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LIMIT THEOREM FOR POLYNOMIALS OF A LINEAR PROCESS 

WITH LONG-RANGE DEPENDENCE 

L. Giraitis and D. Surgailis UDC 519.21 

N 

A (noncentral) limit theorem is proved for sums SN(m) ~-ZP,,(X,) 
1 

a l s  o f  d e g r e e  m > 1 o f  a l i n e a r  ( o r  moving a v e r a g e )  p r o c e s s  

of polynomi- 

X,= ~ a(t-s)~s 
- - c o  

with slowly decreasing coefficients a(t). Conditions assuring the convergence 
of the distributions SN(m)/B N are expressed in terms of the asymptotics of the 

N 

variances BN 2 = Var SN(m) and A~=VarZX ,. The limit distribution of the sums 

1 

SN(m)/B N is given by an m-fold stochastic Ito-Wiener integral. The theorem 
proved develops the results of [I-7], obtained under the hypothesis that the 
process X t is Gaussian and (or) of the regularity of the asymptotics of the co- 
efficients a(t). 

i. Introduction 

Recently, rather a lot of attention has been devoted to limit theorems for random vari- 
ables with long-range dependence (in what follows, we shall call such variables LRD-vari- 
ables). Although there does not exist a rigorous definitiion of LRD-variables, usually this 
term characterizes stationary variables whose normalized sums converge in distribution but 
either the limit law or the normalization differs from the "classical" ones. In the case 
of finite variances the Gaussian law and the normalization by vrNare "classical." The sim- 
plest example of LRD-variables is given by a stationary Gaussian process (Xt)te Z with zero 
mean and eovariance 

r(t)=EXoX,~const:t i -~ (1.1) 

N 

where a �9 (0, i). In this case the variance AN 2 ~ VarS N of the sum SN=ZX, grows con- 
i 

s i d e r a b l y  f a s t e r  t h a n  t h e  " c l a s s i c a l "  N, namely  

V a r S u ~ ~ N  z-~ (~>0) .  ( 1 . 2 )  
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The normalized partial sums (AN-IS[Nt])t20 converge in distribution to a Gaussian process 
of fractional Brownian motion 

Z t = D (1)-112 ,( ((cinv -- l)/ix) W (dx), (1.3) 

where W(dx) = W(-dx) is a complex Gaussian stochastic measure with independent values and 
variance EIW(dx)[ 2 = [x[a-ldx; the constant D(1) is defined in (1.6) below. 

Another example of LRD-variables is the moving average process 

x 

X,= ~ a(s)$+,,, t~Z, (i.4) 
S=0 

where ($s)se z is a sequence of independent identically distributed random variables with 
mean 0 and finite variance and the coefficients a(t) decrease like t -(i+~)/2 (a e (0, i)), 
i.e., 

a (t) ~ const t <1+=.s ( 1 . 5 )  

( 1 . 5 )  i t s e l f  i m p l i e s  ( 1 . 1 )  and  ( 1 . 2 )  and  a l s o  t h e  c o n v e r g e n c e  i n  d i s t r i b u t i o n  o f  t h e  p a r -  
t i a l  sums of the process X t (1.4) to the process Z t (1.3). Of course, (1.2), (1.51) here are 
unnecessarily restrictive; for the indicated convergence to the process Z t indeed the one 
condition (1.2) suffices. We note that (1.2) up to a slowly varying factor is also neces- 
sary for the convergence to Z t as follows from a general result of Lamperti [8]. 

One can construct more complicated examples of LRD-variables with the help of nonlinear 
functions of Gaussian or linear processes. One knows rather many papers devoted to limit 
theorems for nonlinear transformations of Gaussian processes under long-range dependence, 
in particular Rosenblatt [4, 9], Dobrushin and Major [2], Major [i0, Ii], Taqqu [6, 7], Goro- 
detskii [3], et al. We cite one of the most famous results. 

Let Ko(x )  = ( e  i x  - 1 ) / i x  (x  e R), 

D ( m ) =  .f '~Ko(xl+ . . .  +x,,)'2!xl'~-l...ix,,,!~-ad'x, (1.6) 
R m 

y = f e i~ ! x !~-i dx = 2F (~) cos (~/2). ( i. 7) 
R 

We shall write A N B N if IimAN/B N i. The notations ~ d ~ = = ,  ~ will mean equality and weak 
convergence of (finite-dimensional) distributions, respectively. Finally, Hm(x) , m = 0, 
i, ... denotes the Hermite polynomials with leading coefficient i. 

THEOREM 1 [2]. Suppose one has a stationary Gaussian process (Xt)te z with mean 0, vari- 
ance i, and covariance function 

r(t)=L(iti)iti -~, 

where a e (0, i) and L: [i, ~) ~ R is a slowly varying function (s.v.f.). Let 

(I.8) 

%: 

S(m) N = ~ H,,,(X,). 
I 

(1.9) 

Let am < i. Then 

S(,,oj B d Z~.,) N , N  = (i i0) 

where 

~ ,  ~ v ~  s!<,,', ~,,,~ (D Im)/v) N"-~"L"'IN) (i.ii) 
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and 

Z~ ''') = (m! D (m)) - i /2  t f K o ( t  ( :q + . . .  + x,,,)) W (dx l ) .  . . W (dx,,) 
R rn 

(1.12) 

is a self-similar process which can be represented as a multiple Wiener-lto integral with 
respect to a Gaussian measure W(dx) with variance E[W(dx)[ 2 = [x[a-ldx. 

In the same paper [2, Sec. 4], Dobrushin and Mmjor noted that the condition (1.8) of 
Theorem i is too stringent and can be relaxed. As a possible relaxation of (1.8) the 
authors of [2] considered the condition of locally weak convergence of the renormalized spec- 
tral measure of the process X t to the spectral measure of a fractional Brownian motion. The 
latter requirement is equivalent to one of the two following conditions: 

d 

o r  

AN ~ N 2 - ~ L  (N), ( 1 . 1 4 )  

N 

where S~, = I X,, A~, = Var S^, L is an s.v.f. 

