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w 1. Introduction 

In Part I of this paper (CHILLINGWORTH, MARSDEN ~% WAN [1982]--hereafter 
referred to as [I]), we reformulated the traction problem in elastostatics in various 
forms, gave a classification of  loads and gave a complete analysis of solutions 
of  the traction problem that are nearly stress-free for loads near loads of type 0 
and type 1. This part develops the basic theory as well as giving an analysis of  
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solutions for loads of  types  2, 3 and 4. I t  includes a count of  the numbers of  
solutions and an analysis of their stability and the structural stability of  the 
bifurcation diagrams. 

We begin in Section 2 with a derivation of a potential formulation of  the prob- 
lem on SO(3). The "second order potential" used in [I] can be recovered as a 
special case. I t  follows f rom this that the traction problem always has at least 
four solutions, at least one of which is neutrally stable. For  loads of  type 0, 
we showed in [I] that there are exactly four solutions near SO(3); for the other 
types there can be many  more ... up to 40. Sections 3, 4 and 5 examine types 2, 
3 and 4 respectively, in a manner analogous to our treatment of  types 0 and 1 in 
[I]. Loads of type 3 and 4 have some special features already studied in the 
literature in connection with parallel loads. These special features will be discussed 
and other connections with the existing literature will be made at appropriate 
points throughout the paper. 

In a related paper  MARSOEN & WAY [1983] study the linearization stability 
of  the traction problem, which is related to the power series methods in the 
literature (see for example TRUESt)ELL & NOLL [1965]). One of the main results 
we prove is that even without the assumptions of  non-degeneracy, the Signorini 
compatibility conditions at first order are sufficient for linearization stability; 
this means that one can obtain a Signorini-type expansion for the solution just 
under the assumption of compatibility at first order. The classical expansions 
occur as special cases. 

We begin by recalling some of the principal notations used in [I]. 
Let ~ ~ R  a denote the reference configuration and let cg = {~b: 9 ~ - + R  a J 

~(0) = 0} denote the set of  all deformations (with the W s'p topology, s > 
(3/p) q- 1). The space of all loads l = (B, v) with total force zero is denoted s 
The astatic load map is denoted k : S  a --~ Ms, where Ma denotes the set of 
3 • 3 matrices. Thus 

k(1) = .f B(X) | ;g dV(X) + f .(X) | X dA(X). 
OY$ 

(1) 

We have k(l) = k(l, I) where I is the identity and where 

k(l, 4,) = f B(X) | rb(X) dV(X) + f , (X) | r dA(X). (2) 
93 O~J 

We let sym Q Ma denote the symmetric matrices and skew Q Ms denote the 
skew symmetric ones. The equilibrated loads are denoted S~ = k-l(sym).  

Let F denote the deformation gradient D4) and let W(F) denote a materially 
frame indifferent stored energy function. We assume W(1) ---- 0 without loss of  
generality. Let P = O W/OF denote the first Piola-Kirchhoff stress and A ---- 
OP/OF the elasticity tensor. As in [I] we assume that the material is frame indiffer- 
ent and that 

(HI)  the undeformed state is stress free; 
(H2) the strong elliptieity condition holds, and, moreover, the linearized theory 

satisfies the stability condition. 
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Let lo E ~ e  be a given load and 2 a small parameter. We seek solutions of  

~(4') = 21, (3) 

where I is near lo and ~b(q~) ---- ( - - D I V  P, P .  N). Solving (3) is equivalent (under 
sufficient regularity) to finding critical points of  

V = V~., : ~ -+ R;  V(4') = f W(F) dV -- <At, ~) ,  (4) 

where ( , )  denotes the L 2 pairing, given by 

(l ,  4'> = f B ( X ) .  r  + f ~(X) .  4 ' (X)dA(X) 

= tr [k(l, 4')]. 

To see this equivalence, observe that for u E T~Cg = 

fow DV(4').  u = - - ~ .  V u  dV  -- (2l, u )  

- f(DlVe .uav+ 
= ( q , ( 4 ' )  - At, u).  (5) 

The group SO(3) of  proper orthogonal linear transformations of  R 3 plays a 
key role in our work. Its Lie algebra is skew, the collection of 3 • 3 skew sym- 
metric matrices. We identify skew with R 3 by the map ^ : R 3-+ skew, given by 

b(w) = w • v. (6) 

The inner product  we use o n  M 3 is ( A ,  B~ = t r  (ABT); we note that  (v, w)  ----- 
(b, Ib). The map ^ has an additional useful property:  if AEsym and we let 

La = (tr A) 1 - -  A E 3//3, then 

(Lay) ^ = Ai,  q- (,A for v E R a �9 (7) 

The group SO(3) acts on rg and s by 

Q4' = Q o 4' and Ql(X) = (QB(X),  Q~(X)).  

