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The goal of this paper is the proof of the theorem announced in [20]. Here we consider 
the "multidimensional case," i.e., convergence to self-similar fields. We give a short survey 
of the separate sections. In Sec. 1 the concepts needed are formulated as well as the basic 
result of the paper (Theorem i). The connection of this theorem with the result of 
Dobrushin-Major [8] is discussed as well as some similar questions. In Sec. 2 the term 
making the basic contribution to the distribution of the sums considered is isolated. Here 
we explain the idea of the following proof, which is broken up into several lemmas, and their 
formulations are given. The proofs of these lemmas (except for Lemma 5) are carried out to 
section 3. In section 4 there is proved a lemma (Lemma 1 of [20]) on the convergence with 
respect to distribution of "discrete multiple integrals" to "continuous" integrals of Ito-- 
Wiener. With the help of this lemma, the remaining Lemma 5 is proved. 

i. Notation for what follows: R d is d-dimensional Euclidean space, x.y, ]xl are 
respectively the scalar product and norm in R d, Z d is the integer-valued d-dimensional lattice. 
We shall write h<t2 (q, t.aeR d) , if iJ)>,~i) . t}a)<l~a), t=(t(1~ i "2 , .. , .... ,t(d)). We also write R~.={t~Ra: 

o<t}, K, :{s  ewe_ :s<t] ,  [K,I:K, a Z  ~. . 

A random field X=(X(t)),~,~ will be called self-similar with index Z ~R if its finite- 

dimensional distributions are invariant with respect to scale transformations ("transforma- 
tions of the renormalization group") X(t) § %XX(%t),h > 0 [6]. For d = 1 we shall speak of 
a self-similar process. Usually self-similar fields are considered on the whole space Rd; 
the restriction to R d is connected with the character of the summation problem studied in 
this paper. 

Self-similar processes (familiar now under the name of fractional Brownian motion) were 
first considered by Kolmogorov [14]. Since then self-similar processes and fields have 
gained wide familiarity thanks to the role which they play in limit theorems of probability 
theory, and also in a series of physical theories (cf. [6, 19, 24]). The connection of the 
concept of self-similarity with limit theorems was discussed by Lamperti [15] and Dobrushin 
[6]. Following [15, 24], we shall say that a stationary field (in the narrow sense) 

Y=(Yi)jez ~ belongs to the domain of attraction of some random field z : ( a ( t ) ) t s R d  + i f  t h e  

finite-dimensional distributions of the field Z(~)=(A~ I ~ Y~) converge as N § ~ to the 
O<j<Nt t~Rdq- 

corresponding distributions of the field Z, where 0 < ~ § ~ (N § ~) is a sequence of 

normalizing constants. It is known [15, 6] that under quite general conditions the limit 
field Z is necessarily self-similar with index X < 0, and the normalizing constants have the 

form ~ = N-XL(N), where L: [i, ~) § R+ is a slowly varying function. In the case of finite 

second moments the value X < --d/2 gives the long range dependence in the sequence Y, in con- 
trast with the independent or weakly dependent case, corresponding to the value X = --d/2. 
In the latter case when the limiting self-similar field is a Brownian sheet (i.e., a Gaussian 

d 

field Z=(Zt)teR+d with zero mean and covariance function E[ZtZj= ~ min(s O), t (j}) , we shall say 
7=I 

that the sequence Y is subordinate to the central limit theorem (CLT). A detailed investi- 
gation of the condition for applicability of the CLT for "one-dimensional" (d = i) 
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stationary sequences is recounted in Ibragimov-Linnik [12] (cf. also Gnedenkcr-Kolmogorov 
[2]). Much attention is now devoted to the CLT for random fields (cf., e.g., [i0]). 

Starting with the familiar work of Rosenblatt [17], in the majority of papers on con- 
vergence to "strongly dependent" self-similar processes have considered the case of se- 
quences which are nonlinear functionals of Gaussian fields with power asymptotic correlation 
function. The only exceptions here are perhaps the results of Davydov [5] and Gorodetskii 
[3] on the convergence of sums of linear sequences to processes of fractional Brownian mo- 
tion and the recent paper of Kesten and Spitzer [13]. In Dobrushin and Major [8] (cf. also 
Taqqu [24, 25], Gorodetskii [4]) the following beautiful theorem was proved. Following 
[4, 24], we shall mean by the Hermitian rank of the function FeL~-L~(R, e-X'!~dx/V~) the in- 

dex of the first nonzero coefficient of the expansion of F(x)= X d~Hk(x) in a series of Her- 
k=0 

mite polynomials with leading coefficient i. We write Sd_ 1 = {x e Rd: Ix I = I), IA (~ is 

the indicator of the set A, f is the Fourier transform of the function f:R d + C. 