However, as was shown in [2], the condition (1.13) or (1.14) is insufficient for the 
convergence (i.i0). Most likely this condition does not assure even the relative compact- 
ness of finite-dimensional distributions S[Nt](m)/BN. In this connection there arises the 
problem of finding supplementary conditions to (1.13) and (1.14) for the convergence in dis- 
tribution of the sequence of processes S[Nt](m)/BN . As such a condition we propose the 
"regular growth" of the variance BN 2 = Var SN(m): 

B ~  ~ C N  ~- ~ L "  (N), (1.15) 

where ~, L are the same as in (i.14), and C = C(m, a) is a constant. The condition (1.15) 
[together with (1.14)] looks simple and tempting. However, we have only obtained the corre- 
sponding limit theorem under the additional assumption of the "regularity" of the constant 
C. 

THEOREM 2. Let (Xt)te Z be a statiionary Gaussian process with mean 0, variance i, and 
such that 

A' 

A N = Var Z X t  = N 'z-=L (N) ,  
1 

(1.16) 

where ~ e (0, i), and L: [i, ~) +R 
and (1.15) holds, where 

is an s.v.f. Let us assume in addition that am < 1 + 

C = C (in, ~) = m!  D (m)/D ~' (1). 

Then the convergence (i.i0) holds. 

It is easy to verify that Theorem 2 generalizes Theorem i. 

(l.17) 

Condition (1.17) together 
with (1.16) and (1.15) means, roughly speaking, that the basic contribution to the variance 
BN 2 (and thus to the distribution of the sum S[Nt] (m)) is introduced by the frequency of 
the spectrum of the process (X t) near the point x = 0. As Rosenblatt [9] showed, cases are 
possible in which the spectrum of the process (X t) has singularities away from the point 
x = 0, (1.15) and (1.16) hold, (1.17) does not hold, and S[Nt](m)/BN tends to a self-similar 
limit different from zt(m) (1.12). 

The proof of Theorem 2 follows rather simply from the proof of Theorem i of [2] (cf. 
Sec. 2 below). The basic result of the present paper is the corresponding theorem for a 
linear process (Xt). In what follows, by a linear process we mean a stationary sequence 
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X,= Z a(t--s)l.~, t~.Z. (i.i8) 

where a(t), t e Z are real numbers satisfying the condition Z a~(t) < ~, and (gs)s~Z is a 

sequence of independent identically distributed random variables with mean 0, variance i, 
and finite moments of any order. It is well known that a stationary Gaussian process 
(Xt)te g admits a representation (1.18) if and only if its spectral measure is absolutely 
continuous. 

The role of Hermite polynomials for a linear process is played by the Appell polynomials 
Pm(x), m = 0, 1 ..... defined by 

P,,(x)=d'"(e==/Ee=X.)[,~'i==o, (i.19) 

cf. [i, 12, 13]. Obviously, in the case of a Gaussian process (Xt) the polynomials Pm(x) 
coincide with the Hermite polynomials Hm(x). Let 

N 

�9 ( h i }  _ 5:v - Z P'' (X ~). 
1 

(i.2o) 

THEOREM 3. Let (Xt)tez be a linear process, m e i and ~ e (0, l/m). Let us assume, 

N 

in addition, that the variances A~=VarZX, and BN 2 = VarSN (m) satisfy (1.15), (1.16), 
I 

and (1.17). Then 

S~ )'B J ~ ( ' " )  
[ ~ t l t  N ~ ~ t  

where the process Zt (m) is defined in (1.12). 

In the special case of regularly varying coefficients a(t) [cf. (1.5)], Theorem 3 was 
previously proved by the second author [5] (cf. also Avram and Taqqu [i]). As follows from 
Theorem 4 below, the asymptotics of variances AN 2, BN 2 are determined up to O(N) by just the 
covariance function of the process (X t) (1.18), equal to 

(i.2i) 

co 

r(t)= Z a(t+s)a(s). (1.22) 

THEOREM 4. Let (X t) be a linear process. Then 

N N 

B~'=Var Z P,,(X,)=m! Z r"(t-s)+O(N). 
1 t ,  s =  1 

(1.23) 

We note that for a Gaussian process (X t) 

N N 

=vo, Z Z 
1 t ,  s = l  

(1.24) 

The next result follows from Theorems i, 3, and 4 and (1.24). 

COROLLARY i.i. Let the covariance function r(t) (1.22) of the linear process (X t) 
(1.18) satisfy (1.8), where ~ ~ (0, i/m) (m e i). Then the convergence (1.21) holds. 

Theorem 5 below is also based on Theorems 3 and 4. Let 

}(x)=(2n) -l'e ~ g(t)e-ith x~[-=, ~] (1.25) 
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be the Fourier transform of the sequence (g(t))tez �9 L2(Z). 

THEOREM 5. Let us assume that the spectral density f(x) = la(x) l 2 of the linear pro- 
cess (X t) (1.18) has the form 

./'(x)= x'~-IL(xi-1)O(ixi-1),  (1.26) 

where a �9 (0, l /m) (m ~ 1) ,  L: R+-~R+ i s  an s . v . f ,  which i s  bounded on compacta, and the  
function 9: R+-+R+ is bounded and such that the following limit exists: 

T 

limr_~T -1 f O(t)dt~O> O. (1.27) 
0 

Then the convergence (1.21) holds. 