The algebra skew acts by the same formulas. 
The astatic load map satisfies 

k(l, Q4') = k(l, 4') QT, k(Ql,  4') = Qk(t, 4'), Q E SO(3) / 

and ] (8) 

k(l, W4') k(l, 4,) W T, k (Wl ,  4') :- Wk(l,  4'), W E  skew. 

F rom (8) and (5) we have, for example, 

(l, W4~) : tr (k(l, 4') W T) ---- (k(l ,  cb), W ) .  (9) 
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The divergence theorem enables one to establish readily the following identities 
from [I]: 

k(#(4'), 4,) = f o dv (10) 
,/,(~) 

and 

k(~(4')) = f v dr ,  (11) 

where o is the Cauchy stress; P = JoF -T, J = det F. From (10) it follows that 
k(~(4'), 4')E sym; i.e., the torque in the configuration 4' is zero. 

The linearization of ~ is given by 

D~b(4') �9 u ---- ( - -DIV (A.  Vu), (A.  Vu) .  N), (12) 

where A is regarded as a linear operator from L(Tx&, R 3) to itself, as in [I], 
and u E q / =  Tiff is a displacement for the linearized theory. At 4' = / ,  (12) 
becomes 

D~(I). u = ( - -DIV (e- e), (e .  e ) .  N),  (13) 

where c is the classical elasticity tensor, regarded as a linear map of sym to itself 
(see [I]) and where e = �89 [Vu + (Vu) r] is the linearized strain tensor. We some- 
times write e .  Vu for e . e .  

Let L = D~(I) denote the linear operator of classical elasticity, given by 
(13). This has a kernel equal to skew (there are no translations since we have 
demanded 4 ' (0)= 0 and u ( 0 ) =  0) and range equal to ~e ,  the equilibrated 
loads. This follows from the stability condition, as was explained in [I]. A con- 
venient complement to skew in q / =  T ~  is obtained as follows. 

Let j : Ma ~ L~' be a right inverse for k : ~ -+ 3//3 (for example, j = (kl(ker k) • 1 
as in [I]) and let 

Skew = ](skew). 

Thus, we have the algebraic decomposition 

: -O~e O Skew, 

where .o~ e denotes the equilibrated loads, related to k by *~e = k-l(sY m) (see 
Figure 1). 

Now let ~ym denote the orthogonal complement to Skew in the pairing (5). 
That is, 

~sym = (U E 0~ I ( l ,  U )  : 0 for all 1 C Skew). 

Since the pairing (4) is (weakly) non-degenerate between L~ a and ~/, q/sym is a 
complement to skew in q/. Note that ~7~(sy m and skew need not be L 2 orthogonal 
in ql, however. What is more convenient for later use is to have ~//sym the orthogonal 
complement of Skew (see Lemma 2.2 below). 
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Fig. 1 

It  follows from the theory of elliptic equations that 

L : d~sy m ---->" "~fe 

is an isomorphism. Given l E L~e, let ut E d~'sym satisfy L(u~) = I. Define the 
Betti form B : '~fe X "~e "--->" ~:~ by 

B(l~, 12) = (l , ,  u,,) (14) 

( the  inner product is defined as in equation (4)). The divergence theorem shows that 

B(lx, 12) = ( c .  Vut, , Vut2). (15) 

Here the inner product means 

(e .  Vu,,, rut,)  = f tr [(e. Vut)  (Vu/,) T] dV. 

Since c is symmetric, B(ll, 12) is symmetric in 11 and 12. This is the Betti reciprocity 
theorem, which will be useful in the next section. Notice that (15) is unchanged 
if ut is replaced by ut q- K for K E skew. Thus the same formula (15) holds 
independent of  the choice of complement to skew in q/. This freedom is convenient 
for computations that will be given later in the paper. 

Next we recall that loads l are classified into five types according to the way 
in which the orbit of  A = k(l), under the left action of SO(3) on Ma, meets sym. 
See [I], w 6. An important  set is 

SA = {q E SO(3) I QA E sym}. (16) 

In [I] we established the following descriptions of SA: 

Load Type SA 

0 
1 
2 
3 
4 

four points 
two points W S 1 ~ R P  1 
one point kJ R P  2 
R P  1 k; R P  ~ (disjoint) 
SO(3) ~ R P  3 
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Notice that 
TIS, t = {WE skew I WA q- A W  = O}. 

