
CENTRAL LIMIT THEOREM FOR FUNCTIONALS OF A LINEARPROCESS 

L. Giraitis UDC 519.21 

The central limit theorem is proved for stationary related variables ~. teZ of the form 
~t = f(Xt) under the condition that E!rn(t) l < = and Ern(t) > 0. Here rn(t) = En0nt, X t = 
Ea(t -- s)~ s is a linear process, the variables (~s) are independent and identically distri- 
buted, and f:R + R belongs to some class of analytic functions containing, in particular, all 
polynomials~ The proof is based on the method of cumulants. 

INTRODUCTION 

In the present paper we consider the question of the central limit theorem (c.l.t.) for 
stationary related variables ~,, feZ of the form 

~ = f  (X,), ( 1 ) 

where 
QO 

:6= ~ a(t-s)L (2) 
$ =  - - ~  

i s  a l i n e a r  p r o c e s s  [ i . e . ,  t h e  random v a r i a b l e s  4,. teZ a r e  i n d e p e n d e n t  and i d e n t i c a l l y  d i s -  
t r i b u t e d ,  E~ t = 0,  E ~  = 1, t h e  s equen ce  a(t), teZ i s  nonrandom and s a t i s f i e s  t h e  c o n d i t i o n  
E a 2 ( t )  < ~ ] ;  f : R  + R i s  a g i v e n  f u n c t i o n .  In  p a r t i c u l a r ,  any s t a t i o n a r y  G a u s s i a n  p r o c e s s  
(X t) with absolutely continuous spectral density can be represented in the form (I). If the 
dependence of the process X t decreases with distance sufficiently slowly (for example, the 
strong mixing condition does not hold), then the question of the asymptotic behavior of the 

N 

sums ~f(X~) is sufficiently complicated and the answer depends strongly on the function f 
t=0 

considered. For a Gaussian process (Xt) this question was considered in Rosenblatt [11], 
Taqqu [16, 17], Dobrushin and Major [3], Gorodetskii [6], Giraitis [19], Giraitis and Sur- 
gailis [4], Breuer and Major [2], Sun [13], etc. It was established in Dobrushin and Major 
[3] that if the correlation function r(t) of the Gaussian process (X t) behaves asymptotically 
like Itl-~(0 < ~ < I), the Hermite rank of the function f (i.e., the index of the first non- 

co 

zero coefficient c k in the expansion f= I ck//~ in Hermite polynomials H k) is equal to m(~ > I) 
[Nil 0 

and ~m < I, then the processes N 1-~m/~ I fOfs) converge in distribution* to "strongly depen- 
s=O 

dent" self-similar processes Z (m), t > 0 which are non-Gaussian for m i> 2, representable with 
the help of multiple Ito--Wiener integrals. Surgailis [.15] found an analogous result in the 
case of a (non-Gaussian) linear process (Xt); it is true that here the function f had to 
satisfy certain stringent analyticity conditions. The question of the c.l.t, for functionals 
f(X t) of a Gaussian process (X t) was considered independently by Giraitis and Surgailis [4] 
and Breuer and Major [2] (cf. also the earlier paper of Sun [13]). Let m(~>1) be the Hermite 
rank of the function f, r(t) be the correlation function of the Gaussian process (Xt). Then 

the condition Elr(t)l m < ~ is sufficient for the convergence N -I~- ~/(%~)~-~[ (0, ~), where 
s=O 

~= I rY(O and rf(t) -- Ef(X0)f(Xt) [2]. An analogous result was found by Giraitis [5]. More- 
s 

over, it turned out that the conditions of asymptotic normality of the quantities f(X t) can 

*We shall write " ~ " for convergence of finite-dimensional distributions. 
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be expressed in terms of one correlation function rf(t), without using the concept of Hermite 
rank (although, on the other hand, this concept plays an important role in the course of the 
proof). Namely, the following theorem is true. 

THEOREM I [4, 5]. Let (X t) be a stationary Gaussian process with correlation function 
r(t) + 0(t § ~); let the function f:R § R satisfy the conditions Ef(X) t = 0, Ef2(Xt ) < =. 
If, in addition, 

(3) 

r i (O-~>  0, (4) 

then 

[Nt] 
d N-1/2 I f(Xs) ~ aW(r), (5) 

S = I  

where ( W ( t ) ) t ~  0 i s  a s t a n d a r d  Wiener p r o c e s s .  
N 

One should note that although conditions (3) and (4) imply Var (E f(X;))~N , on the 
! 

other hand the last relation is not sufficient for (5) (there is a counterexample in [4]). 