THEOREM 1 [8]. Let X=(Xj)j~Z d be a stationary Gaussian field with mean 0, variance i, 

and correlation function 

L[XoXd=L(ltl)a(t/Itj)ltl-% tEZ a, (1) 
where  ~ s(O, ~ ,  L : [ I ,  ~ ) - ~ R +  i s  a slowly v a r y i n g  ( s . v . )  f u n c t i o n ,  a ( . )  i s  a n o n n e g a t i v e  

c o n t i n u o u s  f u n c t i o n  d e f i n e d  i n  Sd_ 1. L e t  t h e  f u n c t i o n  F e L ~  have  H e r m i t i a n  r a n k  m ~ 1 and 
< d/m. Then the finite-dimensional distributions of the field 

N-d+='~L-.,~ '(u) ~ F(Xj) (2) 
O<j<NI 

converge as N § ~ to the corresponding distributions of the self-similar field 

z~ (t) = ~. f f~, (x~ + . . .  + x.) ~ (dx~)... ~ (axe). (3) 

Here d is the coefficient of the expansion of F in Hermite polynomials, g(dx) is the random 
m 

Gaussian spectral measure corresponding to the self-similar spectral measure F(dx)=s 
defined by 

d d 

2d f eiX'l ( I-I (1--r f 1-I (l-[xO)])a((x+t)]tx+.t[)lx+tl -~dx, t~Rd" (4) 
R d j = l  [ - 1 ,  1] d j = l  

In (3) and in what follows the integral f denotes integration in a domain of (Rd) m. We 

note that (4) in the sense of functions of slow growth is equivalent with 

f e..~F@~)=a(t/ltl)lti-% t~Ra, (5) 
ad 

i.e., 3(dx) is the random spectral measure of a Gaussian generalized random field with co- 

variance function (t/[t])ltl -~, t eR d-. On the right side of (3) there is a multiple Wiener-Ito 

integral with respect to the Gaussian complex even random measure 8 (cf., e.g., [16]). 

We formulate the basic result of this paper. 

Let X=(%j)~za be a linear field 

X~= ~ h(j-k)~, (6) 
k e Z  d 

(~k)k~Z d be a Sequence of independent, identically distributed random variables with mean 0, 

variance !, and finite moments of any order, and let the function h have the f~rm 

328 



h(t):A(]tl) b(t / l t[)[t l  -~, t ~Z  a, (7) 

where ~e(d/2, d), A (,):[l, oo)->R is a s.v. function, b(.) is a continuous function defined 

in Sd_ I. We shall assume that 

E[X~ 2] : "~/'~ (0 = 1. ( 8 )  

Let (AN) , (B N) be two sequences of real numbers. We shall write ANxB~ , if 0 < lim ~/B N ! 

lim~/B N < ~, and A N ~ BN, if lim ~/B N = i. 

THEOREM 2. Let the field X of (6) satisfy the conditions listed above and let there be 

co 

an entire function* f(x)=~ckx k such that the series 
k=0 ~o 

{ ck ! [ es [ (k! j !)~ 2 2 (k +a) gg + J < + oo (9) 
k , j = O  

where ~k = E[]~j ]k]' k >_ 0. Let m be the smallest of the numbers I, 2, ... such converges, 

that 

, e,.  = L~ [F  ~ ( < 3 ]  # O, (i0) 

F (m) = d m F/dx TM and ~ ~ 26 -- d < d/m. Then 

]c:[KNI 

and the finite-dimensional distributions of the random field 

W-'~+~"r~A-"(W) ~ F(XJ-E[I,'(X~)I 
0 <j < Nt 

(12) 

converge as N + ~ to the corresponding distributions of the self-similar field 

m 

K t .;~ 1 

where ~(dx) is real Gaussian white noise in R d with variance dx. 

It is easy to show (cf, the proof of Lemma 3 below) that the correlation function of 
the field X of (6) is equal to 

E[XoX, I=A~(ltl)I!F=(a(t/Irl)+o(1)), ( [ t l~ ) ,  (14) 
where 

R d 

(15) 

If the functions a('), b(.) are related by (15) and d = e /m!, then from the "Parseval in- 
N m 

equality for Ito--Wiener multiple integrals" [25] it follows that the self-similar fields 

Zm(t) and Z'(t)m have identical distributions. In the case when the variables (Ck) in 

Theorem 2 are Gaussian, it follows from the formula for differentiation of Hermite poly- 

nomials H' (x) = nH (x) that the number m, defined by (i0) coincides with the Hermitian 
n n-i 

*It is easy to note that from (9) there follows the absolute convergence of the power series 
of the function F on the whole line. 
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rank of the function F, and d = e /m!. Thus, Theorem 2 generalizes Theorem i to the class 
m m 

of (nongaussian) linear fields X. 

In [22] there is cited a theorem on zones of attraction of polynomial self-similar pro- 

ceases, subordinate to a Poisson random measure, in some sense analogous to Theorem 2. In 
it there also figures a condition of the type of (i0), determining the "degree" of the 
limiting polynomial process. An essential point for the validity of this kind of theorem 
is the presence of a linear structure of the "underlying" field X. 

There is interest in the generalization of the results of the present paper for Fourier 
transforms of processes F(Xj), and also for more general asymptotics of the weight function 
h, admitting a periodic component. In the case of Gaussian processes (Xj), results of this 
kind are obtained by Rosenblatt [18]. These results were generalized by Giraitis. The 
convergence of sums of linear and quadratic functionals of linear processes X under the 
assumptions that the random variables (~k) have infinite variance, but belong to the domain 
of attraction of a stable law, was investigated by Astrauskas. 