We note that the function 8(i/x) in Theorem 5 is not at all necessarily slowly varying 
and the spectral density f(x) (1.26) can behave quite irregularly near the point x = 0 (as, 
for example, in the case 

o3 

0 ~x) = y~ 1,~,,, ...+~ ~)) .  
n = O  

We briefly explain the idea of the proof of the fundamental Theorem 3. 
the spectral representation 

X,= r ei'~Z(dx) 

We consider 

( 1 . 2 8 )  

of the linear process (X t) (i.18), where Z(dx) = Z(-dx) is an orthogonal stochastic measure 
corresponding to the spectral measure f(dx) = f(x)dx = l~(x)l 2. It follows from (1.16) that 
the renormalized spectral measure 

Fu (dx) = F (dx/ N) N=/L (N) ( 1.29 ) 

converges as N ~ ~ to a measure on the line with density D-t(1)[x[ a-1 at the same time that 
the stochastic measure corresponding to FN 

Z. (dr) = Z (dxl N) ( Na/L (N)) 1/2 (1 .30)  

converges in d i s t r i b u t i o n  to  the  Gaussian measure D-1/2(1)W(dx) [ c f .  ( 1 . 3 ) ] .  Thus, to  prove 
the convergence (1.21) it suffices to show that there exists a polynomial in the random vari- 
ables ZN(A_M), ..., ZN(AM) approximating SN(m)/B N in the mean square uniformly in N; here, 
A_M, ..., A M are intervals independent of N. The proof of existence of such an approxima- 
tion occupies the basic part of the paper and is split into several propositions. 

2. Convergence of Spectral Measures 

In this section we consider the convergence of the spectral measures FN(dX) (1.29) and 
ZN(dx) (1.30), assuming that the condition (1.16) on the growth of the variance holds, i.e., 

where = �9 (0, i), L: 

Proposition 2.1. 
linear and (2.1) holds. 

and 

N 

A~,~Var ~ X,=N"-'~L(N), 
1 

(2.1) 

[i, =) +R+ is an s.v.f. 

Let us assume that the stationary process (Xt)te z is Gaussian or 
Then for each bounded Borel set A c R 

F,,(A)-~f,(A) (2 .2 )  
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where Zo(dx) ~ D-i/2(1)W(dx) 

d 
Z:,. (A) ~ Z 0 (A). ( 2 . 3 )  

is a Gaussian stochastic measure with variance 

~,(d.v)= E Z , ) ( d x ) ~ = D - J ( I ) . x  . . . .  ldx. ( 2 . 4 )  

The p r o o f  f o l l o w s  t h e  a rgument  o f  [2,  pp. 3 3 - 3 4 ] .  For  c o n c r e t e n e s s  we r e s t r i c t  o u r s e l v e s  
t o  t h e  c a s e  o f  a l i n e a r  p r o c e s s  ( X t ) .  A c c o r d i n g  t o  Theorem 3 o f  [ 1 4 ] ,  ( 2 . 1 )  i s  e q u i v a l e n t  t o  

[N t l  

" Z(,~) x , =  , ( 2 . 5 )  

I 

where  ( Z t ( Z ) ) t > 0  i s  a f r a c t i o n a l  Brownian m o t i o n ,  i . e . ,  a Gauss i an  p r o c e s s  w i t h  mean 0 and 
c o v a r i a n c e  

r(n(t, s ) ~ E ( Z t ' ) ( t )  Z '~ ' ( s ) )=~ ( ! l l ~ - ' + i s :  ~ - ~ - ! l - s l ~ - " ) .  ( 2 . 6 )  

It is well known [6, 7] that the process Zt (1) = Z t admits a representation in the form of 
a stochastic integral (1.3), from which it follows that 

where 

% ( t ) -  r u) (t + s, s ) -  r (1J (t, s) - 

= . . . .  ' ("-"" ' i  
--7_ --J~ 

( 2 . 7 )  

~o(d.v)= sA%(sx)i~(dx) 

[we r e c a l l  t h a t  K 0 ( x )  = ( e  i x  - 1 ) / i x ] .  

( 2 . 8 )  

N 

Let Yx =A~)ZX~. The convergence in distribution of the vector (Y[Nt], Y[Ns]) [cf- 
I 

(2.5)] together with the convergence of the vector (EY[Nt] 2, EY[Ns] 2) [this follows from 
( 2 . 1 ) ]  i m p l i e s  t h e  c o n v e r g e n c e  o f  t h e  c o v a r i a n c e s  

Consequently, 

where 

E(Yb~',~ YIN,1) "--> ru) (t, s). 

% ( t ) =  lim,~_.:~_ %, (t) ,  

( 2 . 9 )  

(2.10) 

,,, ( t )  = E ((  rv,, . +., ,j - ) ' t~ ,0  Yf~,~q)- 
A n a l o g o u s l y  t o  [2 ,  p,  33 ] ,  we w r i t e  ? N ( t )  in  t h e  form 

,'~,V 

( #~"lxx (dx). 
- ~N 

(2.ii) 

where t' = [tN]/N, 

E~- (~&) = / ~  (x )  F,, (dx ) .  

- "., 

s" = ([(t + s)N] -- [tN])/N, s' = [sN]/N. Since s" + s, s' ~ s (N ~ ~) 

Ki" (x) -+ i sKo(sx ) 2 

uniformly in x e [a, b] for finite a < b. 

( 2 . 1 2 )  

( 2 . t 3 )  

it is easy to see that 

(2.14) 

133 



According to Lemma 2 of [2], from (2.10) we have that ~N + ~0 weakly as N ~ ~. We fix 
-~ < a < b < +~ and choose t > s e 2n/max(la [, [- [[b[) b Since the function K0(sx)is continu- 
ous and does not vanish for Ix[ < 2~/s <_ max([a [), by virtue of the weak convergence 
of measures ~N to D0, and (2.14), we conclude that 

.FN (a, b) ---> ,go (a, b). 

Since the numbers a < b are arbitrary, and the measure F 0 is continuous, the convergence 
(2.2) follows from the last relation. 