It seems likely that the analogous theorem is also true for an arbitrary linear process 
(Xt). The result formulated below is obtained under rather strong restrictions on the func- 
tion f. The latter are apparently due to the method of proof, based on the expansion of f in 
Appell polynomials An(x) , n = 0, I, .... 

f ~ ) =  I ckAk(x)' (6) 
0 

defined with the help of the generating function 

I z, A, (x)/nt = exp (zx)/E exp (zX~). 
n =O  

THEOREM 2. Let  ( X ( t ) )  be a l i n e a r  p r o c e s s  ( 1 ) ;  l e t  t he  v a r i a b l e s  ~t s a t i s f y  t he  Cramer 
c o n d i t i o n ,  i . e . ,  A E Eexp ( r 0 1 ~ t l )  < ~ f o r  some r0 > 0. Le t  us assume t h a t  f has  t he  fo rm 
(6), where 

ik!d~< (7) 
k = 0  

f o r  some d > 3(1 + 2 5 ) / r 0  and (3) and (4) h o l d .  Then (5) h o l d s .  

THEOREM 3. Let all the conditions of Theorem 2 hold except (3) and (4). Let us assume 
N 

instead of this that LI(N)m ! rs(t)~(N~ ) and rf(t) = L(t)/Itl, where e(.) is a slowly 
--N 

varying function (s.v.f.). Then (5) holds with N -I/2 replaced by (NLI(N)) -I/2 

The role which the expansion (6) plays in the proof of Theorems 2 and 3 is explained by 
the following facts. Firstly, there exist simple and natural formulas for the cumulants of 
the Appell polynomials (this is important since the proofs of Theorems 2 and 3 are based on 
the method of moments). Another important circumstance is the equivalence of the conditions 
(3) and Elr(t) l m < ~ for m ~ 2, where m is the Appell rank of the function f (cf. Sec. 4). 
Unfortunately, the Appell polynomials in general do not form an orthogonal system in L2, and 
the question of when the function f can be expanded in a series (6) is quite unclear. One 
can however show that if the function f is analytic on the whole line and the coefficients 
of its power series decrease sufficiently rapidly, then one has an expansion (6), and (7) 
holds. In this case the coefficients c k have a simple probabilistic meaning: c k = Ef(k)(xt)/ 
k!, where f(k) is the k-th derivative of f. 

It is easy to give examples when the conditions of Theorems I, 2, or 3 hold, but the 
process (Xt) does not satisfy the strong mixing condition (and is even nonregular). Some 
weaker mixing conditions introduced in [18] assume, roughly speaking, the convergence of the 
series Ela(t) 1, which can also not hold in the theorems formulated above. We note finally a 
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result of Ibragimov [7], according to which the c.l.t, for the linear process (X t) (I) itself 
N 

holds, provided Var ( I  ft) -#~176176176 
o 

We give the content of the remainin~ sections briefly. Section I is devoted to the 
Appell polynomials and also to some questions of the convergence of series of such poly- 
nomials. In Sec. 2 we discuss the diagramatic formalism for the cumulants of the Appell poly- 
nomials of a linear process. In Sec. 3 the c.l.t, is proved for polynomials of a linear pro- 
cess, and in Sec. 4 we consider the general case of a function f. 

I. Appell Polynomials 

Let ~ be some probability distribution on the line R. We shall assume that all moments 

of the measure ~ are finite, and the meanf xd~=O . The Appell polynomials An(x), x e R ,  n=  

0, I,... corresponding to the distribution ~ are defined with the help of the generating 
funct ion 

co 

I z"A"(x)/n!=ez~/ f e'~d~'" (8) 
n=0 

In this case, if the measure ~ satisfies the Crier condition 

f e"~'dl~< oo (9) 

for some r > 0, the series on the left side of (8) converges absolutely in some disk {fz(<r0}c 
C. The Appell polynomials can also be defined by the formula [14] 

A,,(x)= x ~ ~ (-D' ~ z(Iv,I), (1o) 
k=O {v} (n--k) i= 1 

where x(k) = x(k, ~) is the k-th cumulant of the measure ~, and the sum E is taken over 
{~} (n) 

a l l  p a r t i t i o n s  ( v l , . . . , V r ) ,  r = 1, 2 , . . .  o f  t h e  s e t  { 1 , . . . , n }  such  t h a t  l v i l  >/ 2 (we s e t  

= 1  E . . . .  o ) .  
{v} (0) {v} (1) 

An important special case of the Appell polynomials is the Hermite polynomials corre- 
. . . . . .  x 2 . . spondzng to the standard Gausszandzstrzbutlon~(dx) = e /2dx/2r The Hermzte polynomzals 

are the unique orthogonal system of polynomials among the Appell polynomials [12]. 