Since ^ is an isomorphism, (7) implies that 

TISA ~ ( v E R  3 lay = (tr A) v}; (17) 

i.e., the eigenspace of  A with eigenvalue tr A. Thus, from Proposition 3.3 of [I], 
TISA consists of the axes of equilibria for I. 

Under hypotheses of non-degeneracy on the equations of linear elasticity, 
we shall prove in Sections 3, 4 and 5, the existence of the following numbers of  
solutions for the nonlinear traction problem: 

Load Type Number of Solutions 

0 4 
1 4 ~ n ~  6 
2 4 ~ n ~ 1 4  
3 4 ~ n ~  8 
4 4 ~ n ~ 4 0  

A formula for the index will be given in Section 2. In particular, this will enable 
us to determine the stable solutions which have index = 0. The key to determining 
the number of  solutions is the quadratic function Q ~ B(QI, Ql) restricted to 
sA. 

The number of solutions is related to the vanishing o f  derivatives of  real 
non-degenerate quadratic forms on RP  s, s = 1, 2, 3. In fact, using Bezout's 
theorem applied to associated cubic polynomials on the double covering, we find 
that the number of solutions branching out from RP  s in the above table is at 

3 s + l -  I 
most 2 . For  instance the maximum in type 2 is 

1 (for the single p o i n t ) +  - -  
3 3 - -  1 

- -  1 4 .  
2 

We also show that the bifurcation diagrams obtained are structurally stable; 
that is, in a sense made precise in [I] and in w 3, 4, 5, insensitive to small perturba- 
tions. Finally we note that cusps occur for loads of type 1 (see [I]) and double 
cusps occur for loads of type 2. 

The role of  symmetry in the present problem is somewhat different from that 
discussed by others. Our group SO(3) acts freely on c~ and also acts on Xe, whose 
elements play the role of  parameters. The orbit of the identity of  SO(3) in 
comprises the trivial solutions. In all the papers we have s e e n  ( G O L U B I T S K Y  & 
SCHAEFFER [1979], DANCER [1980], ARMS, MARSDEN • MONCRIEF [1981] and 
HALE & TABOAS [1980] are examples) the trivial solutions have some isotropy 
and there is still some symmetry left when one passes to a slice for the group 
action. In these problems the bifurcation equation is on the slice. In our problem 
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however, the bifurcation equation is on the orbit itself. However, when one is 
considering bifurcations in the traction problem near a stressed state or when 
the loads have special symmetries, a combination of the two methods is necessary. 
The treatment of this topic is given in Part III of this series of papers. 

Finally we note that some information in related problems can be obtained 
by the methods here. Specifically, in RlVLIN'S problem of homogeneous incom- 
pressible deformations of a cube, BALL & SCUAEFFER [1982] have continued 
RIVLIN'S original analysis by examining perturbations from a neo-Hookean to 
a Mooney-Rivlin material by using the Golubitsky-Schaeffer bifurcation theory 
for problems with $3 symmetry. Methods of the present paper enable one to 
show that for any isotropic material, the solutions near SO(3) for small tractions 
are all homogeneous and are in one-to-one correspondence with the union of 
a point with RP 2. (The tractions can be positive or negative and the material 
can be compressible or incompressible.) Details are given in Section 2, in Part III 
and in WAN [1983]. 

w 2. A Potential Function on SO(3) and Sao 

Recall from w 1 that d~/sy m is the L 2 orthogonal complement to Skew in q/---- Tfg. 
We first note that a neighborhood of 0 in qlsym yields a slice for the action of  
SO(3) in the sense that when translated around the orbit of I (which we identify 
with SO(3) itself), it becomes a tubular neighborhood of SO(3). 

2.1 Lemma. There is a neighborhood U of  0 E ~r such that the map 

0 : S0(3) • (I + U) ~ ~ ,  

defined by 

e(Q, I @ u ) =  Q-1 q_ Q - l u ,  

is a diffeomorphism onto a neighborhood of  SO(3) in ~. 

(18) 

This follows by a standard argument using compactness of SO(3) and the 
implicit function theorem; cf. Lemma 4.1 of [I]. We use Q-1 and not q in (18) 
only for consistency with [I]. 

