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Uptake kinetics and contents of GABA in cultured, normal (i.e. nontransformed) 
glia cells obtained from the brain hemispheres of newborn mice were measured 
together with the activity of the GABA transaminase. During three weeks of 
culturing the activity of the transaminase rose from a low neonatal value toward 
the level in  the adult brain. The uptake kinetics indicated an unsaturable 
component together with an uptake following Michaelis-Menten kinetics. Both 
the K,,, (40 /zM) and the Vmax (0.350 nmol • min -I • mg -1 cell protein) were 
reasonably comparable to the corresponding values in brain slices, and the Vma~ 
was much higher than that reported for other glial preparations. The GABA 
content was low (<5 nmol/mg cell protein), which is in agreement with the high 
activity of the GABA transaminase. 

INTRODUCTION 

During recent years much evidence has accumulated that GABA is an 
inhibitory neurotransmitter in the mammalian central nervous system. 
GABA is thus liberated from brain tissue in vivo and in vitro by 
electrical or potassium-induced "stimulation" (1-6) and it exerts a 
depressant effect on spinal, cortical, and cerebellar neurons (7-13). 
Glutamate decarboxylase, which is the main GABA synthesizing en- 
zyme, is highly concentrated in "GABA ergic" cerebellar synapses 
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T A B L E  I 

KINETIC CONSTANTS FOR HIGH-AFFINITY UPTAKE OF G A B A  INTO BRAIN AND 

SPINAL CORD SLICES, SYNAPTOSOMES, AND NEURONAL AND GLIAL ENRICHED 

PREPARATIONS a 

Vmax 

K,, (nmol  x min t (nmol  x min -~ 
Tissue  preparat ion (/xM) x g 1 wet wt.) x mg -1 protein) 

Adult  brain slices b 11-31 34-167 (25~ - -  
Neonata l  brain slices b 5-43 5 (25~ - -  
Spinal cord slices b 25 10-15 (25~ - -  
Synap tosomes  c 13 - -  2.2 
Synap tosomes  b 4 - -  1.1 (27~ 
Synap tosomes  a 0.42 - -  - -  
Cerebel lar 'glomerulF 10 - -  1.5 
Bulk-prepared neurons  a 0.72 - -  - -  
Bulk-prepared glia cells a 0.27 - -  - -  
Superior cervical ganglia s 7 0.2 (250C) - -  
Sensory  ganglia ~ 10 2 (25~ - -  
Cultured cerebellar neurons  h 0.33 20-80 - -  
Cultured cerebellar glia cells h 0.29 0.05-0.2 - -  
C-6 glioma cells ~ 32 - -  0.023 
C-6 glioma cells j 0.22 - -  0.0014 
Cultured mouse  brain as t rocytes  ~ 40 28 0.350 

a Most  of  the  values  are quoted verbat im from the literature. The  Vrnax for synap tosomes  
from G. Levi  and M. Raiteri (footnote c), however ,  was calculated f rom Fig. 4 in that  
paper  and the  Vma~ values  for cultured cerebellar neurons  and glia cells (23) were 
conver ted from nmol /mg D N A  to nmol/g wet weight on the  basis of  the  D N A  contents  in 
adult  and neonatal  rat brain reported by S. Zamenhof ,  L. Grauel ,  E. Van  Mar thens ,  and 
R. A. Stillinger, 1972. Quanti ta t ive determinat ion of D N A  in preserved  brains and brain 
sect ions,  J. Neurochem. 19:61-68. The  cons tan ts  obtained in the  p resen t  work  were 
derived f rom Fig. 2 and Eq. (1) by compute r  analysis  using a Univac  1110 computer .  In 
general  Vm~x values  for brain slices and for ganglia have  been expressed  on a wet  weight  
basis ,  whereas  those  for isolated cellular or subcellular preparat ions  (where  wet  weight  
determinat ions  are uncertain)  are based on protein (or D N A )  contents .  Since protein/wet  
weight ratios probably  differ among all the  preparat ions  ment ioned ,  no a t tempt  has  been 
made  to recalculate. However ,  1 g wet  weight probably does cor respond roughly to 100 
mg protein. M e a s u r e m e n t s  were performed at 37~ except  when  otherwise indicated. All 
results  were obtained with preparat ions  originating f rom cats ,  rats ,  rabbits,  or  mice.  All 
G A B A  in superior  cervical ganglia and sensory  ganglia is known to be localized in glia 
cells (see, for example ,  reference 30). 

b MARTIN, D. L.  1976. Carrier-mediated t ransport  and removal  of  G A B A  from synapt ic  
regions. Pages 347-386, in ROBERTS, E. ,  CHASE, T. N . ,  and TOWER, D. B. (eds.),  G A B A  
in the  nervous  sys t em function,  Raven  Press,  New York.  

