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A theorem of Oates and Powell [1] states that all the identical relat ions in a finite group are  conse-  
quences of a finite number  of identities in this group.  Here we shall  consider  conditional identities (quasi-  
identities), i . e . ,  relat ions of the form 

v , ( x ,  x2 . . . . .  x~ )= l&v~(x , ,  z . . . . . .  xD=l&. . .  
. . .  &v~(x,, x~ . . . . .  x~) =t=~w(x~, x~ . . . . .  x~) = t .  (1) 

Let us reca l l  that the class  of groups given by a sys tem of formulas  of the type (1) is called a quas ivar ie ty .  
We shall denote by qvar  G the quasipr imit ive closure of a group G, i . e . ,  the smal les t  quasivar te ty  con- 
taining the group G (it is defined by all the conditional identities which hold good in G). The quasipr imit ive 
closure of a finite group G is const ructed ra ther  simply (see [2], p. 295): It consis ts  of the subgroups of 
the car tes ian  powers of the group G. (In this sense the, smal les t  var ie ty  va t  G containing the group G is 
complex since according to a theorem of Birkhoff we must  also add all the homomorphic  images of the sub- 
groups of the ca r tes ian  powers of the group G). Therefore  it is interest ing in the f i r s t  place to clar i fy as 
to when these c lasses  are  finitely defined, i . e . ,  in which cases  the set  of all the conditional identities of 
a finite group is equivalent to a finite subset  (has a finite base) .  In the present  note we shall prove the fol-  
lowing theorem.  

THEOREM. The conditional identities of a finite group G have a finite base if and only if all the 
Sylow subgroups of the group G are  abelian. 

Proof .  1. "Only if".  Let us assume that the group G contains a nilpotent nonabelian subgroup. 
Let us choose a minimal  such subgroup H. Let p be a pr ime divisor  of the o rde r  of the group H and Fn be 
the free group of rank n in the var ie ty  var  H, which, as we know, lies in qvar  H and hence also in qvar  G. 

LEMMA 1. F o r  n > 4m + 3 there exists an element  a in the commutant  [F n, Fn] of the group Fn 
which is not equal to 

[ x~, x2] ix3, x,  ] . . .  [ x,,,_,, x,,, ]y p (2) 

for  any xi, x2 . . . .  , X2m, YEFn.  

Proof .  By virtue of the minimali ty,  the subgroup H is nilpotent of class  2 and I [H, H] [ = p. Hence 
it follows that the values of the commuta tor  ix, y] and the power zP in the var ie ty  var  H depend only on the 
cosets relative to the product of the commutant  with the pth power of the group which contain the elements 
x, y, and z. Since I F n / F n  p [Fn, Fn] I -< pn, the product (2) does not assume more  than p(2m+l)n different 
values in the group Fn. On the other  hand, [Fn, Fn] is genera ted  by the commuta tors  [fi, fi], i > j, of the 
free genera to rs  of the group Fn, where these commutators  are  independent over  Zp = Z/pZ (in the con t ra ry  
case we would easi ly get  the identity ix, y] - 1), so that I[Fn, Fn]l = pn(n-1)/2; whence the lemma is 
proved.  

Moreover ,  let us observe that if b = a k ~ 1, then the element  b a lso cannot be represen ted  in the 
form (2) since gp {a} = gp {b},  and in a nilpotent group of class  2 a power of the produce (2) is again a 
product of the same fo rm.  

LEMMA 2. Let L be a group with genera to rs  gi, g2 . . . . .  gt lying in va t  H. Every  element  of the 
Frat t in i  subgroup of the group L can be represen ted  in the form (2) if m >- t ( t --1)/2.  
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P r o o f .  Le t  I E r  w h e r e  @(L) is the F r a t t i n i  subg roup  of L .  As  we know {see, e . g . ,  [3], pc 
198), @(L) = L P [ L ,  L] f o r  the n i lpotent  p - g r o u p  L, so  that  l = yPk, w h e r e  yE L and kE [L, L] .  It r e m a i n s  
to o b s e r v e  that  [gi, gj] ,  1 -< i < j -< t, g e n e r a t e  [L, L] and  tha t  every, p o w e r  of a c o m m u t a t o r  is a c o m m u -  
t a t o r  in a n i lpotent  g r o u p  of c l a s s  2.  