Recall that we are seeking critical points of the function Vx~ = V given by 
(4). Let 

1Io = V o ~ : S0(3) • (I  + U) -+ R .  

Thus, if 4 ' = I +  u, then 

Ve(Q, 4)) = f W(Q- IF)dV(X)  - 2(1, Q-lob) = f W(F) dV(X) -- 2(QI, oh) (19) 

by material frame-indifference. 
Clearly (Q, qb) is a critical point of Ve if and only if Q-lqb is a critical point 

of V. 
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Next we break up the problem of finding a critical point of Vo into a transverse 
and tangential part relative to SO(3) C c~. Note that for 2 l :  O, each point of 
SO(3) is a critical point; the set of these points are the "trivial solutions". 

Now we may regard r as the gradient of  V (relative to the L 2 pairing between 
La and c~). This gradient takes values in Ae which can be decomposed into the 
two components along "~e  and Skew. In terms of Ve, we are led to the following. 

2.2 Lemma. Let (Q, 4>)E SO(3)• (I  + U). Then (Q, 4>) is a critical point o f  Ve 
i f  and only i f  

(i) ~b(4>) -- 2Ql E Skew 

and (20) 

(ii) (2WQI,  4>) = 0 for  all W E  skew. 

Proof. We have 

~W 
D~Vo . u = f --~-ff-. V u d V - -  (2QI, u )  

t* f .  
= J ( - D W _  P ) . u  d V +  _I(P" m ' .  aa - <aOt, 

= ( r  - ~Ot, u). 

This is zero for all u E O'//syrn if and only if r -- 2Ql E Skew since O~gsy m and 
Skew are L z orthogonal. 

Next, D o V  o �9 ( W Q ) = - ( 2 W Q I ,  4>), which vanishes if and only if (ii) 
holds. [ ]  

2.3 Remark. We can rephrase lemma 2.2 as follows: Conditions (i) and (ii) to- 
gether are equivalent to r : 2QI; i.e. r : 21, for 4> E I § U. It 
is instructive to see that the equivalence remains valid for Cauchy materials (i.e., 
materials for which a stored energy function need not exist). Since ~ : (Q, 4>)~-> 
Q-~4> is a diffeomorphism, T o - I ~  ~ q / :  {-Q-1W4> I WE skew} @ 
(Q-au]  uE  ~//sym}, and thus q/ ---- Q q / - -  {-W4> ] WE skew} �9 d'//sym. Hence, 
r --  2Ql : 0 if and only if 

(i)' <r -- 2Q/, u> = 0 for all u E d~Csy m 

and 

(ii)' (r --  2Ql, --W4>) = 0 for all WE skew. 

From the fact that k(r 4>) = f o dv E sym (see equation (10)), (r --W4>) 
= ( - - W ,  k(r 4>)) = 0. Thus equation (ii)' becomes - - (2WQI,  4>) = 0 for 
all WE skew. Therefore r = 2QI if  and only if conditions (i) and (ii) hold. 



Now we are ready to perform the Liapunov-Schmidt procedure on our equa- 
tion @(4) = AQl. We wish to do this in a way that retains the potential form. 
A convenient way to do this is to use the ideas in the splitting lemma of GROMOLL 
& MEYER [I9691 and the related. bifurcation theory of REEKEN [I9731 and WEIN- 
STEIN [1978]. Our construction proceeds directly as follows: 

2.4 Lemma. There is a unique function from SO(3) to I + U (shrinking Uifnecessary) 
denoted Q t+ 4, (and depending on ill) such that equation (20i) is satisfied; i.e., 

Proof. This follows from the fact that D@(Z): 42,,, -t Y e  is an isomorphism 
and from the implicit function theorem. 

Now define f :  SO(3) -t R by 

f(Q) = V&Q, 4,). 
Then we have 

2.5 Theorem. The set of sohtions of @($) = A l  in a neighborhood of SO(3) in 
% is put in one-to-one correspondence with critical points off by the correspondence 
Q - ' ~ Q  * Q. 

Proof. We have 

However, 4, was chosen to make D4 V,(Q, 4,) vanish. Thus Df(Q) = 0 precisely 
when DV, = (DQVe, D4VJ vanishes at (Q, 4Q); i.e., when DV(QP14,) = 0, 
which is equivalent to @(Q-'4,) = ill by (5). 