We note the differentiation rule: 

A~(x)=nA,-l(x) ( 11 ) 

and the  e q u a t i o n  

f A.(x)d~=O, n = l , 2  . . . .  (12) 
c o  

The question of when the system {An}0 forms a b a s i s  in the space L2(~) [i.e., when each 
co 

function feL~(~) can be represented uniquely as a seriesf=~ ekAk , converging in L2(~)] 
o 

is apparently open. In any case, such a requirement imposes stringent conditions on the 
smoothness of the measure p. It is known that each basis is a minimal system [9]. The fol- 
lowing assertion, given below without proof, was conmaunicated to the author by D. Surgailis. 

Proposition I. Let ~ satisfy the Cramer condition. In order that the system {An}~ be 
minimal in the space L2(~), it is necessary and sufficient that there exist a density p = 
d~/dxeC=(R) such that Qn-p~Id"p/dx~eL2(~), n = 1, 2 ..... In the latter case the system {Qn}~ 
forms a biorthogonal system with the system {An}~. 

We introduce the class d(~) consisting of all functions /eL~(M) having the form 

0o 

f ( x ) =  I ekA,(x), (13) 
0 
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where the series converges in La(~). 

Definition 1. BY the Appell rank of a function /ed(~) we mean the index of the first 
nonzero coefficient c k in the expansion (13). 

Although the given definition of the Appell rank relates to the coefficients of the 
series (13) rather than to its sum, in what follows we shall have to do with the narrower 
space of functions /ed(~) , for which this definition is proper and has a simple probabilistic 

meaning. We introduce the class ~d(d>0) of for now formal sums (13), where the coefficients 
c k satisfy the condition 

ao 

ic~lk!dk<oo. (14)  
k=O 

2. Let r > 0 be such that the function ~ (z)=fe"Xd~ is analytic inside the Proposition 

disk Iz[ ~< r and satisfies there the inequality [~(z) I>~I/2; /~d and d > I/r. Then the series 

(13) converges absolutely for any xeR, and its sum feC=(R). If in addit'ion fexp{2rlxl}d~< 
~, then /(")=d"//d"xe~(~), n = 0, I,... and the Appell rank of the function f coincides with 
the smallest number k = 0, I,... such that 

f f(k)(x)d~.#O. (15) 

Proof. From the analytieity of the function ~(z)=fe~dF in the disk Izl < r, Eq. (8) 
and the Cauchy formula, we get that 

l A. (x)t~< 2r-"n!e" ~' (16) 

Thus,  in  v iew of  ( 14 ) ,  t he  s e r i e s  (13) c o n v e r g e s  a b s o l u t e l y  and u n i f o r m l y  in  each  i n t e r v a l  
x e [ - K ,  K], K>0,  f rom which t h e  c o n t i n u i t y  of  t h e  f u n c t i o n  f f o l l o w s ,  Using t h e  d i f f e r e n t i a -  
t i o n  f o r m u l a  ( I 1 ) ,  we v e r i f y  a n a l o g o u s l y  t h a t  f e C  ~ (R). 

Le t  f~)=d" . ( ~  ckAt(x))/dx", M<~M'; l l ' l l  be t h e  norm in  t h e  space  L 2 ( g ) .  Then ]lf~)-f~),]l<~ 
k ~.~f 

M '  

[eklk(k-1)...(k-n+l)llAk_,[l~O (M,M'-+m) t h an k s  t o  ( 1 1 ) ,  ( 1 6 ) ,  and t h e  a s s u m p t i o n s  
k=Mv(Mt-n) 
made, i.e.,f{")e~(~) . From what was said above and (11) and (12) the assertion of Proposi- 
tion 2 about the rank of the function f follows. 

2. Cumulants of Appell Polynomials of a Linear Process 

An important virtue of the Appell polynomials is the existence of simple combinatorial 
rules for the calculation of the (mixed) cumulants, analogous to the familiar diagramatic 
formalism for the mixed cumulants of the Hermite polynomials with respect to a Gaussian mea- 
sure [8]. 