The following unsolved problem also seems interesting. Suppose one has a stationary 

renewal process {v)={ .... ~-a, %, ~i .... } and a function h(t), interpretable as the "response" of 

some system at time t to the "event" happening at time t = 0. We define the random process 

[(t)=~ h(t-~i) as the "total response" of the system at time t [26]. Let F(x), x~R, be 

some function. We pose the question of the limit distribution as N § ~ for the process 
Nt 

J~(t)=A~ ~ ( f(f(s))dL t ~0, where % § ~(N § ~) are normalizing constants. Let us assume that 
0 

the function h(t) has the form h(t) = A(t)t -$, where ~ ~(I/2, ]), Ais a s.v. function. In case 

the renewal process is a Poisson flow, one can prove a result analogous to Theorem 2, i.e., 

show that under certain additional restrictions on F and a corresponding choice of A N the 

processes JN(t) converge in distribution to definite Hermitian processes Z'(t) (13) (where 
m 

d = 1 and b(') = IR+(')). Now if the flow {T} is not Poisson, our methods for investigating 

the distributions of JN(t) are not applicable, although apparently the process F(I(t)) in 
this case too has "degree diminishing dependence," necessary for convergence to a self- 
similar limit. 

2. We turn to the proof of Theorem 2. First we isolate the basic term in the sum 
(12). We rewrite (Xj) k in the form 

k 

(x~)~= ~ h(j-p~)~,,...h(j-p~)~,~ = ~ C~ ~' h(]-p~)~,,...h(J-p,)~, (16) 
P ~  " '  " '  Pk / = 0  (P) l  

2 Z "  (h(j-ql)~q') ~'~'" "(h(j-qr)~qr)%, 
( V ) ( k - l )  (q)r 

t 

w h e r e  C~ = k [ / ; ! ( k - -  ; ) ! ,  t h e  sum ~ i s  t a k e n  o v e r  a l l  c o l l e c t i o n s  (p),=(p~ . . . .  , P , ) ~ ( Z a y s u c h  
(p)~ 

that Pi ~ Pj for i r j, i, j = i, .~ I (the set of such collections we denote by (zd)~), 

the sum ~ for n ~ 2 is taken over all partitions (V) of the set {i, o.., n} into disjoint 
(~(n) 

subsets V 1 .... , Vr, r = i, 2 .... , such that 2 ~ v i = [Vii (= the number of elements in the 

set ~), i=I .... , r, Z .... 0 and ~ .... I , finally, the summation of the last sum in 
(v)(l) (v) (0) 

~(16) goes  o v e r  a l l  c o l l e c t i o n s  (q)~=(q~ . . . . .  qr) s(Za); such  t h a t  i n  t h e  c o l l e c t i o n s  ( P l ,  . . . ,  P l )  

and (ql .... , qr) there are no common elements. We introduce new random variables: 

i )=[  / E[~], ,- if i=0,  
~ -2~[~ ] ,  ~f i= 1, (17) 
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v = 2, 3 ..., and in (16) we replace ~v by the sum ~q(V; 0) + ~ (v; i). We have 
' q q 

(xA ~ = (xj)~ + (xj)~, (18) 

where 

where ~v 

k 

I=0  (P)t 

= E[~p]~ Thus 

h(j-pO~,...h(J-P,)%, ~ ~'ho,(y-q~)~o,...h~ 
(g)(k-1) (q)r 

co 

r (xA = ~ c~ (xA ~ = r~ (Xb + n j, 
k=O 

(19) 

(20)  

where 
eC 

el (x)~ = ~ ~ (x~), ~. 
k=O 

(21) 

We note that 

Analogously 

oo 

E[F(Xj) ]=E[Fa(X)I] = I e~ I ! 'h~'(j-ql)~'''''h%(j-q')bt~'' 
k=0 (V)(k) (q)r 

oo 

e,~E[F(o(Xj)] = ~ c~k(k- 1)...(k-l+ I) E ~'h~,(j-qx)ll,~...h%(j-q,)~%. 
k=l (F) (k-l) (q)r 

(22) 

(23) 

From (19)-(23) follows the equation 
co 

F~ (X)~ = ~ X'h (t-p~) ~,,... h (t-p,) ~n e,/lT (24) 
l = 0  (P)I 

which is important for what follows. The rest of the proof consists of (a) the proof of the 
fact that the basic contribution to the distribution of the sum (12) is carried by the 
surmmand corresponding to F 1 (X)j, more precisely its term 

(e~/mO I 1 'h(t-pl)~'~'''h(t-p'~)~'~ (25) 
0 <y< Nt (P)m 

("discrete multiple integral" of least order not equal to zero) and (b) the proof of conver- 
gence with respect to distribution of the "discrete integral" (25) to the corresponding 
"continuous" multiple Ito--Wiener integral (13) (cf. Sec. 4 below, also Lemma 1 of [20]). 