Recall that the index of a critical point is the dimension of the largest sub- 
space on which the second derivative is negative-definite. Now the second deriva- 
tive of V in a direction orthogonal to SO(3) is always positive-definite, by the 
stability of the elasticity tensor c and Korn's inequality (see FICHERA [I9721 
and [I, Theorem 5.51). Thus we have 

2.6 Proposition. Let Q be a critical point for f so that 4 = QL1+Q is a critical 
point for V. Then 

index (V ,  4) = index (J;  Q). 

In particular, if Q is a strict local minimum for f ,  then 4 is a strict Iocal minimum 
for v. 

A point will be called stable if it is a strict local minimum for V. If it is a mini- 
mum, but not necessarily strict, it will be called neutrally stable. 

2.7 Corollary. For 1 given andfor 1 sufJiciently small, the traction problem @(+) = ill 
has at least four solutions. One of them is neutrally stable. 
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Proof. The (Liusternik-Shnirel'man) category of SO(3) ~ RP 3 is 4, so any smooth 
real valued function on it has at least four critical points, one of which is the mini- 
mum. Now use 2.5 and 2.6. �9 

Notice that the existence of at least four solutions has nothing to do with the 
load type. However, for loads of type 0 we proved in [I] that there are exactly 
four solutions and exactly one is stable. For loads near a load of type 1 we simi- 
larly proved that the number of solutions is between 4 and 6, and at least one is 
stable. 

The load classification will enter through the following development. 
From (19) and (22) we have 

f(Q) = f W(Fo) dV(X)  -- 2(O/, 4~q), (23) 

where F o ---- Dcbo. By the construction of 4~Q, 

ep o = 1 4- 2uot q- 0(22). (24) 

where L(uo~ ) ---- (Q/)e and (Ql)e denotes the equilibrated part of q l  according 
0W 

to the decomposition ~ = Aee G Skew. Since W(1) = 0 and P(I) = ~ (I) = O, 
it follows that 

22 ~2 W 1 

q- 2 OF OF (I)" (Vuot'  Vuot)  4- 0(23)j dV(X)  

2z 
---- - -2 . /  (c(Vuot), Vuot  ) dV(X)  q- 0(23). (25) 

Also, using (15), we obtain 

( q t ,  ~b?) = ( q l ,  1) 4- 2(Q1, uo,)  + 0(22) 

= (1, QTI~ 4- 2(e(Vuqt), Vuot ) 4- 0(22). (26) 

Substituting (25) and (26) into (23) gives 

f(Q) = - 2  (1, QTI) + T (e(Vu~ Vue~? 4- OQ'2) " (27) 

Let us write u~ = uo~ o and consider the case in which I 1 -- lol and 2 are 
small. Then (27) yields the following 

2.8 Proposition. We have 

f ( ? )  = -;~ (4 QTI) + 5 -  (e(Vu~ rug> + O(~ 2) + O(4 It-- to I) �9 (28) 



374 D .R . J .  CHILLINGWORTH, J. E. MARSDEN (~ Y. H. WAN 

It is instructive to see the derivation of (28) in an abstract form. Let E be a 
Banach space with 0 E E a nondegenerate critical point o f a  C 2 function g : E---~R 
i.e. Dg(O) -~ 0 E E* = L(E, F~) and DZg(0) = TE L(E, E*) is invertible. (In 
examples, including ours, one must replace E* by a suitable Banach space in 
duality with E.) Let h : E-- ,-R be another C 2 function; then the implicit function 
theorem shows that for small 2 E R, the perturbed function g + 2h has a unique 
critical point near 0 of the form u(2) = 2u h q- 0(22): 

Og(2u h -{- 0(22)) -1- 2 Oh(2u h -{- 0(22)) ~ 0 E E*.  

Comparing terms of order 2 we find that Tuh = --Dh(O). Evaluating g -k 2h 
at this critical point gives 

22 
(g -~ 2h) (u(2)) = (g q- 2h) (0) -k 42 Dh(O) (u h) q- --f (Tu h, uh5 q- 0(23) 

42 
: g(0) + 2h(0) -- ~ -  (Tu h, uh5 q- 0(23). (27)' 

Let us apply this formula to the case in which 

E = ~ffsym and identify E* ~ L-a e via (., "5, 

g(u) = f W(I  + Vu)  dV so that g(0) = 0 and T = L I (agsym), 

h(u) ~- - - (Ql ,  1 +  u )  (so that Dh(O) = --(Ql)e and u h =  UOt ). 