Le t  us  now fix a n a t u r a l  n u m b e r  t and put m = t ( t - -1 ) /2 ,  n = 4m + 4, s = 2 I GI + 1. We take s copies  
of the g r o u p  Fn: Di = F n, i = 1, 2 . . . . .  s; m o r e o v e r ,  a i a r e  the i m a g e s  of  the e l e m e n t  a of Lemrna  1 
u n d e r  these  i s o m o r p h i s m s .  Le t  us f o r m  the d i r e c t  p roduc t  C of the g r o u p s  D i with the a m a l g a m a t e d  
c e n t r a l  subg roups  gp { a i } .  

l_>N_~D~_~C. ._>l  

is the c o r r e s p o n d i n g  exac t  sequence ,  whe re  D = D 1 x D 2 x . . .  XDs and aifi = ajfl = c ( # 1 in C), 1 _< i, 
j -< s .  Le t  K be  a subg roup  of  C such  tha t  the n u m b e r  of i ts  g e n e r a t o r s  is <-- t,  L be the m i n i m a l  p r e i m a g e  
of the subg roup  K u n d e r  the e p i m o r p h i s m  ft. It is c l e a r  tha t  L has no t  m o r e  than t g e n e r a t o r s  and Na  N L 
~- ~ (L)  (o the rwise  we would be able  to find a m a x i m a l  subg roup  M of L such  that  L = M (N~ (~L), i . e . ,  Mfl 
= K con t r ad ic t ing  the m i n i m a l i t y  of L) .  A c c o r d i n g  to  L e m m a  2 e v e r y  e l e m e n t  of �9 (L) can be r e p r e s e n t e d  
in the f o r m  (2). On the o the r  hand, N a ~  gp {a  1 } • gp {a 2 } x . . .  x gp  {as  } .  T h e r e f o r e ,  by virirae of 
L e m m a  1 and the choice  of  n,  no e l e m e n t  of N, o the r  than the ident i ty ,  can be r e p r e s e n t e d  in the f o r m  (2)~ 
Consequen t ly ,  L f i n s  = 1 and K ~ L.  This  m e a n s  that  K E q v a r  H ~ - q v a r  G. 

Le t  us now show that  C Eqvar  G. Indeed,  in the c o n t r a r y  case  the g r o u p  C would be conta ined  in a 
d i r e c t  p o w e r  of the g r o u p  G, and consequen t ly ,  t he re  would ex i s t  a h o m o m o r p h i s m  q~ such  that  C --  G, 
cq~ # 1.  Since s = 2 IGI + 1, we can find an  index i * j such  that  DiflcP = Djfi~. In this case  

[D,~, D~ ]qo= [D~q~, Dj,Sq~ ] =[D,, Dj] ~,q)=~, 

w h e r e  c~  = 1 s ince  c = aiflE [D i, Di]fl. The con t r ad ic t ion  ( c r  * 1, c~  = 1) so  obta ined p roves  that  C ~ q v a r  
G. 

Thus ,  if G has a nonabe l ian  Sylow subgroup ,  then fo r  an a r b i t r a r y  na tu r a l  n u m b e r  t t he re  ex i s t s  a 
g r o u p  which  does not  be long  to the q u a s i v a r i e t y  q v a r  G w h e r e a s  e v e r y  t - g e n e r a t e d  subg roup  of it be longs  
to q v a r  G. I t  is c l e a r  tha t  this  cannot  happen if the q u a s i v a r i e t y  q v a r  G is f in i te ly  def ined.  

II .  Suf f ic iency .  Let  us f o r m u l a t e  a t  f i r s t  s o m e  l e m m a s .  Le t  p be a p r i m e  n u m b e r ,  q = pC, Zq be 
the quot ient  r ing ,  G be a finite g r o u p  such  that  p X l G i and,  f inal ly ,  let  the g r o u p  r ing  R = ZqG. 

LEMMA 3. The n u m b e r  of  n o n i s o m o r p h i c  nondecomposab l e  modu les  ove r  R is f in i te .  