We denote by X(ql,...,q k) the (mixed) cumulant of the random variables ql,...,qk, i.e., 

Sometimes we s h a l l  a l s o  w r i t e  X ( q l , . . . , q  k) = X(q i ,  i = 1, . . . .  k) and X(~ . . . . .  ~ )=~(~)"  
k 

Let  t he  q i  have  the  form q i  = A n ( i ) ( X i ) ,  where Xi ,  i = 1, 2 , . . . , k  a r e  g i v e n  random v a r i -  
a b l e s ,  An( i )  i s  t he  Appe l l  p o l y n o m i a l  of  d e g r e e  n ( i ) ,  c o r r e s p o n d i n g  t o  t h e  ( m a r g i n a l )  d i s t r i -  
b u t i o n ~ t ( d x )  =P(Xiedx).. In  o r d e r  t o  d e s c r i b e  the  r u l e  a c c o r d i n g  to  which one c a l c u l a t e s  t h e  
cumulant X(ql,.--,qk), we introduce the following terms and notation. 

By a diagram y we mean a partition y = (Vl,...,Vr), r = I, 2,... of an array 

(1, 1) . . . . .  (1, n(1))~ 
(17) 

(k, 1) . . . .  (k, n(k))/=T 
into (nonempty) sets V i (the edges of the diagram) such that IVil > I. We shall call the 
edge V i flat, if it is contained in one row of the array T. We shall call the diagram con- 
nected, if any two collections of rows of the array (17) are not split separately by this 
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diagram. We denote the set of all diagrams without flat edges over the array (|7) by F(T), 
and the subset of all connected 7 e r(T) by r0(T). We shall call the diagram T = (Vl,... ,Vr) 
Gaussian, if [Vll =... = [Vr[ = 2. 

We define new variables Xij, (i,7)eT , by the equation 

�9 X u  = Xt. 

We set z(XV)=z(Xu, (i,j) e IO , where V=T. 

Proposition 3 [14]. 

x ( A . . >  (x , ) .  i =  1 . . . . .  I , )  = z (xvO . . .  z (Xv') .  
y e  F ,  (T)  

In what follows, we shall consider the case when the variables X i have the form X i = Xti , 
where 

.~,= ~ a(t-s)~.,, ieZ, (18)  
s ~  --0o 

is a l inear  process ,  i . e . ,  t h e  v a r i a b l e s  ~ ,  s ~ Z  a r e  i n d e p e n d e n t  and  i d e n t i c a l l y  d i s t r i b u t e d ,  
a(t), t ~ Z  i s  a n o n r a n d o m  r e a l  s e q u e n c e .  We s h a l l  a s sume i n  a d d i t i o n  t h a t  t h e  ~s h a v e  moments 
o f  a l l  o r d e r s ,  E~ s - - 0 ,  Egs 2 = 1 and  

EX ~ (t) = ~ a ~ (t) = 1. (19)  
t 

We note that 

z ( X ,  . . . . . .  X',k)=Xk(~o) ~ a(t,--s).., a(tk-s), (20 )  
$ 

in view of the independence of the variables ~s and familiar properties of cumulants. 

We introduce the space L~(Z~)(p>~l) of real functions f=f(q, ...,tn), (q ..... t,) eZ" with norm 
[If[jp=][fl[p,,=( Z If(q ..... tn)rP)l#P< oo. Let f~ ~L~(Z"(1)), i=I ..... k; y=(V I ..... V,) be some diagram [over 
the array T of (17)]. We consider the tensor product 

fa |  | fk = f l  (fl l  . . . . .  ta. (1 ) )  " " " f ~  (tkl . . . . .  t~. (k)) (2 | ) 

and we define a new function fT:zr § R by means of the replacement of the variables tij, 
(f,j) eV~ in (21) by one new variable t s ~ Z, s = 1,...,r. With the help of Cauchy's inequal- 
ity, just as in the case of "Gaussian" diagrams (cf. [10, 4]), it is easy to get 

Proposition 4. Let y=(gl ..... V,)eP(T). Then 

[Ifvlla. �9 ~< l ' - I  lif~ II=,. ~i). (22) 
i=i 

It follows from Propositions 3 and 4, Eq. (20), and the fact that the linear process 
(18) is stationary that one has 

Proposition 5. 

Z (A,  (,) (X,,), i = l  . . . . .  k ) =  ~ dvlv, (23)  
wry( r )  

where 

d v = z I v ,  I - . .  ZIl"ri, ZIVI =Z lV i  (~e), (24 )  

7~ ..... Jr 

fveL1(Z ,) is the function constructed from the tensor product (21) of the functions fi eL=(Z"tO), 
i = 1,...,k, 

f ~  ( A  . . . . . .  J "  (~)) = [I ( t  ~ I ' A )  " l ~ a (~ m - -  #J' { J ) )  ( 2 5 ) 

according to the rule described above. 