Since (Tu  h, uh5-~ (C(VUot), Vuot )  by the divergence theorem, the formula 
(27)' gives the formula (27). 

Now we are ready to link this result up with Sao (see equation (16)) and hence 
with the type classification. Recall that A o = k(lo) E sym is the astatic load of l o. 

2.9 Proposition. The set Sao C SO(3) is a non-degenerate critical manifold for 
Q ~ --(lo, QTI). The index in the direction (ToSao) • is the index of  QAo -- 
tr ( Q A o) L 

Proof. See [I], Lemma 5.6. �9 

2.10 Corollary. For 2 small and I near lo, all critical points o f f (Q)  lie in an neighbor- 
hood of  Sao. 

Proof. Since Df(O) .  WO ~- - 2 ( W Q l o ,  I5 + 0(22) + O(2 ] 1 -  lo[) it follows 
that Q can be a critical point for f only if - - (WQlo ,  I5 : (Qlo, W )  vanishes 
up to 0(22, 2 II - to [) for all WE skew, i.e. Qlo E Sym (equivalently Q E Sao) 
up to 0(22 , 2 1 1 - 1 o l ) .  �9 

Because of Proposition 2.9, we are led to carry out a second Liapunov- 
Schmidt reduction. This proceeds as follows. Let N(SAo ) be a normal bundle 
neighborhood of SAo in SO(3) with fiber at Q orthogonal to ToSA o. Since the 
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1 
normal bundle is a non-degenerate direction for the second derivative of --fff(Q) 

1 
for ). small and 1I --  Io ] small, we can solve uniquely for critical points of --fff(Q) 

restricted to fibers of the normal bundle to produce a smooth mapping on Sao, 
1 

Q ~ n(Q) E (ToSao) • such that n(Q) is the critical point of ~ f restricted to 

the fiber of N(Sao) through Q E Sao. Note that n ---- 0(2) but (lo, n)  = 0(22). 

2.11 Proposition. Critical points o f f  are in one-to-one correspondence with critical 
points of 

f:SAo-- R, 
defined by 

1 
~ O )  = ~ - f ( Q ,  n(O)), (29) 

and we have 
2 

)frO) = (--l ,  QTI) -- -~  <c(Vu~), Vu~)  -t- 0(22) + 0(2 [l -- l o 1). (30) 

This proposition agrees with Theorem 7.3 of [I]; the present derivation, 
however, seems more satisfactory. The proof  of  2.11 follows from the usual 
Liapunov-Schmidt process. 

We summarize what we have obtained as follows. 

2.12 Theorem. For 2 ~ 0 small andl near 1o, the solutions of the problem q5(4~) : 21 

are in one-to-one correspondence with critical points o f f  on Sao where f is given 
by (29) and (30). The index of the solution corresponding to a critical point at Q 
is given by index (QA o -- tr (QAo) I) § index ( f  Q). 

We remark that the critical points of  the Betti form on Sao are intimately and 
simply related to the compatability conditions and series expansion methods of 
Signorini. See MARSOEN & WAN [1983] for details. 

In the following sections the leading terms in (30) will play the crucial role 
in our bifurcation analysis. As in [I], suitable hypotheses of non-degeneracy on 
the Betti form B(Q, Q): = B(Oto, Ol0) (the second term in (30)) will guarantee that 
the bifurcation diagrams obtained are structurally stable. 

There are, however, cases of interest in which the Betti form is degenerate 
and no bifurcation occurs. We conclude this section by studying such a case for 
an isotropic homogeneous material with a homogeneous load. 

( 0 ) ,  
Let us call a load "homogeneous" if l 0 = where Vo = KN, KE sym 

is a constant matrix, and N is the outward unit normal on ~N. The astatic load 
is A o ----- K(vol ~) .  

Consider an isotropic, homogeneous material with c ( e ) =  ;t trace e + 2#e 
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and with a homogeneous load 1o. One verifies that u S = e-~K, a homogeneous 
solution, for Q E Sao. Thus the Betti form B(Q, Q) is a constant on Sao, so 
we have a degenerate case. 

/ O \  
2.13Theorem. Let l o = [ K N ~ b e a h o m o g e n e o u s  load, where K Esy m .  Then 

for small 2 the solutions are homogeneous deformations ~0(2, X), parametrized in 
a unique fashion by elements Q of Sao. 

In other words, for small 2, the solution set near SO(3) has the form 
{~bo(2, X) I Q E SAo} and is homeomorphic to SA0. Thus, in this case one expects 
that "no"  bifurcation occurs in the solution set and so non-homogeneous solu- 
tions do not exist. To prove 2.13, we prepare a lemma. 