c LEvi ,  G. ,  and RAITERI, M. 1973. Detectabil i ty of  high and low affinity uptake sy s t ems  for 
G A B A  and glutamate  in rat brain slices and synap tosomes .  Life Sci. 12:81-88. 

a See reference 26. 
e See reference 25. 
s BOWERY, N. G. ,  and BROWN, D. A. 1972. y-aminobutyr ic  acid uptake  by sympathe t ic  

ganglia. Nature New Biol. 238:89-91. 
g SCHON, F. ,  and KELLY, J. S. 1974. The character izat ion of  (3H) G A B A  uptake into the 

satellite glial cells of  rat sensory  ganglia. Brain Research 66:289-300. 
h See reference 23. 

See reference 33. 
J See reference 28. 
k Present  work. 
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(14,15), and a binding of GABA to a postsynaptic receptor protein has 
been reported (16-19). In such a "GABA ergic" transmission process 
there must be a system that is able to remove GABA from the synaptic 
cleft. Since GABA metabolism per se is unlikely to be responsible for 
the removal (7,20), a re-uptake system for GABA seems to be necessary 
(ll).  

Evidence has been presented for a GABA transport into neurons (21- 
25), but it has also been suggested that glia cells take part in the removal 
of GABA (e.g., 26-34). The latter concept is mainly based on the 
demonstration of a GABA uptake into bulk-prepared glia cells and 
cultured glioma cells and also into peripheral ganglia, in which the 
uptake exclusively occurs into glia cells (30,31,34). The uptake rates are 
significantly higher into the bulk-prepared glia cells than into corre- 
sponding neurons (26), but no Vm~x values were given and those reported 
for GABA uptake into the glioma cells and the peripheral ganglia are at 
least one order of magnitude lower than the minimum values reported 
for brain slices (Table I). One may thus wonder whether this reflects a 
Jess active uptake of GABA into these types of glia cells or indicates that 
the GABA uptake into glia cells in general is of quantitatively minor 
importance. 

The present study was undertaken to elucidate this question by 
investigating the kinetic characteristics of the GABA transport into 
cultured normal (i.e., nontransformed) glia cells from the brain hemi- 
spheres. It also sought to determine whether the activity of the GABA 
transaminase is high enough to enable the cells to metabolize the GABA 
taken up. The glia cells were obtained as primary cultures of dissociated 
brain cells (35) from the hemispheres of the neonatal mouse brain. Such 
cultures are practically void of neurons, and seem to be suitable for 
metabolic studies of normal glia cells (36-38). 

A preliminary report has been given of some of the findings (39). 

EXPERIMENTAL PROCEDURE 

Tissue Culture. All experiments were carried out using the gila cell culture developed by 
Booher and Sensenbrenner (35) and shown to be highly enriched with the astrocyte- 
specific GFA protein (40). For preparation of ten cultures, cerebral hemispheres from 
three newborn Swiss mice were dissected and passed through a sterile nylon sieve (80 p~m 
pore size) into 10 ml of a modified Eagle's minimum essential medium with double 
concentrations of the amino acids (exce!St glutamine), quadruple concentrations of vitam- 
ins, 200,000 IU/liter penicillin, 20% (vol/vol) fetal bovine serum, 2.0 mM glutamine, no 
GABA, 7 mM glucose, and pH 7.3. One milliliter of this cell suspension plus 3 ml of the 
modified Eagle's medium were introduced into the tissue culture flask and cultured at 37~ 
in an atmospheric air/COs mixture containing 5% (vol/vol) COs. The culture medium was 
changed three times a week. Unless otherwise stated the cultures were grown for 3 weeks; 
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during the last week serum was withdrawn and 0.1 mM dibutyryl cyclic AMP (BcAMP) 
was added to the culture medium, which led to the formation of abundant radial, 
branching, relatively short processes (cf. 41). 

Uptake of GABA. Prior to the influx experiments the culture medium was exchanged 
with a solution (PBS) containing 150 mM NaCI, 3.0 mM KCI, 1.0 mM CaCI2, 0.6 mM 
MgC12, 1.7 mM KH2PO4, 8.0 mM Na~2HPO4, and 6 mM glucose; pH 7.4. The culture flask 
was opened and the layer of astrocytes loosened with a soft Teflon spatula having the same 
width as the flask. The culture was subsequently dissected into three or four samples, each 
of which contained approximately 30/xg of cell protein. These were incubated at 37~ (or, 
in one set of experiments, at 0~ in 450/xl PBS containing varying concentrations of 3H- 
labeled GABA. Sodium dependency was studied by replacing all NaCI with choline 
chloride, the effect of potassium by using media to which 5, 20, or 45 mM KCI was added, 
and the calcium requirement by omission of CaClz from the incubation media. The 
incubation was terminated by centrifugation (10 sec) and rapid washing of the pellet (10 
sec) with nonradioactive medium. The cells were dissolved in 100/xl 2 N KOH, and after 
appropriate dilution, radioactivity was determined as previously described (1), using a 
Packard Tri-Carb liquid scintillation spectrometer. 