The rest of the proof is divided into several lemmas. In the formulations of these 
lemmas, the hypotheses of Theorem 2 are assumed to hold. We shall denote by l.i.m, the limit 
in L2(~), and by the letters C, C(') various constants, depending on the quantities cited in 
the brackets. We write 

M 

Fro(x)= I ekxk' F(M)=dlFm/dxt' I<~M, " Mr(O)--FM-- 
k = 0  

and we set 

rM (xA = r~, l  (x)~ + FM.2 ( x b -  F~,~ (X)j, 
M 

where FM.i(X)j= Ick(X~)~ (cf. (21)), 
k = 0  

M k 

F~.2(X)~= I cg I CL X'h(j-p~)~,,...h(j-P,)~,, 
k=2 l = 0  (p)t 

(26) 

E 1 "  S hvl(']-ql)~q1(731; iO"'h~'(J-qr)~qr (vr; i,), ( 2 7 )  

(V)(k-I) (q)r ( i ) r  
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the summation in E goes over all collections (i)=(&, ..., ir)~{0, I} r , except for the value 
{i)#o 

( i )  = (0 ,  . . . ,  0 ) ;  f i n a l l y  

M k 

' ; . D'*(j-q~)F,,...h%(j-q,)F,:,, (28) F,,,,(X),-- E ~ Z. c~ E h(:-p,).,,..hu-p,)~,, S 2" 
k~2 l=e r : (re) (k--l) (q)r 

and the latter sum is taken over all collections (q), ~(Zd)8 such that the intersection (P)l~ (q), 
is nonempty. 

LEF~A I. The following limits exist as M § ~: 

U.m. ~fl (x9  = r o  (x~), 

U.m. F~,, (x)~ =-F, (x)j, 

l=0 ,  1, . . . ,  (29) 

i = 1 ,  2, 3 
(30 )  

and 

F(xj) =F:, (Zb +F~ {X)j-F~ (X)s. (31) 

LEMMA 2. 

7e [tc N] 

(32) 

LEMMA 3. 

m 

y~[~vl (v )  m k=I 

~[( X 2 S' I-I '~(:-".)~,:':'O:]=~176 �9 

jeIKNI t=m+l (P)l k~ l  

(33 )  

(34) 

LEMMA 4. 

where 

t r t  t l,,1 o 

::~o-~ f (A-~(N) E YI ~(,-~,v) - f ,.~ l-I ~(,--~,.))-,~<"-'0 
s c- [h'Nt] j=l K m j=l 

h( t )=b( t / I t l ) I t [  -~, t~R a, 
[ i 1 = ( [ / ( 1 ) ]  . . . . .  [ l { d ) ] ) ~ Z d  t = ( t  (1), . . . ,  t(d}) ~-Rd, 

(N --> ~ ) ,  (35) 

(36) 

[a]  is the greatest integer in a~R, 

n l  

,._R_,'h('-P')={ h('-p~176 o~o~,~o.~r p,:-,~,,i::, (37 )  

LE~VA~A 5. As N § ~ the finite-dimensional distributions of the random field 

m 

e'/m!(A'(U)N":'mjg-'Y. Z' I - I  h(/-p~)~,,, t~Rr 
:~[KNtt (P),n k=l 

c o n v e r g e  t o  t h e  c o r r e s p o n d i n g  d i s t r i b u t i o n s  o f  t h e  f i e l d  Z ' ( t )  o f  ( 1 3 ) .  
m 

Considering (24), Theorem 2 follows from Lemmas 1-5. 

3, Proof of Lemma i. We shall prove (29). Let M' < M". According to (16) 

(38) 
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= ~ (M', M") ~ E [(F~, (7(o) - F~. (7(o)) 2 ] -~  
k--I  k ' - - I  

= S ckck,(k!/(k-l)!)(kq/(k'-l)!) Z ~ C~_,C~,_,• 
k , k "  i=O i ' = 0  

x ~ *  h (PO... h (p,) h '~ (q,)... h" (q,) h (p',)... h (p;,) h": (q~)... h e," (q:.,) x 

• E [~ (PO... ~ (P,) ~'  (qa)... h" (q,) ~ (Pl).. .  ~ (P'r) ~; (q~)... ~;" (q/')], (39) 

where ~(D)_ = ~p, the sum Z is taken over all k, k' = max(M', l), ..., M", the summation 
k, k' 

in 2" is over all (p)ic(Za)~, (p')i.e(Za)~, over all partitions (V)e(V)(k-l-i), (V')e(V)(k'-l-i') , 

respectively (V) = (VI, ..., Vr) , finally, over all collections r >__ i, (V') = (V i .... , V~,), 

r ~ > 1 such that (q),e(Za)~, (q'),, e(Za)~" and (P)tfl (q'),=~ and(p')efl(q'),.= ~. We note that the expec- 

tation in (39) is equal to zero if any of the indices Pl, .--, Pi (P~, .... p~,) does not 

appear in the collection (P')e 0 (q')e (in the collection (p)t U (q),, respectively), and the num- 

ber of all arrangements of the indices Pl, "''' Pi in the set (p')i.U(q',')does not exceed 