In what follows we shall also use the "Fourier-representation" of the cumulants of the 
variables An(i)(Xti). 
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We denote by E n = [--7, win the n-dimensional lotus with Lebesgue (Hast) measure dnx, 

We define the Fourier transform f § f:L2(Z n) § Ll(~ n) by the formula (below f d"x= f d"x) 
n" 

J'(tl . . . . .  , , )=  f / (x ,  . . . . .  x,)exp [t I t.lxj] d"x.  

Let .l=(Vl ..... V,),.~eL~(Z"(0), i=I ..... k, fv be the same as in Proposition 4, n = n(1) + . , .  + 
n(k). Then 

. . . . .  ',>:s + , . . . .  

where 

Xv= ~ x u ( m o d 2 ~ ) ,  Ixvt ~<=, V = T .  (26)  
(i, j ) e V  

With the help of a change of variables, the latter integral can be transformed to 

f v  (t x . . . . .  t,) = f drygv (y) exp [ i ( t t y l+ . . .  + Gy~)], (27)  

where gy:~r § C is conveniently written symbolically in the form 

is the D~rac function. Since f v e L l ( Z g c L ~ ( Z  ~) (cf. Proposition 4), it follows from (27) 
that gY = fY, and that the function gY is continuous. Thus, 

I fv(q . . . .  , t,)=(2x)'gY(O). (28)  

Applying what was said above to the case considered in Proposition 5, we get 

COROLLARY I. Let y=(V~ ..... V~)eF0(T) and Iy be defined in (24), (25). Then 

k (29 )  
I v = (2,~)" f d" x H exp [itj (x n + . . .  + xj, r a ( x n ) . . .  ~ (xj, o)) 8 (xv , ) . . .  8 (Xv,). 

j = l  

I t  a l s o  f o l l o w s  f r o m  P r o p o s i t i o n  4 t h a t  one  h a s  

COROLLARY 2.  L e t  gi ~LY(II"(i)), i=1,  . . . ,k,  y=(Vx, .... V,) e F ( T ) ,  n = n ( 1 ) +  ... + n(k) Then 

n 

k (30) 
f d"x | Ig, i8(Xw)...8(Xv)<~const H l]gi[I,~, 

! 1 

If,=(,([gil'd"(~ lj' is the norm in the space Lz(~n(i)). where 

3. Central Limit Theorem for Polynomials in a Linear Process 

In what follows, An(x), n i> 0 denotes the system of Appell polynomials corresponding to 
the (stationary) distribution bt(dx)=P(Xt edx); r(t)=E[XoX,]=a*a(t) is the correlation function 
of the process (18). First we consider the c.l.t, for functions f which are polynomials. We 
introduce the Dirichlet kernel 

o ~  (x) = sin (~Vx/2)/sin (x/2).  (31 ) 

ProPosition 6. Let f be a polynomial, m >i I be its Appell rank. Let us assume that 
conditions (3), (4) of Theorem 2 hold, and 

Ir(OP<oo. (32) 
t=O 

Then (5) holds [i.e., the c.l.t, holds for the process f(Xt)]. 

Proof. We restrict ourselves to the proof of the convergence of one-dimensional distri- 
butions, setting t = I in (5) for the sake of simplicity. It follows from (3) and (4) that 

N N 

Var (I f(Jf~))~N. We set S~)= ~ A,(Xj). It suffices to verify that 
1 ] = I  
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s(; '% -- o (33) 
f o r  any k t> 3, n ( 1 ) , . . . , n ( k )  /> m. 

From Proposition 5 and Corollary I, we have that the cumulant on the left side of (33) 
is equal to the sum EdyIy(N) over all y eF00~), where 

I,(N)=C f d"x I I  D~(x-~x+"" +xJ"ts)) g.~(x, . . . . .  xs.u))~(Xv.)... B(Xv) , (34) 
. /=I 

where n = n(1) +... + n(k) and 

g,--a |  ~) a (n (j) pas). (35) 

We also set 

To prove (33) 

LEMMA I. 

IlgN, jlls~CN 1/~. 

Lemma 1 i s  u sed  t o  p r o v e  Lemma 2 be low.  

LEMMA 2. Le t  Y e~0(T)  be a n o n - G a u s s i a n  d i ag ram.  

Iv (N)=o(N" /D .  

LEMMA 3. Let the diagram y e r0(T) be Gaussian. 

gN, j (X1 . . . . .  X, O)) = gJ (Xa . . . . .  X, O)) DN (X1 + . . .  + x ,  (j)). 

it suffices to verify the validity of three lemmas. 