Determination of GABA. Ten cultures were extracted with 2.0 ml of 0.1 M perchloric 
acid (PCA) and the residue was washed twice with 2.0 ml of 0.1 M PCA. The combined 
snpernatants were brought to pH 6.5 with KOH. After centrifugation, the supernatant was 
freeze-dried and redissolved in 2.5 ml of 0.2 M sodium citrate (pH 2.2). GABA was 
analyzed in a 0.5-ml aliquot on an amino acid analyzer (Bio-Cal 200) using a Stein and 
Moore technique. 

Determination of GABA-Transaminase Activity. A 10% (wt/vol) homogenate of neonatal 
mouse brain was prepared in 0.05 M potassium phosphate, pH 7.2, containing 0.2 mM 
pyridoxal phosphate, 1.0 mM 2-aminoethylisothiouronium bromide hydrobromide (AET) 
and 0.1 mM EDTA. It was subsequently sonicated 2 x 15 sec at 0~ using a Branson 
sonifier (50 W). In other experiments, cultured astrocytes from one or two culture flasks 
were transferred to a test tube containing 200 ml of the buffer, and sonication was 
performed as described for the neonatal tissue. GABA-transaminase activity was assayed 
in 10-/xl aliquots of the sonicated samples employing a modification of the method 
described by Hall and Kravitz (42). The assay mixture consisted of 0.1-M TRIS-HCI, pH 
8.0, 1-mM AET, 0.02-raM pyridoxal phosphate, 4-mM c~-ketoglutarate, l-mM succinic 
acid, 3-mM NAD +, and 25-ram '4C-GABA' (spec. act. 100-200 cpm//xmol). The same 
buffer minus c~-ketoglutarate was used for determination of blanks. After 30 min Of 
incubation at 37~ the reaction was stopped by addition of 4-M perchloric acid, and the 
14C-labeled reaction products (succinic semialdehyde and succinate) were separated from 
[14C] GABA on Dowex-50 x 2 (50-100 mesh) columns (0.7 x 7 cm). Radioactivity in an 
aliquot of the water eluate from the column was determined as described by Schousboe 
and Hertz (43) using a Packard Tri-Carb liquid scintillation spectrometer. 

Protein was measured by the method of Lowry et al. (44) with the modification 
described by Miller (45) using bovine serum albumin as the standard. 

Supplies. Plastic tissue culture T flasks (40 ml) were purchased from NUNC A/S, 
Denmark, and fetal bovine serum from Gibco/Bio-Cult Laboratories Ltd., Scotland. 
Dibutyryl-cyclic-3',Y-AMP (BcAMP) and all amino acids and vitamins were obtained from 
Sigma Chemical Corp., St. Louis, Missouri, penicillin from LEO, Denmark, and (1-'4C) 
GABA (spec. act. 49.4 mCi/mmol) and (2,3-all) GABA (spec. act. 36.7 Ci/mmol) from New 

' From the GABA content in the cultures (cf. Results) it can be calculated that endogenous 
GABA at most will increase the GABA concentration in the assay mixture by 0.025 raM, 
which was neglected. 
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England Nuclear Corp., Boston, Massachusetts. All other chemicals were of purest grade 
available from regular commercial sources. 

Statistical significance (P) was calculated using Student's t test and computer analysis 
was performed with the aid of a Univac 1110 computer. 

RESULTS 

GABA Content 

The content of GABA was determined in cultures grown for 2 weeks 
in a medium with serum and for a subsequent week in the absence of 
serum and presence of BcAMP. The amino acid analysis showed that 
such cultures contained less than 5 nmol GABA/mg cell protein. 