(i' + r')! >_ k'! In accord with?this remark and also thanks to the inequalities 

ih(r)l~< ~ [h(t)[2=l, k~>2 (40) 
t c Z  d t c Z  d 

and 

nl, ..., n = I, 2, ... 
S 

B,,,.-.g,,~,~<g-,, n l +  . . .  +ns<~n, ( 4 1 )  

(we recall that ~--n = E[~(p)]n and ~2 = i), we get from (39) that 

k - I  k ' - I  

8<~ ~ lek] ]ck.[(k!/(k-1)O(k'I/(k''l)l ) ~ ~ C'k_,C"k,_, "~+k,_..kl k'| 
k, k '  i = 0  i ' = 0  

Z I. (42)~ 
( I t) (k--l--f) (V) (k" - I - i ' )  

We note that 

l =E[(~- l)k], k>_- I, (43) 
(r') (k) 

where ~ is a random variable with Poisson distribution with mean i. One has the estimate 
[i] 

[ E[(~- 1)~]] .< 2~kl. (44) 

Considering (9), we get from (40)-(44) that 8(M', M") § 0 
is true. (30) and (31) are proved analogously. 

Proof of Lemma 2. We prove (32) for i = 2. We have 

(M', M" § ~) and thus (29) 

je[KN] 7,7'~[KN| 

We consider the mean 

E[~ (P0- �9 �9 ~ (,v,) ~ (-,,i; i~, q0.-. ~ (~',; i,, q,) ~ (PD. �9 ~ (P;,)~ (':f; if, q3...,~ (v;.; ~;,, q;,)], 

q(v; i, q) = nq(V; i), occurring in the expectation E[F2(X)jF2(X)j,] (cf. (27)). Here 

(45) 
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(p), = ( p , ,  . . . ,  p , )  e (Za)~, (p ' ) , ,  = ( p ; ,  . . . ,  Pi') e ( Z a ) ~  ', (q ) ,  = (q~, . . . ,  q,) ~ (Zd)a 

( q , ) e = ( q [ ,  . . . ,  , a , '  ' . ,  q,.) e(Z )o, (v~, . . . ,  v,)  ~(v) ( k -  t), (V~, . .  V',) ~ (V) (~:'- r) 

and in addition (p)~ 0 (q) ,=  ~ and (P')I'N ( q ' ) / =  ~ The following cases are possible: 

(1) (q), fl ( q ' ) / #  ~ ,  

(2) (p), f] (q'),; # ~ aria (P')e (1 (q)r # Z, 

(3) all other cases. 

From the conditions (il, ..., i r) # 0, (i~, ..., i',)#r 0 and E[D(v; i, q)] = 0 it follows 

that in case (3) the expectation (45) is equal to zero. It is also clear that this expecta- 

tion is nonzero only when (p)iC--(p')L "U (q')r' and (p')v_ c (P)l U (q)r. Using (141) it is easy to show 

that in any case (45) does not exceed the numbers gk+k, 2(k+k'-t-J')! ~. Thus 

oo k k" 

] ~ [F2(~) jF2(X) j ' ] I~  1 [gk! ICk'l ~ ~ clkc~'~k+k ''2{k+M-l-lt)]$ Z ~ Z ( S 1  @ 1 2 )  X 
k-, k'=O l=0 r=o (v) (k-O (v) (k'-r) (i), (i') 

(46)  
x 1 h ( j - p O . . .  h ( j -p t )  h ~' (J -  qa).., h~" (J -  qr) h (j' -p[ )  , . .  h (j' -Pi') h'~ U' - q{) . . ,  h=;" U ' -  q;'), 

where El, 22 denote sums over all collections (p),~(Zdy, (q)~e(Za) ", (p ' ) re(Za)  r, (q'),,E(Zd) ~', (p)z~_(p')v 
t t t C , U ( q ) r , , ( P ) L - ( P ) t U ( q ) ,  corresponding to cases (I) and (2) respectively. Using (40) we get 

! ~  "'" <~k! k'! S h2 ( j -q )h~( j ' - q ) ,  
P 

p P 

(47) 

(48) 

where p, q run through the lattice Z d. We write GI( j -- j'), G2( j -- j') for the right sides 
of (47), (48), respectively, without the factorials. We shall show that 

whence together with (46)-(48), 
(49) follows from 

E G,(j- j ' )<~CN a, i=1 ,  2, (49) 
j,j" e[K N] 

(43), (44), and (9) there follows (32) for i = 2. In turn 

G,(p)<+m, i=1, 2. (50) 
P 

For i = 1 (50) is obvious, since Z h2(P)<+~176 
P 

function h (7). Let L: R+ + R+ be a function which is slowly varying (s.v.) 

It is known [25] that for any u0, y > 0 

uqL (Nu)/L (N) ~ u r (N --+ co) uniformly in u ~ (0, Uo], 

L(Nu)/uVL(N).--> 1/u'r(N-+~) uniformly in ue[uo, oo). 

In the case i = 2 we use the form of the 

at infinity. 