Then 

(36) 

(37) 

(38) 
Then (38) is true again. 

We note immediately that Len~aa 3 follows from the fact that Proposition 6 and (33) are 
valid for the case of a Gaussian process Xt (18) (cf. [4, Theorem 6] or [2, Theorem I]). [We 
recall that in the Gaussian case the Appell polynomials coincide with the Hermite polynomials 
Hn(x) .] One can say the same thing about Lemma I, which follows easily from (32) and the 

N 

equation [IgN, jll~=Var ( ~  H,(j)(Xt) ) under the assumption that the process Xt is Gaussian. 
# 

t=l 

Proof of Lemma 2. Let Lj, j = 1,...,k be the rows of the array T of (17). We consider 
two cases: 

a) 3~ey:l~flLj[~l for at least three different rows Lj, j = 1,...,k; 

b) all other cases. 

In case a), without loss of generality we shall assume that i = I and VI={(I,I), ~,I), 
(3,1)}mV I. Let us assume that VI = VI, First we estimate the integral in (34) on the hyper- 
plane xVl = xll + x21 + xsl = 0. Let u i = xi2 +... + Xin(i), i = I, 2, 3. Then 

f f Fl (39) 
l - -  1 

where  ~L(~=lla( . )DN(.  +~ll~, i=1, =l la( ' )D~(" +u) lla, i=2, 3. Here II-IIp i s  t h e  norm in  LP(Y), 
p = I, 2. We estimate 

thanks to the fact that 

where 

~x(u)= f la(x)D~(x+.)ldx= .f + f <~log~rllDMIlx+llal(tal>logN)ll~lID.il,=o(Na'D (40) 
ldl ~ l o l N  Idl > losN 

IIDNII1 < C l o g N  and IIDNII2 ~< CN 1 /2 .  Thus,  

k 
I Iv (N) I~ C f d"-ax 1~ gk, l 8 (Xv,)... ~ (Xv,), (41) 

t X ~ gN, j (  3, x, u))--  ~, (x, + . . .  + x , ( D l a | 1 7 4  
n ( j ) - - i  

(f f o r  j = 1, 2,  3 ,  and gN,j  = IgN, j l  f o r  j > 3. We n o t e  t h a t  g~r,j( ')= Ig~,j(x . . . . . . . .  )t~dx) ~/~ 
! 

f o r  j = 2,  3, and t hus  IIgN,jll 2 ~ CN t /2 ,  j = 2 ,  3, a c c o r d i n g  to  Lemr~ 1, w h i l e  a t  t h e  same 
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time II$~,111,=o(N */') �9 Since the diagram y'=(F,, ,.., F,)eP(YlV~} also has no flat edges, we get 
from (39)-(41) and Corollary 2 that (38) holds. The case !Vtl> 3 can be considered anal- 
ogously. 

b) We call the edge g~ey i n ~ e ~ o P ,  if VjcL~ULe, and ex~eP~oP if not. According to 
the proposition, there exists an interior edge (.say V~) such that (Vt[ ~ 3. For simplicity 
let us assume that the remaining edges V~,...,V r are exterior and that Vz - ((I, I), (1,2), 
(2, I)}. From the array T of (17) we form a new array T', having k - 1 rows, and we denote 
the elements of the first row by (I, 3),...,(I, n(1)), (2, 2),...,(2, n(2)), and the elements 
of ~he i-th row by (i + ~, ~),...,(i + I, n(i + I)), i = 2,...,k-- I. With this notation, 
under the assumptions made above, the partition (V2,...,Vr) of the set T \ VI induces a (con- 

nected) diagram y '  of the array T', having no flat edges. Let g[=f g~,z| 
! 

gi= gN,i+z, i = 2,...,k - I. Let ul = xl,~ +... + Xln(z), uz = xz2 +... + X2n(2). Since 

just as in case a) one can show that 

,IglH, c (if d. ,d . , lh(u, ,  u,)[ ')*/ '=o(N). 

It remains to use Corollary 2. 