Kinetics of GABA Uptake 

The uptake of GABA was studied in similar cultures and found to be 
linear for at least 6-8 rain. This is shown in Fig. 1, in which the zero time 
value represents entrapped GABA, i.e., the GABA content after 30 sec 
of incubation at 0~ For determination of Km and Vmax, cultures were 
incubated for 5 rain in media containing between 5 and 1000/xM GABA 
and the values for the GABA uptake were corrected for the entrapped 
GABA. In a typical experiment tissue corresponding to about 30/.~g of 
cell protein and containing less than 5 nmol GABA/mg protein was 
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FIO. 1. Time course of the 3H-GABA uptake into cultured astrocytes. The GABA 
concentration in the incubation medium was 50/xM and the extent of the uptake into the 
cells is given as (cpm • mg -1 cell protein/cpm x /x1-1 incubation medium), Results are 
averages of 8-10 individual experiments with SEM indicated by vertical bars if they extend 
beyond the symbols. 
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incubated in 450-/xl medium. The max imum augmentat ion of the external  
GABA concentrat ion brought  about  by a possible release f rom the tissue 
thus cor responded to 0.3 /xM, which could be neglected over  the whole 
concentrat ion range. 

The G A B A  uptake  (Fig. 2) conformed to the following equation: 

V = V~,x (1/(1 + KIn~S)) + k x S (1) 

where V indicates velocities (nmol x rain -x x mg -1 cel l  protein), Km the 
Michaelis constant  (/xM), k the rate constant  of  an unsaturable  mecha-  
nism (ml x min -1 x mg -~ cell protein),  and S the substrate  concentra t ion 
(/~M). The constant  describing the unsaturable G A B A  uptake  (k) was 
calculated by compute r  analysis of  the exper imenta l  values to 7.3 x 10 -4  

ml x rain -~ x mg -~ cell protein.  Km was in a similar way found to be 40 
/xM and Vma= 0.350 nmol x min -~ x mg -a cell protein or, recalculated on 
a wet  weight basis and using a protein content  of  8% of  the wet  weight 
(38), 28 nmol x min -1 x g-~ wet  weight (Table I). 
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FIG. 2. GABA uptake (nmol x min -1 x mg -1 cell protein) into cultured astroeytes as a 
function of the external GABA concentration. Results are averages of 9-10 individual 
experiments with SEM indicated by vertical bars if they extend beyond the symbols. The 
curve was fitted to the experimental points by computer analysis, and is the curve 
described by Eq. (1) [a saturable component following Michaelis-Menten kinetics plus a 
possible (i.e., if k :~ 0) nonsaturable component] that most closely fits the experimental 
results. The insert shows 1/V' versus 1IS where V' is the observed V corrected for the 
unsaturable transport component (k x S) calculated from S and the k value obtained by the 
computer analysis. 
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T A B L E  II 

EFFECT OF CALCIUM AND POTASSIUM ON G A B A  UPTAKE INTO ASTROCYTES 

CULTURED FROM DISSOCIATED MOUSE BRAIN HEMISPHERES a 

Ca 2+ (mM) K* (raM) uptake (%) n P 

Control 1.0 5 100 _+ 6.3 (9) 
0 5 86 • 7.1 (8) n.s. 
1.0 t0 117 • 12.3 (6) n.s. 
1.0 25 66 • 3.7 (8) <0.001 
1.0 50 53 • 5.6 (7) <0.001 

Values are expressed as percentages • SEM of the value obtained after incubation for 5 
min in a physiological medium containing 50 txM GABA. Corrections were made for the 
unsaturable component of the uptake. Numbers of experiments are given in parentheses. 

Effect of  Ions on GABA Uptake 

The sodium dependency of the GABA uptake was investigated at a 
GABA concentration of 50/~M, where the unsaturable component of the 
uptake is almost negligible (cf. Fig. 2). The uptake proved to be highly 
sodium dependent. At 15 mM Na + the GABA uptake was thus only 13% 
of the value obtained after incubation in a physiological medium. A 
kinetic analysis of the sodium dependency (results not presented) 
suggested ordinary saturation kinetics with a K,~ value for sodium of 
about 150 raM. 

The 5-rain values for the saturable GABA uptake (50 /xM GABA) 
obtained in a Ca2+-free medium and in media to which KC1 was added 
are shown in Table II. It is seen that high concentrations of potassium 
inhibited the GABA uptake into the astrocytes by approximately 50%, 
whereas omission of calcium from the medium had little, if any, effect. 