(51) 

(52) 

Thus, for T < 0 

q#O, p Rd 
(53) 
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where%(x)=l, if Ixl ! i, = Ixl-2Bo if [x[>l ,  xeRa,.  It is easy to verify that the right 

side of (53) does not exceed C/]p]2(B-Y) ' If y is sufficiently small, it follows from the 

condition $ > d/2 that (50) converges for i = 2. 

We consider (32) for i = 3. According to the definition (cf. (28)) and (40), (41) 
we have 

m ~  (k, k') 

]E[Fs(X)'F3(X)"][ < Z ]ek[ [ck,] ! C~C~,IIx 
k, k ' = 0  1=0 

x~k+,'-,, Z Z { ( E  ]h(j-P)]ath(j'-P)[) = + Z Ih(j-p)h(j'-P)"}" 
(V) (k--l) (V) (k'--l) p p 

The rest of the proof is just like the case i = 2 considered above. 

Before the proof of Lemma 3 we give the 

Proof of Lemma 4. We denote by 6 the left side of (35). Without loss of generality 
we shall assume that the ratio A([t[)/[t[B is bounded at the origin and the function 

h(t) = b(t/]t])k([t[)[t]-~ is defined for all teR d and is square integrable in R d. We 

have: ~ i 2(61 + 82), where 

{x(fi  fl )} a~=N~m-=dA-==(N) f dx" h(s - [~] ) -  h(s-xj) ~, 
E s [KNtl  j = l  7=1 

(54) 

tn t i t  

a~=N==-=~f dx~'( ~ I] h(,-x,)/i(U)- f FI h(~-x,)d*) =. 
sS[KNt ]  j = I  /'/Nt j = l  

(55) 

We estimate 82. Using the form of the functions h, ~ and the change of variables yj = Nx~ 
= Ns, we get 3 

m m 

f "o (H H 

where ~' = [No]/N § o(N § ~). Thanks to the continuity of the function b('), one can write 

a= <. ~ (N) 4 + a~ m 

where ~(N)-~O(N-+~o),,,= f dy=( f d= [I ,y,-=t-')' and 
K I j =  1 

m m 

a;-=CfdYm{K ,f da(fI,=, 'Y'-~'L-~A(NIY'-~'t)/A(N) -=,VI lYJ- ~ t-~) } =" (57) 

It is known that 
m 

1=1 
(58) 

for d/2 < B < d, ~ = 2B -- d < d/m (cf. [7, p. 26] and also [22, Proposition 3.7]). To 

estimate 8~ we need 

LEMMA 6. Let y, ~ eR a , ~'=[~N]/N, y>0 �9 Then 

]m[ A (N[ a' --YlIlcr'--Y[ -f~]A(N)-I ~-Yl -~ I <~ r I a-Yi-~• (59) 

where c(N) = e(N, y, a) is a function of y, ~, bounded uniformly in N, tending to zero for 
fixed y, ~, as N + ~, and Ix]-r177 [Xl-8-v). 
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P r o o f .  

Ic-~l)<3Vd 
We note that i='-=l{'l/2l/N �9 Let I~-Yi<<.2]/-d/N , so  Nl&-yi<~N(la-yi+ 
and 

8<~N~A(NI &-Yl )/(NI ~;'-Y [)~ A (N) + I ~r-Y ]-~ ~< C] ~ - y  j -~-r  

by virtue of (52) and the stipulation about the boundedness of A(Itl)]tl-s at the origin. 

Now i f  2 ~ / N  i [ ~ - - y ]  i l ,  then2]~-yl~]a'-yl~l~-Yl-I~' -~l~]~-y[/2 and 

K . 8~Cla--y[ -~ I AcNI&-yl) jA(N)- I ;+IG--Yl -a ) ( I~-y l / IG' -y i )  ~ - l t ~ e ( N ) I ~ - y l  -~-r, 

where g(N) satisfies the conditions of the lemma. The case I ~ -- y] ~ i is considered 

analogously. 

From Lemma 6 and (58) for y sufficiently small it follows that 81 § 0 

62 + 0 (N § ~). In particular, we get from this the estimate 

se |K~]  7=1 

(N § ~) and thus 

(6o) 

which is used below. 

We proceed to estimate ~I. We note immediately that in (54) the product 

(37) can be replaced by the ordinary product H'h(s-[xs]) , since 

7=I 

m m 

: { ( 1 d.,-- S 1-I/' ( .~ - I , - ; ) - .  [ ] / ,  (.~- t.,-,l) ~ = 

nz 

VI h (~- [xA) 
j = l  

( 6 l )  

= S'( I h(,-,,.)...,,(,,-,o))' S ,,' ., -.),,' (.,, 
s ~ [hAr t] s,, s~ ~ [KNt] p e zd 

where the sum l' is taken over all (p),,~(Zd)'~\(Zd)'~ , and NdN ..... ~':/A2'"(N)=o(1) for am < d. Thus, 

a f t e r  t h e  c h a n g e  o f  v a r i a b l e s  x .  = N y j ,  s = Nc~ we g e t  
3 

f . : {  Z VI 

}. 
x A ( N [ ~  " ' '->./ JIG-Y:[ -~ I-I b((G-Ys)/I'J--Ysl) A(N1G-ysl) [a--Ys[-~ ~ (62) 

I 

i=1 

w h e r e  ~ j [Nyj ] / N ,  

m 

J'=A-2m(N) N-2e f dy" E H A(NIG--ysl)la--yjI-~ <~-..~ 
N'~[K.Nt] j = l  

(cf. (60)); s(N) § 0 (N § =) thanks to the continuity of the function b(.) and 

m m 

N~e[KNt] 7=i j=l 

Using Lemma 6 and (60), one can prove the relation ~i = o(i) analogously to the proof of 

the relation ~ = o(i) above. Lemma 4 is proved. 