Proposition 7. If m = I, Proposition 6 remains valid if instead of (32) one has 

[r (j)l~< oo (42) 

and 

N 

var(l N >I. (43) 
j = l  

P r o o f .  By (42) and (43) Lemma 1 i s  t r u e  and hence  Lerana 2. I t  r emains  to  p r o v e  Lar0ma 3.  
Le t  t he  d iag ram y=(V, . . . . .  V , )~Fo(T ) be  G a u s s i a n .  I f  n ( 1 ) , . . . , n ( k )  i> 2, Lemma 3 i s  v a l i d  by 
(42 ) .  Le t  us  assume t h a t  among t h e  numbers n ( 1 ) , . . . , n ( k ) ,  1 o c c u r s .  For  s i m p l i c i t y  we s h a l l  ~ 
assume t h a t  n (1 )  = 1, n ( 2 ) , . . . , n ( k )  /> 2,  V1 = ( ( 1 ,  1 ) ,  2,  1)) ( t h e  g e n e r a l  c a se  i s  c o n s i d e r e d  
analogously). We write the right side of (34) in the form 

k 

4(~v)=c f dn-~x | gk~ (X , . ) . . .  ~(X,.), 
�9 " 1 - -2  

gk~(x, . . . . .  x,(,,)= f g,,.l(x)g,,.~.&, x, . . . . .  x,(,Odx, gic.i=gN, j, j = 3  . . . . .  k. C o n s i d e r i n g  w h e r e  Lemma 2 

and Corollary 2, it suffices to verify that 

g k  2 II~---- o (/V). (44) 

We p r ove  ( 4 4 ) .  Le t  ; = n ( 2 ) .  We have  

DR D~ 

where R>0, DR={(x.2 . . . . .  xt)~IF-l:I~(x~)l<~R, j = 2  . . . . .  1}, D~=rF-I\D~. 

Using Cauchy's inequality and (43), we get that 
N 

for all N i> I and sufficiently large R = R(e), where E > 0 is arbitrarily small. On the other 
hand, for each R > 0 

4. Central Limit Theorem for Functionals f(Xt) (General Case) 

First we give some auxiliary assertions. 
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Proposition 8. Suppose given a function f~W~(~)~dNd(~), m>l is its Appall rank, 
d > 0 satisfies the hypotheses of Theorem 2. Then (a) for m ~ 2 conditions (3) and (32) are 
equivalent; (b) for m = I, condition (3) implies (42) and (43); (c) for m ~ | it follows from 
(3) that 

X IrftvO (t)]-~O(M-> Qo),where f ( M ) =  E okay" 
t k = M  

Proof. According to Proposition 5, 

rl(t)= X rtCr E dvJ,(t), (45) 
k, kt;~m 

where the second sum is taken over all diagrams y=(V1 ..... V,)eF0(T), r~>l, of the array T = 
T(k, k') composed of two rows L and L' of length k and k', respectively, and 

J r (  N)= E I"I a"(~176 (46) 
$*" ''" Sr i = l  

n(i)=IViNtI, n'(i)=IViNL'l. We consider the following cases: 

(y1) among the numbers n(i), n'(i), i = |,...,r at least two are bigger than I; 

(y2) n(i) = n'(i) = I i (i.e., the diagram Y is Gaussian), k = k' = r = m; 

(y3) conditions (y|) and (y2) do not hold and the numbers k, k' 

(y4) all other cases. 

LEMMA 4. One has the relations: 

[Jv(t)l<~q(O incase e l ) ;  (47) 

Jv(t)=r~(t) m ease ($2); (48) 

IJ.~(t)l<~-:[,.(Ol'+q(O m case (y3); (49) 

IJ~(t)]<p(t) m c~e (~4). (50) 

Here Elq(t)[ < ~, lp2(t) < ~, p(t), q(t) do not depend on T, ~- > 0 is arbitrarily small. 

The proof of (47), (48), (50) involves no difficulties and (49) follows from the in- 
equalities 

[Jv(t)[<]r( t)]'-a E [a(t-s)t la(s)[~"<~r162 E a'(t-s)a2(s) , r>~m>~2, 

if the diagram is not Gaussian, and if y is Gaussian, from (48) and the relation r(t) § 0 
(t § ~). 9~ 

We get from (45), Lemma 4 (where e > D is sufficiently small), and Lemma 5 below that 

(51) ry(t) {::~(t)t)+;:~t~(~),2'm= | ,  (52) 

where c#O, E l ~ ( t ) I <  oo, Z [/5(0 Iz< oo. 