2.14 Lemma. Thefirst Piola-Kirchhoffstress P maps sym to sym; i.e., FE sym 
implies P(F) E sym. 

Proof. This follows directly from the standard representation of P for isotropic 
materials (see TRUESDELL & NOLL [1965], p. 140). �9 

Proof of 2.13. As we have remarked, A o = k(lo) = K vol (~). Now Q E Sao 
if and only if k(Qlo) = Q K v o l ( ~ ) E  sym. Let QE Sao. By the stability 
assumption (H2), DP(I) is an isomorphism of sym to sym and so by 2.14 and the 
inverse function theorem, there is a unique element Ea,o E sym such that P(I § 
2E~.o) = 2QK for small 2. Let 4~0(2, X) : Q-I(X + 2E~,oX). Clearly, 4~o(2, X) 
is homogeneous. By the Principle of Material Frame Indifference, P(QF) ---- QP(F) 
and so P(4~o(2X)) = Q-1P(I q- 2E~o) -- Q-I(AQK) = K. Hence 

- -DIV P : 0 
and 

P . N  = 2KN : 2ro. 

Consequently, 4~o satisfies the traction problem. Observe that the 4~o's are distinct 
for small 2. �9 

For  example, if K = diag (7, T, T) then Sao is a point together with RP 2, 
so the solutions in this case are in one-to-one correspondence with this set. The 
solution near the identity is easily checked to be a multiple of the identity. 

A similar theorem holds in the incompressible case, provided that cg is replaced 
by cgs=~, the volume-preserving deformations. Even with the constraint J = 1, 
the solutions are still homogeneous. For ~r ----- TN, we again may conclude that 
the solutions near the identity are in one-to-one correspondence with the set 
(I) W R P  2. (See Part III for additional details.) As is noted by BALL & SCHAEFFER 
[1982], the only homogeneous solution for small tractions near the identity is the 
trivial one. Therefore the traction problem for Rivlin's cube with small tractions 
admits a further set of homogeneous solutions in one-to-one correspondence with 
RP  2. (This set is invariant under conjugation by elements of SO(3), a fact consistent 
with the results of ADELEKE [1980].) 
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w 3. Analysis of Loads of Type 2 

For loads of type 2, we can assume that k(lo) = diag (a, a, a), where a 4= 0. 
See [I], w 6. In this case, Sao = SO(3) A sym = {1} k) RP  2. As is well known, 
Rt  ~2 has the double covering ~ I S 2 : S2-+1%P 2, defined by XF--~ 2 X X  T - -  1, 
where S 2 = { X E R  3 I IIxII = 1}. For  Y~ SAo, k(Yto) = aY (see equation (8)), 
and one denotes by u~ the solution in ~/sym to the linearized problem L(u~ = 

Ylo E s Recall from (30) that we seek to study the critical points of f ( u  = 
2 

- - ( l ,  yT1) - - T  (e(Vu~ Vu~  -/- o(141111 - to II) + 0(4 =) for Y E  S t  o = 

SO(3) {5 sym. For  small Z > 0, it is natural to study the function h(u  = I(Y) 
2 

q- Bto(Y), where I'(Y) = -~- (l, g r l ) ,  and Bto(Y) = (e(Vu~ Vu~ YE SO(3) 

/5 sym. As before, we call Bto the Be t t i f o rm  (see (14) and (15)). We can regard it 
as a quadratic form on sym. 

Fix a region ~ with unit volume. Let us first study the case in which lo has 

the form I ~ 1 7 6  ( 0 N ) ' T o  Clearly, k(lo) is the identi ty and lo is o f  type 2. 

3.1 Proposition. Given any positive-definite quadratic f o r m  B on sym, there exists 
a homogeneous hyperelastic material with a stable (i.e., positive-definite) elasticity 
tensor e, such that B = Bto the Betti  f o rm  on sym. 

Proof. Define a symmetric elasticity tensor e : sym ~ sym by (u  c -1 Y) = B(Y) .  
Set W(F)  = ~- (D ,  e(D)), where D = �89 (FrF --  1). Clearly, W(F)  is a stored 
energy function with e as its elasticity tensor. 

It is easy to verify that u~ = (c -a Y) X; that is 

- -DIV c(VUr) = O, 

e ( V u ~  = YN. 