We proceed to the stochastic measure Z(dx) in the spectral representation (1.28) of 
the process (Xt). It follows from (1.18) and (1.28) that, for each bounded Borel set A c 
[~,  ~], 

- - c o  

(2.15) 

It follows from the definition of Z N and F N [cf. (1.29), (1.30)] that 

Z~, (A) = ( Z  (A/N)IF ~12 (A/N)) F~ 12 (A) ~ WuF~/2 (A) 
(2 .16 )  

under the condition that A c [ - = N , = N ]  (outside the interval [-=N,=N]we set measures F N and Z N 
equal to 0). SinceF~(A)~F0(A)cf. above), for the convergence (2.3) it suffices to show that 

It follows from EIW~I 2=] and (2.15), (2.16) that 

where 

d 

W~ = 9f (0, 1). (2.17) 

WN=~ q~L, (2.18) 

/ , 1 1 2  

' f i (y)j 
q'= ] / ~  AiA' mN (2 .19 )  

We note that Z q ~ ! = = : l  and 

. - -  1/o.. 
i 2~max:q , ,<(  .f !3!0)V2 ( .( l ) , l , / (  f li~!") =?.'r"(A/N)--~, 0 (N--~co). ( 2 .20 )  

AhV AIN AIN 

where X is Lebesgue measure. 

Let W N' = ReW N, qs '  = Reqs"  We c o n s i d e r  t h e  k - t h  cumulant  Xk(WN') of  t he  r e a l  random 
variable WN'; k = 2, 3 ..... In view of the independence of ~s and (2.20), 

: [~<const(max q~ ) Z ~ .2 ] Xk ( W ~ )  Zk (~o) Z (q.~)~ j . . , q.~ i --> O, 

if k e 3. Analogously one can show that the cumulants of order k e 3 of the random variable 
WN" = ImW N tend to zero, as well as of arbitrary linear combination of W N' and WN". This 
proves (2.17) and thus also Proposition 2.1. 

Remark 2.1. Similarly, one can show that under the hypotheses of Proposition 2.1 the 
joint distribution of the variables ZN(A I) ..... ZN(An) converges to the distribution of 
the variables Z(A I) ..... Z(A n) for any n ~ i and any bounded Borel sets A I, ..., A n �9 

3. Proof of Theorem 2 

For simplicity we restrict ourselves to the proof of the convergence of one-dimensional 
distributions for t = 1 (this remark also relates to the proofs of Theorems 3 and 5). 
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Let DN (v) = Z :'~J"= el' ( d x * -  1 ),/(d x -  1 ) and 
t 

We note that 

K,, (.u D,, (.u c,-~/," ~ , ' -  1)/( N(~ '-~:~- l)). 

KN (x) ~ Ko (x) 

uniformly on each compact set of the real line. 

We consider the spectral representation 

( 3 . 1 )  

X,= f e"~Z(dx), l q = [ - = ,  7:] ( 3 . 2 )  
n 

of the process (Xt)te z. Then 

N 

s~:'~- ~ Ho (x,) = f n~ (.u + , . .  +,u d~ z, 
1 i i  rn 

(3.3) 

where, on the right side, one has an m-fold Wiener-Ito integral (cf. [Ii]). We use the change 
of variables Yi = xiN, i = i, .... m, in the multiple integral [ii, Theorem 4.4] and by the 
definition of the stochastic measure ZN(dx) (1.30) we get 

S~")/BN = v,, f KN (Y, + . . .  + Y,,) d" Z~-, ( 3 .4  ) 
rr,~ 

where II N = [--~N, ~N] and v m = NI-am/2Lm/2(N)/BN . 

According to Proposition 2.1, (3.1), and Lemma 3 of [2], for the convergence in distri- 
bution of the integral on the right side of (3.4), it suffices that for each s > 0 there 
exist a K > 0 and an N O = N0(s , K) 2 1 such that for all N ~ No, 

~^',~ f 1KN(x~ + . . .  +xm)!ZdmFN ~ .  ~ 3 ~ 5 ~ 

II~[-K, KI m 

Since 

I = Var ( m )  v 2 (SN /B~O=m.v,,, ( f iKu(xa + . . .  +x , , , )~  l:), 
[-K, KI" 

and also Vm 2 + C-l(m, a) (N ~ ~) and for each K < 

f iK~(x~+...+.,-,,)2d~r~.~- f 
~-K, K] rn I-K, KI"' 

Ko(x~ + . . .  +xm)i~" d'~ Fo 

according to (3.1) and Proposition 2.1, (3.5) follows from 

f iKo(xl+...+xm)!~d'Y.-+ COn. ~)/m! ( 3 . 6 )  
[--K. K] m 

as K ~ =. Obviously (3.6) follows directly from (1.16) and the convergence of the integral 
D(m) (1.6). D 

4. Proof of Theorem 3 

Suppose we have a finite collection ~i, .... nm of random variables having finite mo- 
ments of any order. By the Appell (or Vick)product of the variables NI, ..., ~m we mean 
the random variable (cf. [12, 13]) 
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In tn 

t I 

I f  t h e  c o l l e c t i o n s  r l a ,  . . . .  ~ n  a n d  r l n + ~ ,  . . . ,  rl m a r e  m u t u a l l y  i n d e p e n d e n t ,  t h e n  

�9 r a . . . r ~  : = : r a . . . ~ , ,  : : "~ , ,+1  �9 �9 . r , ~ . .  

I f  ~ l  = " - "  = ~m = q ,  ( 4 . 1 )  c o i n c i d e s  w i t h  t h e  A p p e l l  p o l y n o m i a l  o f  ~ ,  i . e . ,  

( 4 . 1 )  

(4.2) 

: r / . . . -~  : -= "-q" : = P~,T ,) (r,), (4.3) 

where 

P~)(x}=d=(ezX/Eez~)/dz=::= n, m = O .  1 . . . . .  (4.4) 

are the Appell polynomials connected with the distribution q. 

We return to the linear process X t (1.18). Let Pm(x), Qm(x) (m ~ 0) be the Appell poly- 
nomials connected with the distribution X 0 and $0, respectively. 