Assertion (a) of the proposition follows from (51), and so does (42) if m = |. 
N 

(43), we note that it follows from (3) that Var (~ f(A',))~<CN, and from (42) and (a) 
N I 

(I  <cN twe recall that = xl proof of assertion (e) 

LEMMA 5. Let /e~d, where d, A, ro satisfy the hypotheses of Theorem 2. 
(~ (dx)=P (X, ~ dx)) and 

~ k' v~r.(r~k, k' 0 

P roo f .  We use  P r o p o s i t i o n  2 and the f o l l o w i n g  f a m i l i a r  r e s u l t  [ t ,  pp.  28, 29] .  Let  
Xk ~> O, k = 1 , . . . , n ,  ~1 = 0 be c e r t a i n  numbers s a t i s f y i n g  the i n e q u a l i t y  ;%<~ck!Hk-~(c,H>O), 

, and m are bigger than I; 

To prove 

that Var 

is analogous. , 

Then f e ~ (~) 
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and v,=~X(iv~t)...X(,v,~, where the sum is taken ove= all partitions (Vz,...,Vr) , r = I, 2,... 

of the set {1,...,n}. Then 

~. ~ m ( V ~ Y - =  ck~. (54) 

It follows from (20) that [Zk(X0) l~ < I%~(~0)] , and from the Cramer condition that f l~0]k< 

Ar~kkt. Hence IZ~(~0) I~<rfk(VT$-~)~-2Ak! (cf. [I]) and EIXolk<~(l+2A)krfkk! thanks to (54). 

From this it follows that 9(z)=fe~Xd~ is analytic in the disk l=[<r-r0/(l+2A) and that 
l~(z) l>I/2 for Izl < r/3. 

To prove (53) we again use (54) and the definition of dy (cf. Proposition 5), from which 

we get that ~ Idvl<~[(1+2A)/ro] k+k' (k+k')t. Together with the condition imposed by the lenmm on 
Y 

the coefficients Ck and the numbers d, A, r0, this implies (53). 

Proof of Theorem 2. It follows from the preceding lenmm that fe~(~). Let f = f' + f", 
7V/ 

T ,1 I " 
where f'=f~1= IckAk. We denote by rf(t), rf(t), SN, SN, respectively, the correlation fune- 

k=m .~ 

tions and partial sums of the processes f'(X t) and f"(Xt) , i.e., S~=~f(Xr)=S~+S ~ 
I 

It follows from Proposition 8 (c) that VarS~<~NEJr}(t) l ~<zN for M sufficiently large, 
where ~ > 0 is arbitrarily small. Thus, A~=(VarS~)z/==o(NZf=) . It follows from Propositions 

d 
6, 7, and 8 that S]v/.4~9~(0, i). The rest is proved simply. 

Proof of Theorem 3. Arguing just as in the proof of Proposition 7, we get that for 
m >i 2 one has 

L ( t ) / i  t [ = r f  ( t)  = cr  m ( t )  + q ( t ) ,  (55) 

where Y lq(t) ! < ~, c ~ 0, and for m = I, the inequality 

N 

I r=(t)<~176 Vat (~  .Yt)~CAN, (56) 
1 

where AN = (Lz(N)N) z/2. From (55), (56) it is easy to derive the estimate l]gN,jll ~< CA N (cf. 
Lemma I), where gN,j is defined in (36). With,thek/2 help of the latter estimate, 3us," as in 
the proof of Lemma 2, we get that Iy(N) = o(A~ ) for all non-Gaussian diagrams yeU0(T) of 
the array T of (17). For Gaussian diagrams, if m i> 2 the corresponding relation is proved 
in [4], Vol. 7; if m -- I it follows from (56) just like Proposition 7. The rest of the proof 
completely follows the outline of the proof of Theorem 2. 

The author expresses profound thanks to D. Surgailis for his interest in the work and 
comment s. 
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ADDITIVE ARITHMETIC FUNCTIONS ON SEMIGROUPS AND THE PRESERVATION 

OF WEAKCONVERGENCE OF MEASURES 

Z. Kry~ius UDC 511.37+519.216 

We use the following notation. N is the set of positive integers, No=No{O}. R is the 
set of real numbers, :~(M) is the set of all subsets of the set M. 

I. One of the basic problems of probabilistic number theory can be formulated as fol- 
lows. Let f:N § R be an additive function, i.e., f(mn) = f(m) + f(n) for relatively prime 
m and n. We consider the sequence of distribution functions 

f (m)-~ <),~,, 

where a n and S n are sequences of centering and normalizing quantities The problem is to 
determine conditions (sufficient'and necessary) under which (I) converges weakly to some 
limit distribution. 

(i) 

A more general formulation is possible: we consider the sequence of distribution func- 
t ions 

i ~ 2 ) ( y ) =  >,  �9 1, 
II 

fn (m)-~n<y 

where {f,, neN} is a sequence of additive functions. Thus one gets limit theorems for dis- 
tributions of additive functions. The history of the origin of this problem and the basic 
results obtained in solving it are reflected in [7, 17]. 

In addition to this problem we consider its generalization in various directions. Here 
we indicate two such generalizations. 
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