P r o o f .  Le t  M be a nonde c om posa b l e  R - m o d u l e .  Let  us r e c a l l  tha t  the r ing  R is q u a s i - F r o b e n i u s  
( see ,  e . g . ,  [4], E x e r c i s e  58 .2  (2)) ,  and o b s e r v e  m o r e o v e r  tha t  the r igh t  soc te  of the r ing  R is equal  to 
p e - l R  s ince  p e - l R  is the lowes t  s t r a t u m  of the addi t ive  g r o u p  of the r ing  R and it can  be r e g a r d e d  as  a 
module  o v e r  the s e m i s i m p l e  r ing  ZpG.  T h e r e f o r e ,  if p e - l M  ~ 0, then it fol lows f r o m  T h e o r e m  58.12  and 
L e m m a  59.1  of [4] tha t  the module  M is i s o m o r p h i c  to a p r inc ipa l  r igh t  ideal  of the r ing  R .  This  m e a n s  
that  [ M [ -< ]R I. If p e - l M  = 0, then M can  be r e g a r d e d  as  a Zpe -~G-modu le  and the p roo f  of  this l e m m a  3 
is comple t ed  by  induct ion o v e r  e .  

LEMMA 4.  If N is a submodule  of a finite R - m o d u l e  M, then N is conta ined  in a d i r e c t  s u m m a n d  D 
of the module  1~I, w h e r e  the o r d e r  of  the submodule  D is bounded in t e r m s  of ! N I and R.* 

P r o o f .  Let  M = ~ Mi, w h e r e  M i a r e  n o n d e c o m p o s a b l e  submodu le s .  Let  ~ij ,  i -<- j, be an i s o m o r -  

ph i sm of M i onto Mj if  such  an  i s o m o r p h i s m  e x i s t s .  M o r e o v e r ,  we choose  these  i s o m o r p h i s m s  such  that  
~0ij CPjk = q k -  If the i s o m o r p h i s m  ~ij c l o se s  the g r a p h  of  the p ro j ec t i ons  of the submodule  N onto l~i i and 
M] upto  commuta t i v i t y ,  then we put i and j in the s a m e  equ iva lence  c l a s s  T a .  C o r r e s p o n d i n g  to this p a t t i -  

we can r e p r e s e n t  M is the f o r m  of the double sum:  M = ~ ~ M i. The n u m b e r  of c l a s s e s  is l ion 
a IET a 

bounded obv ious ly  in t e r m s  of INjl and IMil;  which  m e a n s  ( acco rd ing  to L e m m a  3) in t e r m s  of INL and R.  

* I . e ,  I'DI is bounded by a quant i ty  which  depends  only on IN1 and R.  
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The diagonal Da of the "block" M s = ~ Mi, determined by the i somorphisms  r is a d i rec t  summand 

�9 l E T  a 

of M~, and the sum D = ) ,  D~ is a d i rec t  summand of the module M containing (according to the definition 

of the c lasses  Ta)  the submodule N. The lemma 4 is proved.  

LEMMA 5. If G is a finite group with an abelian Sylow p-subgroup Gp and M is a normal  factor  in 
G, where M =-Gp and Mq = 1, then there  exists a normal  fac tor  L contained in M and having a complement  
in the group G whose index is bounded in t e rms  of I G/M ] and q. 

Proof .  Let H be the smal les t  subgroup such that G = HM. It is easi ly seen that in this case the 
in tersect ion M N H is contained in @{H). Therefore  I H/~(H) I - I G/MI and the number  I H ] is bounded in 
t e rms  of ]G/MI and q. Since the subgroup Gp is abelian, we have G p - C  = CG(M) and p f I G/CI.  We can 
t r ans fo rm M into an R-module  in a s tandard manner ,  where R = Zq(G/C) and use Lemma 4 for  the sub- 
module M n H: M N H -= D, M = D x L, where D ,~ G, L ,~ G and the o rder  of the group D is bounded for  
fixed l G/Mi and q since C -= M. The product  G = (HD) L is semid i rec t  by virtue of the inclusion M fi H ~- D, 
and the index of HD is bounded, which was to be proved.  

In the sequel we shall  use the following lemma due to W. GaschUtz (see [5], p. 426). 

LEMMA 6. If N is a normal  fac tor  of a finite group G with the following proper t ies  

1) G/N is a p-group,  

2) N has an abelian Sylow p-subgroup,  

3) N has no nontr iviat  fac tor  p-group,  

then N has a complement  in G. 

LEMMA 7. If M is a no rma l  fac tor  of a finite group G having an abelian Sylow subgroup Gp and Cr m 
= 1, then there exists a no rma l  fac tor  L of the group G such that 

1) L -= M and M/L  is a p-group,  

2) Gp N L has a complement  in Gp, 

3) the index of the subgroup L is bounded in t e rms  of IG/M] and m.  