Proof of Lemma 3. Since 

m 

] e [ g N ]  (P)m k = l  (p)m i e [KNl  k = l  

>)' h ( j - p k  , 
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(33) follows from (35). To prove (34) we consider the relation 

= fdyb(y'l[y'l)b((o-y')[o-y'[)A(lt [ ly ' l )A([ t ]  [o-y'I)• 
R d 

x [y' [-~[o-y'J-~/A~(I t[), 

where Y'=[lt[Yl/[t[, o=t/lt[ 
easy to verify that at(o) + a(o) ( I t ]  § ~) uniformly in o~Sa_~ , i.e., (14) holds. 

same way one can prove 

Arguing just as in the proof of the preceding lemma, it is 

In the 

]h(p)h(t-P)l<~min(1, A~([t])It[-~), t~=Z! 
P 

We denote by ~N the left side of (34). Then 

m l 

aN= E E ( E H'h(J-Pk)) =e~ll'-~Sk+a'fv' 
l = m + l  (P)I js[K N] k = l  

where in ~ the sum over 7. >_m + i, 1 < d/a, appears and in 6' N that over 1 >_ d/~. 

8}=o(A ='(N) N 2a-=m) We note that for 7. > [d/a] 

1 

',--- I (  E 
(P)t j e [ K  N] k = !  

where e > 0 is arbitrarily small and C = C(r is independent of 1. 

(64) ,  
6 -.< 

By (33), 

(64) 

where l* = [d /m] .  

last series converges. For ~ > 0 sufficiently small, N d+~ has the order indicated on the 
right side of (34). 

4. In this section we shall prove Lemma 1 of [20] on the convergence with respect to 
distribution of the discrete multiple integrals to the "continuous" Ito--Wiener integrals, 
and with its help we complete the proof of Theorem 2. 

N = I, 2, ..., of partitions of the space R d into d- We consider a sequence (A)N , 

dimensional cubes A of identical dimensions; diam A § 0 (N + ~). Let there be given for 

any N ~ 1 a family of real random variables ~N =(~N(A))a~(A)~ with mean 0, variance equal to 

the Lebesgue measure of A, and finite moments of any order. The collection of such 

families of random variables we denote by "~N. We consider the Hilbert space (L2) n = 

L2((Rd) n, dx n) of functions f: (Rd) n § C and the subspace (L~)~=(L2)" , formed by functions 

f, assuming constant value f A:'''An on sets At• ... x A~(A)~, and vanishing on "diagonals" 

f&'a,=0 , if A. = A. for i # j, i, j = i, ..., n' 
z 3 

By the disorete multiple integral of the function fe(LD~ with respect to the family 

~Ne~ we shall mean the sum 

(65) 

In fact, according to 

( ~ lh(A-P) h(j2-P)I) t<~C(~) 2 rain(l, IA-J21~-:l*), 
J,, J~ ~ [KN~ p 71, J~ ~ [K N] 

Thus (65) is true and also ~}<~CN a+~ ~ e]ll!. It is easy to see that the 
1 = i n +  1 
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IN(f; N)= ~ '  f-~"'"~"$v(A0...~.N(A.) 
A1 , . . , ,  ~i n 

(66) 

(the series on the right side of (66) converges in mean square). 
m = i, 2, ..., one has 

~. is., (,/; N) s;,,i.7; N i ] :  8.,,,. ! (~ym L ,~)., 

For any f~(Le)~, ge(L~)~v,n, 

(67) 

E[L (,f; N)]= O, (68) 

where 6 is the Kronecker symbol, (*, ') is the scalar product in (L2) n, and sym f is the 
mn ii 

syn~netrization of the function f=f(xl ..... x,), x I ..... x,~P. 't 

We also introduce the set Sf of all homogeneous real (stationary) random measures (r.m.) 

= r in R d with zero mean and variance E[(~(dx)) 2] = dx, assuming independent values on 

disjoint subsets (such random measures are also called "generalized white noise" [9]). The 

distribution of any r.m. ~e~ is infinitely divisible, and its characteristic functional can 
be represented by the Levy--Khinchin formula [9]. Important special cases of such r.m. are 
Gaussia~ white noise and ( c e n t e r e d )  Poisson r .m.  