Proposition 4.1 [i]. 

iil 

P m  ( t " t )  = k~=l . 1111 . . . . .  tTIk (S)k 

a ' , ( t - s  0 . .  " �9 a ( t  - & )  O , , ,  ( ~ , , ) . . .  Q m ,  (~%) 

(4.5) 

where r ~ I  i s taken over all (m) k = (m I mk) e Z +k Z + = {i 2, } such that m I + ' ..., ~ , ... , 

(m)  k 

I '  . . .  + m k = m, a n d  t h e  s um  i s  t a k e n  o v e r  a l l  ( s k ) = ( s l  . . . . .  s~) ~zk  s u c h  t h a t  s i # s ~  f o r  i C j ,  L ] = I ,  

( s )  k 

�9 . . ,  k .  T h e  s e r i e s  ( 4 . 5 )  c o n v e r g e s  i n  t h e  m e a n  s q u a r e .  

(4.5) is a special case of the so-called multinomial formula for Appell polynomials 
[i]. For finite sums of independent random variables it follows directly from (4.2), (4.3), 
and the multilinearity of the Appell product. Indeed, 

. . . . . .  Z Z P ~ ( X , ) =  .X ,  . =  a { t - s O .  . . . . . .  .a(t-s,,)=_~,. .-_.~'- �9 = a ( t - s O .  . a ( t - S m ) : ~ ,  ,~= ", 

( 0  m (s),~ 

(4.6) 

One gets (4.5) from (4.6) with the help of (4.2), 

sum /j, 

In 

we r e w r i t e  t h e  r i g h t  s i d e  o f  ( 4 . 5 )  a s  a sum P, , , , , , I , /  
k =  I (m}~, 

where 

P , , ( X , } = P ( t ) +  R(t} .  

(4.3), and a simple transformation of the 

Z, P ( t )  a U - s l ) .  . a ( t - s , , )  ~ : 

(~),,~ 

Let 

(4.7) 

(4.8) 

is the basic term and 

is the error term. One  h a s  

Z P(,,,,.(') 
k ,rm (rn)~ 

(4.9) 
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Proposition 4.2 (cf. [i, Step 3]). 

Ar 

Var (I R(t))=O(N). 
1 

(4.10) 

Proof. Let (m) k = (m i ..... mk), k < n and m i e 2 for some i = i, 

EP(m)k(0)P(m)k(t). Since 

A' A r 

1 t ,  s=l --Qo 

to prove (4.10) it suffices to see that 

r ~ ( t)  ! < oo. 

..., k. Let r(k)(t) = 

(4.ii) 

Considering the definition of P(m)k(t) and the equality 

k 

E (Q,,, (~0. . .  Q,,,~ (E.s) Qr, I (~@... Q,,I (~g)) = H 3 (s j, s}) E (Q"b (~o) Q,,,j (~.,)), 
j = l  

which is valid for any s I < ... < s k, s I' < ... < sk', and the independence of Sk and the 
relation EQm($6) = 0 V m e i, which follow from it, we get 

( 4 . 1 2 )  

k 

r(k)(')=C I Z '  H "5 a m, a ( t - s  s) u,(ss) E(Q%(~o)Qm,,,,(~o) ), 
(s)k j =  I 

(4.13) 

where the first sum is taken over all permutations i(1) ..... i(k) of the numbers i, ..., k 
(by the letter C here and below we denote possibly different constants). Since la2(t) < =, 
it follows from (4.13) that 

r'k'(')!'<- C ( Z  a~'(t-s)aZ(s)+ E Z a2(t-sO1a(t-s"-)a(s,)la2(s=)) -C(r'(t)+r"(t)).  

Here ~" r' (t) < 7_ and 

E r"(t)= E E aS(v)E a('%+'~-s~-)a(sO'ae(s~ a2(t)) '~<~" 
$,  - :  s. x 

according to Cauchy's inequality. This proves (4.11) and thus Proposition 4.2. u 

N 

We recall the definition of the functionsDN(x)= I e"~and KN(X) = DN(X/N)/N. 
1 

need the equality 

Proposition 4.3. 

I O~ (x) i = i sin (Nx/2)/sin (x/2) 

Let PG(t) be defined as 

Pc,(t)= Z '  b(t-sz . . . . .  t-s")Tgs,'" "~,~, 
(s)= 

We also 

(4.14) 

(4.15) 

where 

137 



m m 

b(s, . . . . .  sin)=(2=) -"1" (exp {i  ~ .v,s, } I-[ d (.v,) G (x) d"' .,, 
Hm 1 i = 1  

(4.16)  

and the function G(x), x = (x I ..... Xm) e H m is symmetric in the variables xl, ..., x m and 
uniformly bounded in N [G(x) may also depend on N]. Then 

N m 

Var E Pz(t)=m! ; !DN(ah+...-~ .r,,): 2 H d(.x',)aa2(x)d"=:~+O(N). (4 .17)  
1 I im j = l  

Proof. We consider the sum 

N m m 

b~(sl . . . . .  s , ,)-  X b ( t - s l  . . . . .  t-s=)=(2r0 -./2 f e x p { - i  X a-,ss } DN(-q + . . .  +x,,) l'-I d ( x , ) a ( x ) d " x .  (4.18)  
1 l'i m 1 j = l  

Clearly, 

N 

Var ~ P G ( I ) = m ]  ! '  ib:~(s l"  "" 

1 ( s )  m 

., sin). ~ ~ bN(s a . . . . .  s,,) 2+m!R~.. 
(s)m 

( 4 . 1 9 )  

According to Parseval's identity, the first summands on the right sides of (4.17) and (4.19) 
coincide. Thus, it remains for us to verify that 

(s) , .  (s), .  

In view of the symmetry of b N (s I ..... Sm), 

RN<~C I 
(s),. 