GABA-Transaminase Activity 

The activity of the GABA-transaminase in neonatal brain and in 
dissociated brain cells after 1, 2, and 3 weeks in culture is shown in 
Table III. There is a decrease in the activity from the neonatal tissue to 
the cells cultured for 1 week, but after 2 weeks in culture the activity 
returned to the value observed in brains from newborn mice. If the cells 
were grown for an additional week in the presence of serum, the activity 
of the transaminase remain at this level, whereas serum withdrawal and 
addition of 0. l-raM BcAMP led to a significant increase (P <0.01) in the 
specific activity of the enzyme. 
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T A B L E  I I I  

SPECIFIC ACTIVITY OF G A B A - T R A N S A M I N A S E  IN NEONATAL MOUSE 

BRAIN (0 CULTURE PERIOD) AND IN ASTROCYTES CULTURED FROM 
NEONATAL MOUSE BRAIN HEMISPHERES FOR 1, 2, OR 3 WEEKS a 

G A B A - t r a n s a m i n a s e  activity 
Culture period (nmol x rain -1 x mg -1 protein) 

0 week 1.10 -+ 0.05 (10) 
1 week 0.21 -+ 0.03 (10) 
2 weeks  0.94 +- 0.08 (8) 
3 weeks  0.93 -+ 0.06 (9) 
3 weeks  - s e r u m  + B c A M P  1.64 -+ 0.18 (7) 

a Dur ing the third week of cultivation some cultures were grown in a serumfree  
medium to which 0 .1-mM BcAMP was added. E n z y m e  activities were deter- 
mined at 37~ as detailed in Methods .  Values are means  --- SUM with number s  
of  exper iments  given in parentheses .  

DISCUSSION 

The highest activity of the GABA-transaminase was observed in 
cultures grown for 2 weeks in the presence of serum and an additional 
week in a serumfree medium with BcAMP. This is analogous to what 
has been found for the (Na § K§ ATPase (37) and to other 
aspects of metabolic differentiation in the same type of cultures (38). 
Under these conditions the activity was significantly increased from the 
level in neonatal brain and approximately twice as high as the activity 
reported for bulk-prepared glia cells (46), dorsal root ganglia, and 
posterior pituitary gland [recalculated from Beart et al. (47) on the basis 
of an assumed protein content of 100 mg/g wet weight in their prepara- 
tions]. It is, however, still only about one-third of the level (about 4 
nmol x min -1 x mg -1 protein) found in homogenates from adult mice 
(48). Whether this indicates only partial metabolic differentiation cannot 
be resolved at present. 

Since the activity of the transaminase was highest after a period of 
culturing in the absence of serum and presence of 0.1-mM BcAMP, the 
contents and uptakes of GABA were studied under these conditions. 
The GABA content of the cultured astrocytes (<5 nmol/mg protein) was 
low compared to a GABA content in the whole brain of about 3-4 txmol/ 
g wet weight (30-40 nmol/mg protein) in adult mice and about 1.5/zmol/g 
wet weight in newborn animals (49). This is to be expected, however, 
since the cultures were grown in a medium without added GABA and 



GABA UPTAKE AND METABOLISM IN CULTURED ASTROCYTES 225 

since the activity of the glutamate decarboxylase is low in neonatal 
mouse brain cells cultured for 1-3 weeks (50). 

The uptake of GABA was, in contrast, quite high. The maximum 
velocity for GABA transport found in this paper is (Table I) somewhat 
lower than values previously obtained for adult brain cortex slices or rat 
brain synaptosomes but higher than Values for neonatal brain cortex 
slices, spinal cord slices, and sensory ganglia, and much higher than tl~e 
values reported for C-6 glioma cells and nonneuronal cells from cultured 
rat cerebellum. 

Like transport systems for other amino acids in brain tissue (51-53), 
the GABA uptake into astrocytes was sodium dependent. Also, the 
observation that high concentrations of potassium (50 raM) inhibit the 
GABA uptake is comparable to an inhibitory effect of potassium on 
GABA uptake in bulk-prepared glia cells (54) and in brain slices (5,32). 

The efficient, high-affinity uptake of GABA in cultured astrocytes 
from brain hemispheres supports the hypothesis that glia cells may be of 
physiological importance for the removal of GABA from the synaptic 
clefts (26-29,32,33). The intense uptake of GABA is not in discordance 
with the low GABA content in the cultures, since the activity of the 
GABA-transaminase was also found to be high. The precise physiological 
role of this GABA uptake remains unknown, since a major part of 
radioactive label is localized over nerve terminals after incubation of 
cortical tissue with ~H-GABA (24) and also because neuronal elements 
possess GABA-transaminase activity (55,56) and a highly active mecha- 
nism for the uptake of GABA (cf. Table I). It is not known to what 
extent the measured uptakes represent a net uptake or a 1:1 homoex- 
change (57), but the low GABA contents do not favor a homoexchange. 
Further information about GABA contents, fluxes, and metabolism in 
glial and neuronal preparations under different conditions are thus 
required to elucidate the role of this amino acid as an inhibitory 
transmitter, a possible general "regulator" of neuronal activity (26, 
29,58-60), and a metabolic intermediate in the brain. 
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