and put K = Lg. In consequence of the boundedness of the number
s and Lemma 8 the subgroup K satisfies all the conditions of Lemma 9.

Let us now directly proceed to the proof of the sufficiency of the condition of the theorem. Iat G be
a finite group with all its Sylow subgroups abelian. In this case we can find a finite group H (also with all
of its Sylow subgroups abelian) such that var G = qvar H (see [7], Theorems 1 and 2). So that if T€var
is a finite group, then T can be approximated by groups of a bounded order (= [H)), i.e. iT/MQS!HI My =1.
Since the Sylow subgroups of T are abelian and the orders of the elements do not exceed the order of G,
according to Lemma 9 we can find complemented normal subgroups K, of bounded indices such that fa | Kq

=1. This means that the group T can be imbedded in the direct product of its subgroups of a bounded (by
a number nG) order. Consequently, T from var G belongs to the quasivariety gvar G if gvar G contains all
subgroups of T of orders = nG. The variety var G consists, as we know, of locally finite groups. There-
fore a group A belongs to gvar G if and only if it belongs to var G (this variety is finitely defined since G is
finite (see [8], 52.11), and all of its subgroups of orders = ng belong to qvar G. The fulfillment of the
last condition can be ensured by a finite number of quasi-identities of the group G. With thia the theorem
is proved.
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