~~ ( ' bu<l%_=.,)<~C f IDN(xa+. . .  +xm-2+u)i 
1-i.,-1 

m - 2  

j = l  n 

(in the last inequality we make use of Parseval's identity and the boundedness of the func- 

tion G). We note that fid(u-v)~(v)idv~ f 6!~r On the other hand, using the estimate 
H 

CN for L X < l/N, 

i D N(x) ~ C/x for ' x ~ ~ 1IN 

[cf. (4.14)], it is easy to verify that 

Consequently, 

sup~ n f i D~ (x + u) z du <~ CN. 
I I  

m -- 2 

R,, <. CN f I-I (.,.,)0- = CU. 
r l  m - 2  j = l  

We preface the rest of the proof of Theorem 3 with the 

Proof of Theorem 4. We recall that ]6(x)[ 2 is the density of the spectral measure F 
of the process X t (1.18). We note that if G(x) ~ i, PG(t) (4.15) coincides with P(t) (4.8). 
Using Propositions 4.2 and 4.3, we have that 
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N 

Var I Pm(X,)=m! f }DN(x~+. . .+x, , ) !~ 
1 17 m 

(4.20) 

Using the equality r ( t )= ( e " ~ d F  and the definition of the function DN(X), we see that the 

n N 

integral on the right side of (4.20) is equal to Z r~(t-s)" o 
f ,  S=] 

Let 

G' (x) = It_Kin ' ~m~ (x), G ~ (x) = In~ (x)- G' (x) 

and P'(t) = PG,(t), P"(t) = PG,,(t). It is clear that 

P (t) =P '  (t) +P" (t), (4 .21 )  

where P(t) is defined in (4.8). As follows from Proposition 4.4 below, one can neglect the 
summand P"(t) for our purposes in what follows. 

Proposition 4.4. Let (1.15)-(1.17) of Theorem 3 hold. Then for each s > 0 there exist 
K > 0 and N o ~ 1 such that for all N e N o 

N 

Var ~ P"(t)<~eB~,. 
! 

Proof. According to Proposition 4.3 and the definition of the measure PN (1.29), we 
can write 

N KIN 

v,r f . . .  f 
1 --KIN 

K 

f... f 
- -K 

Dividing both sides by BN 2 and considering (1.15), we get 

N 

limN_..B~2Var ~ P ' ( t )  = m! 
C tin, ~) 

I 

- - - -  lim:v~. 
K 

f . . .  f xN(.,,+ 
- - K  

m~ 
C (m, ~) 

K 

f ... f +.u 
--K 

( 4 . 2 2 )  

In the last equality, as in the proof of Theorem 2, we have used Proposition 2.1 and the 
relation 

sup ~ ~K! K N ( x ) - K o ( x )  -+ O. (4 .23 )  

We complete  the  p r o o f  by an argument ana logous  to  t h a t  which was used in the  p roo f  of  Theo- 
rem 2. According to  (1 .17 )  and ( 1 . 6 ) ,  ( 2 . 4 ) ,  

l K n (xa + �9 + x ,~ )  I2 d m Fo = 1.  
COn. ~) . ' "" 

R m 

Consequently, from (4.22) we have that for any g > 0 there exist K > 0 and N o = N0(g , K) e 1 
such that, for all N e No, 

,V 

B~2Var ,%-" P ' ( t ) - !  
I 

~. (4.24) 
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On the other hand, since N/BN 2 ~ 0, by virtue of Proposition 4.2 

li,n.x ..... B.V 2 Var  Z p ( t )  = lim,~-_..~ B,\7 2 Var Z P,. (X,)  = 1. 
t t 

( 4 . 2 5 )  

The assertion of Proposition 4.4 follows from (4.24), (4.25), and (4.21). D 

Thanks to (4.23) and the continuity of the function K0, for any ~ > 0 and K > 0 we can 
find N o = N0(e, K) ~ 1 and a step function 

ga(x)=ga( x] . . . . .  ' % ) =  Z ga . . . . .  % l,x .. . . . .  a~(x) 
(A) 

( 4 . 2 6 )  

such that for all N ~ N o 

In (4.26) the s u m  V 
d,.; 
{AI 

SUPx~[_K. KI. j K N ( x I +  . . .  + X m ) - - g a ( x l  . . . . .  Xm)!~Z .  

is taken over all intervals 5 I, . . . ,  A m e {~(-M), 

( 4 . 2 7 )  

. . . .  a(M)}, where 

5 ( - M ) ,  

- 5 ( i ) ,  i = 1 . . . . .  M, a n d  

being Lebesgue measure. 

.... A(M) form a partition of the interval [-K, K] satisfying the conditions A (-i) = 

3 - m a x  j _<.~r ?~ ( A ~ )  --~ 0 (~ --* 0) :  

L e t  

Z' 
I a b, x (s,  . . . . . .  7,,) " " 

(s)r~ 

( 4 . 2 8 )  

(4.29) 

where [cf. (4.15), (4.18)] 

b a ( s ~ . .  . . . .  a,,) = (2rr)-=/'-" 

K I  ?x= in m 

--KI N t ) = l 

(4.30) 

As in the proof of Proposition 4.3, we have 

N K/N 

va (Z e'(n-l  / . . .  f . . . . .  
1 - - K I N  

K 
2 2 I t !  K N ( a q +  . .  " + X m ) - - g a ( x ~  . . . . .  xm)!Zd"F~ ~:.Cz BsF~,,[-K, K]. 

(4.31) 

Since FN[-K, K] + F0[-K, K] 

Proposition 4.5. For any E > 0 and K > 0 there 
g& (4.26) such that for all N e No 

(cf. Proposition 2.1), we have thus proved 

exist an N o e 1 and a step function 

N 

! 