We shall call a function f: (Rd) n § C simple, if f~(L2)k for some N >_ 1 and fA" ~"=0 every- 

n) where except for a finite number of "rectangles" A~• • The multiple fro-Wiener 

f~tegral r, (f) • f f(x~ .... , x,) ~ ($xi)..,~ (dx,,) of the function fc (L2)" with respect to the random mea- 

sure [~ is defined as the limit in L2(~) of the integral sums I (fN; N) of the form (66) 
" "~ n ' 

where ~N(A) = ~(A) and (fN)N>I is a sequence of simple functions converging to f in (L2) n. 

The integral I (f) also has the orthogonality properties (67), (68) (cf. for more details 
n 

[7,  9, i i ,  i 6 ] ) .  

LEMMA 7. Le t  us assume t h a t  t he re  i s  g i ven  a r .m.  ~e<~. and a s e q u e n c e ~ e ~ N ,  N~>l, such 

that for anyN~l, Ae(A)Nthe distribution of the sum ~M(A)= E ~M(A') converges as M § 
A'~ (A)M: A 'c  A 

to the distribution of the random variable ~(A). Suppose given a sequence of functions 

f,, ct/: ~", N~>I which converges as N § ~ to function f in the norm of space (L2) n, n = 1 
o N - /  ~ ) h ,  , 

2) .... Then the distribution of the random variable In(f ; N) converges as N § ~ to the 
distribution of the integral In(f). 

Proof. Let us assume for simplicity that the functions fN are real. By virtue of the 

hypotheses of the theorem, for any s > 0 there exists a N > 1 and a simple function ge(L~)~ 

such that ]If--glln < m and ]ifM-- glln < c for all M >_n, where li'Iln is the norm in 

(L2) n. Since 

iE[exp{ fa f . ( f~ ;  M ) } ] - E [ e x p { i a I . ( g ;  M)}]J 

<~ja!E~i2[[l,(fM--g; M)12]<~laIVn!~, M>>N, a c R  

( t he  a n a l o g o u s  i n e q u a l i t y  i s  t r u e  upon change o f  the  d i s c r e t e  i n t e g r a l s  I n ( . "  M) to  Z ( . ) )  
then ' n ' 

iE[exp{ial . ( fM; M ) } ] - E [ e x p { i a I ( f ) } ] ]  ~<2]al(nr) ~,/2 + 
+ I E [exp { ial. (g ; M) } ] - E [exp { iaI~ (g) } ] l. (6 9 ) 

By definition, I~(g)=P(~(A):A~(A)N ) , where P(') is a polynomial depending on a finite number 

of real variables xa, Ae (A)N. Let us assume that the sequence (A)N, N >_ i, is monotone, i.e., 

that (A)gc(A)~+~ N>_-I. Then the discrete integral I (g; M) is equal to the same polynomial 
n 

in the random variables ~M(A), Am (A)~. From the hypotheses of the lemma and the independence 
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of the values of the r.m. ~ on disjoint sets it follows that the distribution P(~M(A): Ae(A)N) 

converges as M § ~ to the distribution of the random variable P(~(A): Ae(A)N ) . In view of 

the arbitrariness of s > 0 in (69), from what was said above there follows the assertion of 

Lemma 7. In the case of nonmonotone partitions (A) N these arguments follow after slight 
modifications. 

Analogously one can get conditions for the convergence in distribution of "continuous" 
multiple integrals corresponding to different random measures [21]. In the case when the 
"variational measures" E[(~N(dX))2] = ~N(dX) depend on N, the condition fN ~ f(N § ~) in 

(L2) n should be replaced by the condition of "uniform approximability of the sequence 

(fN)N=I,..., ~ by simple function" [21]. The convergence in distribution of the multiple 

integrals corresponding to different Gaussian measures was used in [8, 16]. 

Proof of Lemma 5. We denote by [k/N, (k + I)/N) s d-dimensional cube [k~1)/N,(km+l)/N)• 

.. • ' (k(a)+l)IN)cRd, k=(k (I) ..... k (a))eZ~ We consider the sequence of partitions (A)N, N = 

I, 2, ... of the space R d into cubes A =[k/N, (k+l)/N)e(A)m keZ d and we set 

~u(A)--~k/N '~'2, A=[kIN, (k+ 1)/N), 
m 

s(x,, . . . ,  xm)= f PI x1,. . . ,  (70) 
K t i = 1  

m 

UN(Xl, . . . ,  xm)=A'n(N)N-d+(a+a)m! 2 ~ 1-I'h(s-k]), (71) 
S~[KNt] j = I  

if ( x  1 . . . .  , x , , ) s [ k l / N  , ( k x + l ) / N ) •  . . .  •  ( k , , + l ) i N ) ~ ( A ) ~ v ,  k l ,  . . . ,  k , , ,~ Z a . It follows from the 

central limit theorem that the distribution of the sum ~M(A) converges as M + ~ to the distri- 

bution ~(A) for any Ae(A)N , N~>I , where ~(dx) is real Gaussian white noise in R d with 

variance dx. According to Lemma 4, fN § f (N + ~) in (L2) m. The last assertion is also 

true for arbitrary linear combinations of functions (70) and (71), corresponding to different 
points teR% It remains to use Lemma 7. 
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