Proof .  Let N be the smal les t  normal  fac tor  of the subgroup M such that M/N is a p-group.  Obvi-  
ously N is normal  in G and the pair  N q GpN satisf ies the conditions of Lemma 6. Therefore  N has a com-  
plement S in GpN, where according to Sylow's theorem we choose S -=.Gp. In such a case Gp = S (Gp N N), 
where the product  is semid i rec t .  Now, applying Lemma 5 to the group G/N we have G/N = (H/N) (L/N), 
where L <~ G, the product is semidi rec t ,  L - M, and the index I G: L I is bounded in t e rms  of I G/M I and 
m.  Since SN/N is a Sylow subgroup of the group G/N, the subgroup H/N can be chosen such that (SN N H) N 
is a Sylow subgroup in H/N; whence SN/N = (SN N H/N) (SN N L/N).  The natural  i somorphism of the last  
equation onto S (since S N N = 1) gives a semid i rec t  factor izat ion S = (S N H) (S n L). Hence f rom the equa- 
tion Gp = S (Gp N N) we obtain the semid i rec t  product  Gp = (S A H) [(S N L) (Gp n N) ] = (S A H) (Gpn L), which 

completes the proof of the Lemma 7. 

The following lemma is the s ta tement  of L. A. Shemetkov's  theorem [6]. Here Gp is a Sylow p-sub-  

group of a finite group G. 

LEMMA 8. A normal  subgroup K of a group G has a complement  in G if for  every  pr ime factor  p of 
the index I G: K ] the subgroup Gp N K is abelian and complemented in Gp. 

LEMMA 9. If M is a normal  fac tor  of a finite group G, the o rde rs  of whose elements divide m and 
all of whose Sylow subgroups a re  abelian, then there exists a normal  factor  K of the group G such that 

1) K - M ,  

2) K has a complement  in G, 

3) the index I G: KI is bounded in t e rms  of I G/MI and m. 
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Proof .  Let  Pl, P2 . . . . .  Ps be the different pr ime fac tors  of the number  I G/MI.  Let p = Pi and L 
= L i be a no rma l  fac tor  taken according to Lemma 7. Let us once more  apply Lemma 7 now for  p = P2 and 
the no rma l  fac tor  Ll, i . e . ,  let  us find L~ ~- L 1 such that Gp2 n L2 has a complement  in Gp2 and the index 
IG: L2i is bounded in t e rms  of IG- Lil and m, which means ,  also in t e rms  of IG: MI and m.  Since L i / L  2 

is a p2-group, we have C~  fi L 1 = Gpi n L 2, i . e . ,  this in tersect ion is complemented in G~h. Let us now 
const ruct  L~ . . . . .  Ls in a s imi l a r  manner  and put K = L s .  In consequence of the boundedness of the ~mmber 
s and Lemma 8 the subgroup K sat isf ies  all the conditions of Lemma 9. 

Let us now direct ly  proceed  to the proof of the sufficiency of the condition of the theorem.  Let G be 
a finite group with all  its Sylow subgroups abelian. In this case we can find a finite group H (also with all 
of its Syiow subgroups abelian) such that v a t  G = qvar  H (see [7], Theorems  1 and 2). So that if T ~var G 
is a finite group, then T can be approximated by groups of a bounded order ( -< I Hi), i.e. N M~ = i. 

iT/Mal~lHI 

Since the Sylow subgroups of T a re  abelian and the o rde rs  of the elements  do not exceed the o rde r  of G, 
according to Lemma 9 we can find complemented no rma l  subgroups Ks of bounded indices such that r Ka 

= 1. This means  that the group T can be imbedded in the d i rec t  product  of its subgroups of a bounded (by 
a number  nG) o rde r .  Consequently, T f rom war G belongs to the quas ivar ie ty  qvar  G if qvar  G contains all 
subgroups of T of o rde rs  -< n G. The var ie ty  var  G consis ts ,  as we know, of locally finite groups .  There -  
fore a group A belongs to qvar  G if and only if it belongs to var  G (this var ie ty  is finitely defined since G is 
finite (see [8], 52.11), and all  of its subgroups of o rde rs  ~ nG belong to qvar  G. The fulfil lment of the 
last  condition can be ensured by a finite number  of quasi- ident i t ies  of the group G. With this the theorem 
is proved.  
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