(4.32) 

Recalling what the spectral measures Z and Z N are equal to for a linear process [cf. 
(2.15), (2.16) I , 9ne can note that the sum I A (4.29) is almost the polynomial in the random 
variables ZN(A ~-M), ..., ZN(A(M)) whose convergence is established in Proposition 2.1. In 
order to get rid of the word "almost" we must take two more steps, namely: 

i) to remove from 15 the "diagonals" 5 i = +Aj; 
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2) to replace the sum _~' in (4.29) by the usual sum ~. 
(s~m 60 m 

One takes the first step easily. We denote by ~ '  the sum over all A l, ..., A m 

{b (-M) ..... A (M)} such that A i ~ _+Aj for i ; j, i, j = 1 ..... m, and by gA'(x), x eR m 

the step function on the right side of (4.26), where in place of the sum ~ one ihas ~'. 
~A) (A} 

F i n a l l y ,  we s h a l l  d e n o t e  by  I A'  t h e  c o r r e s p o n d i n g  sum o f  ( 4 . 2 9 ) ,  ( 4 . 3 0 )  w i t h  gA r e p l a c e d  
by gb'' As in (4.31), 

K K 

. . .  , . . . . .  z (4.33) f f f  
- -K  - -K  

As N ~ ~, the integral on the right side of (4.33) converges to the corresponding integral 
with respect to the measure F 0 (cf. Proposition 2.1), which one can make arbitrarily small 
by the choice of a small 6 > 0. The following proposition is a consequence of the argument 
just made: 

Proposition 4.6. Proposition 4.5 remains true with IA replaced by IA ~ 

We rewrite I A' in the form 

I'x = N g.x,...• (sl).  �9 a• m (sin) ~ " �9 ~ , . . .  :,.~,,, (4.34) 
(A) (s)t. 

where 

a a ( s ) = ( 2 r 0  -1t2 f e -*~Xd(x )dx ,  ( 4 . 3 5 )  
&IN 

A e {A(-M) ..... A(M)}. We denote by Jb the corresponding sum (4.34), where I' is re- 

placed by ~ .  ~)" 
(s).~ 

Proposition 4.7. 

Var (Ja - I~) = o (B~). (4.36) 

We postpone the proof of Proposition 4.7 until the end of this section, and now we 
finish the proof of Theorem 3. 

aA (s) ~ = Z ( A / N )  

Since 

[cf. (2.15)], one has 

J , , = N ~ '  
(.3.) 

ga~...~,, z (%IN) . . .  Z (A,,/~) 

and 

(A) 
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Since on the right side of the last equality there is a polynomial in a finite number of 
variables ZN(A(-M)) ..... ZN(A(M)), on the basis of Remark 2.1 we conclude that 

d t 
J~/Bx ~ (C(m, ~))-I[2 S g A " ' ' J . ,  Z O ( j l ) '  " 'Z~ ('~m)' ( 4 . 3 7 )  

(A) 

Of c o u r s e  t h e  sum on t h e  r i g h t  s i d e  o f  ( 4 . 3 7 )  i s  n o t h i n g  b u t  t h e  m u l t i p l e  W i e n e r - I t o  i n t e g r a l  

f ~ t r t t~l �9 ~ a ( - v )  Z o(d.\ O . . .Zo (dxm)=f  ~ d  Z o 
R m 

of the step function gA'' It is known that 

E I] f g i ( x ) d , , Z o _ f  Ko(x~+.. .+x.,)dmZ ~ !e=m! f ~gi(x)-K.(x~+...+.u ( 4 . 3 8 )  

Us ing  ( 4 . 2 3 ) ,  ( 4 . 2 7 ) ,  ( 4 . 2 8 ) ,  and a l s o  t h e  c o n t i n u i t y  o f  t h e  m e a s u r e  F 0, we s e e  t h a t  t h e  
r i g h t  s i d e  o f  ( 4 . 3 8 )  can  be made a r b i t r a r i l y  s m a l l  by s u i t a b l e  c h o i c e  o f  K and e .  T o g e t h e r  
with (4.37) and Propositions 4.1-4.7, this completes the proof of Theorem 3. o 

Proof of Proposition 4.7. We set PN = (JN - IA')/BN" Then 

P x= S ' S  g"x~'"-L,Y~v),"x" ( 4 . 3 9 )  
(A) (V) 

where the sum 

such that IVil  

S is taken over all partitions (V) = (V l ..... V r) of the set {i, 
(V) 

2 for some i = 1 ..... r; 

. . . .  ~sr 
(s), 

p~, (S) = 1-'I q'~, (S) (I" ~ { l . . . . .  m } ) 
i e V  

and 

[aA(s) is defined in (4.35)]. 

and 

under the condition that i ; j, 

,) i ~ j do n o t  o c c u r  in  t h e  sum ~ . 

r e l a t i o n s  f o r  t h e  c o e f f i c i e n t s  PV(S) 

q,a (s) = aa (s) ( N~/L (N)) It-' 

I t  f o l l o w s  f rom ( 2 . 2 )  and ( 2 . 1 9 )  t h a t  a s  N + ~,  

max,~z qa (s) i -~ 0, 

iq~(s) ~= FN(-'X) ~ Fo(A) 

�9 .*, m} 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

q_~, ~s~ q-b ,,o = F~,. (,__X, n ( - A ~ ) )  = 0 ( 4 . 4 5  ) 

i, j = 1 ..... m (we recall that the cases 8 i = +-83 for 

From (4.43)-(4.45) it is easy to derive the following 

(4.41) of the polynomial form (4.40): 

S pv(s) ~C, V >_-2. ( 4 . 4 6 )  

S pv(s)=O, V =2~  (4.47) 
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for each7 = 7(V),(A) in (4.39). 

where 

~, ,pv(s ) [ -+o .  iVI>B. 

To prove (4.36) it suffices to show that as N ~ ~, 

E i y i'~--+ 0 

We h a v e  

e,v~= ~ '  ~ '  p~,(~)..p~,(~,) 
(s) ,  (s ' ) ,  

Pv,(SO...PV (S'~)~,v), 

( 4 . 4 8 )  

(4.49) 

(4.50) 

. . . .  ~ ~sf . . . .  ~; "" ( 4 . 5 1 )  
L e t  ]V 1 a 2.  We d i v i d e  t h e  d o u b l e  sum on t h e  r i g h t  s i d e  o f  ( 4 . 5 0 )  i n t o  r + 1 sums 

.~ , i = O, i . . . . .  r, as follows. Into the sum ~ we put collections (s) r, (s') r satis- 
(0  (0) 

' 2 fying the condition s z ~ s I ..... s I ~ Sr', and into the sum (i = i ..... r) collections 
(0 

( s )  r ,  ( s ' ) r  s u c h  t h a t  s I = s i  t . C o n s i d e r i n g  t h a t  t h e  r a n d o m  v a r i a b l e s  S s ,  s e Z a r e  i n d e p e n -  
d e n t  and  h a v e  mean O, and  u s i n g  ( 4 . 4 6 )  and  ( 4 . 4 8 ) ,  i t  i s  e a s y  t o  c o n c l u d e  t h a t  

E . . . - ,  0 ( i=1  . . . . .  r). ( 4 . 5 2 )  

(o 

We consider the remaining summand ~. Let (zk) ~ be the collection of all collections 
r 

( s )  k e Z  k s u c h  t h a t  s i ~ s j  f o r  i ~ j ,  i ,  j = 1,  . . . ,  k .  We n o t e  t h a t  f o r  s 1 a s a '  

s r '  t h e  mean >(V) ( 4 . 5 1 )  i s  i n d e p e n d e n t  o f  s z. H e nc e  ~ c a n  be r e p r e s e n t e d  i n  t h e  f o r m  
(01 

co co 2r  

2... =( l  2' 2'.--- 2 2 2 2'- 
(0) --m ( s ) r_  1 ( s ' )  r &=--m k=2 

where (S)r_ I = (s 2 .... , Sr) e (zr-1),, and the sum ~{k, is taken over all collections 

(S)r_ l e (zr'l) ', (S~)r e (zr) ' satisfying the condition s k = s I for 2 g k <- r and Sk_ r' = 

s I for r < k <_ 2r. But then E -+0 by virtue of the same reasons as for (4.52), and for 
t 

I -+0 one must use (4.47) in addition, m 

5. Proof of Theorem 5 

As usual, let F(dx) = f(x)dx = Id(x) 2 and r(t}= fe"XdF denote, respectively, the 

n 

spectral measure and covariance function of the linear process (Xt). 

It follows from Theorems 3 and 4 that to prove Theorem 5 it suffices to verify that 
the following relations hold: 

N 

A~. -- ~ ~ ( t -  ,) --L~ (lv) N~-~- 
t, $= 1 

(5.1) 

and 

N 

B~p.'.z! 2 rm(t"-s)~'C( m" ~)LT( N)N2-% 
a, $ = 1  

(5.2) 
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where 

L~(x)=0D(1)L[x) (5 .3)  

is  the  s . v . f ,  d i f f e r i n g  by the  c o n s t a n t  0D(1) from the  s . v . f .  L ( ' )  in (1 .26) .  

Passing to the spectral representation of the covariance function just as in the proofs 
of Theorems 2 and 3, we have 

~N 

" ' N ''-~ ( Kx ( . \ )"  dFu A~NIL,(N) = (5 4) 

and 

~N 

Bfv/L, (N) N2-~"=m! ( f K N ( x l + . . .  +xm) Zd"f'~., (5.5) 

where 

Fu (dx)= F (dx/N) N=/LI (N). 

We consider the convergence of the spectral measures F N (5.6). 

Proposition 5.1. Under the hypotheses of Theorem 5, 

F~,, (A) ~ Fo (A), 

where A is an arbitrary bounded Borel set and F0(h)=D-l(1)f.x ~-ldx 
,4 

Proof. According to (1.26) and (5.6), 

[cf. (2.4)]. 

F,, (A) = (~ D (1))-' f .,- :: -~ (1. (N/: ., )/2. (N)) 0 (~V/.~- :) dx 
A 

(we assume that A c [-~N, ~N]). According to a well-known property of s.v.f. (cf., e.g., 
[7], Lemma 4.1) for any E > 0 and 0 < x 0 < ~, one can find a 0 < C < = such that L(N/x)/ 
L(N) g Cx -e uniformly with respect to N ~ i and x e (0, x0). Since the function 0(') is 
bounded, one has 

(5.6) 

(5.7) 

lira~_osupN:~lF,,(-& 8)~Clim~e ( .v,=+~-ldx=0 (5 .8)  

under the condition that ~ + c < i. Thanks to (5.8) and the symmetry of the measures F N, 
it suffices to prove the convergence (5.7) for the intervals A = (a, b), 0 < a < b < ~. 

In view of the fact that L(N/x)/L(N) ~ i uniformly with respect to x e A = (a, b), 
(5.7) follows from 

1 b 

i , =  ( .,.~-lo(N/u (,~-ld., 
a rj 

Let =,(x)= J'0(y)~(v. Then E(x)/x + ~ as x + co [cf. (1.27)] and 

0 

b 

1~ = - N - 1  ( x ~ + l d  = _ ( N / x )  = - N -1 =- ( N / x ) . \ , ~ + 1 1 ~  + 

u 
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b b b 

g a 

To prove (5.1) and (5.2), it suffices to see that on the right sides of (5.4) and (5.5) 
one can pass to the limit under the integral sign. In view of Lemma 5.1 and the uniform 
convergence on compacta of the functions KN('), for this it suffices that the following con- 
dition hold uniformly with respect to N ~ i, where [K]c = [-~N, wN] m \[--Km, K]m: 

limK~, f K,~,(xl+... +x,,)i2d"Fx=O. (5.9) 
[K( 

Since the measure FN(dx) is majorized by the measure ~N(dx) = ~(dx/N)N~/L(N), where 
F(dx) = ClxI~-IL(i/Ixl)dx and ~ = SUPx~08(x)/(SD(1)) , it suffices to verify (5.9) for ~N in- 
stead of F N. Such a verification is made on pp. 35-36 of Dobrushin and Major [211 (the veri- 
fication of condition (2.8) of Lemma 3 of [2]). u 
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