Thus B I o ( Y ) :  (c(Vu~ Vu~ : (e(e-IY),  c - l Y )  : (Y, e - I Y )  = B(Y) .  �9 

3.2 Corollary. Given any quadratic f o r m  B on sym, there exists a hyperelastic 
material with a stable elasticity tensor such that B q- c = Blo on R P  2, f o r  some 
constant c. 

e 
Proof. Choose c large, so that B q- -~- trace ( y T y )  is positive-definite on sym. 

c 
By the previous proposition, B -+- -~- trace ( y T y )  = Blo on sym for some Betti 

form B~o. On 11~P 2 = sym A SO(3) \ (1}, this becomes B + e = Bto. �9 
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The above corollary implies that in h, B~o can in principle be any quadratic 

form B. Let us first carry out a local study of the critical points of fl. Given any 
YoGRP 2, we can write Y o =  Q diag (1, - 1 ,  --1) QT for some QCSO(3).  

Thus the linear map Y~-~ Q yQT leaves RF 2 invariant, leaves the form of 
invariant, and sends diag (1, -- 1, -- 1) to Yo. Therefore, without loss of generality, 

we take diag (1, --1, --1) as a typical point near which to study h ~ l +  B~ o. 
Let us use a local chart 

where 

x y 1 ) 
rb-~(x, Y) : 9  l/1 _3f_ x2 ~ y 2 ,1/1 _~ x2_~_ y 2 , i /1  _~_ x2_}_ y 2 , 

where 9 : S 2 --~ ~-~2 is the double covering defined earlier and where we identify 
R P  ~ : 0 ( $ 1 ) ,  and S 1 : { ( x , y ,  0) E S  2 I x  2 + y 2  : 1}. 

Set 

f~(x, y) --- h(~-~(x, y)) = r21(2XXT -- r21) + B(EXXT -- r21) ~(x, y) where 
r 4 - -  r 4 , 

r = r -~ X 2 ~_.y2 and X T --~ (x, y, 1). Thus, ~eis a polynomial of degree ~ 4. 

3.3 Lemma. Given any polynomial s y) o f  degree ~ 4, there exists a quadratic 
form B on sym such that ~(x, y) -~ B ( 2 X X  T -- r21). 

Proof. Consider the linear map of the set of quadratic forms B on sym to the set 
of polynomials ~ in x, y of degree ~ 4 given by ~(x, y ) ~  B ( 2 X X  T -  r 2 1 ) .  

Let 
x _ y2 _ 1 2xy 2x \ 

Y = 2 X X T  - -  r21  ~ 2xy y2 _ x 2 _ I 2y ) . 

2x 2y 1 - -  X 2 - -  y2 

By symmetry considerations, it suffices to observe that 1, x, x 2, xy, x 3, x2y ,  X 4, 
x 3 y ,  x2y 2 are the images of B1, B~ . . . . .  Bx2y, defined respectively as follows: 

B I ( Y )  = (Y l l  ~-2Y22.)2 ' Bx2y(Y) -- y12y:3 
4 ' 

B~(Y)  = (Yl l ~____2Y22)(2..~3) . Bx,(Y) ~-  ( Y 2 2  _~Y33. )  2 ' 
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Given any function g defined near a point X, j(4)g(X) denotes the 4 th order 

Taylor polynomial of g at X. Consider a function h in the form h(x, Y) _ ~(x, y) 
r 4 

for some polynomial ~ of degree ~ 4. 

3.4 Lemma. (a) j(4) ]/(0) can be any polynomial ~(x, y) o f  degree <= 4. 

(b) I f  j(4)-h(O) : c, a constant, then h = c identically. 

Proof. (a) Define ~ = j(4)(r4~/) ( 0 ) .  Thus j(4)(r4(h - -  ~])) ( 0 )  = j ( 4 ) ( ~  __ r4~/ )  ( 0 )  = 0 ,  

w h i c h  implies j ( 4 )  h ( 0 )  = t].  

(b) ~ -- cr 4 =j(4) [ r4( / /  - -  C) (0)] = 0. Thus h -- cr4 
r 4  - -  C. �9 

Combining Corollary 3.2 and Lemma 3.3, we obtain a description of the possi- 
ble singularities of tt on RP 2. 

3.1 Proposition. (a) The 4 th order Taylor expansion o f  ft at any point Y in RP 2 
can be arbitrary. 

(b) I f  j(4) -h(Y) = c, a constant, then h ( Y )  = c identically. As  usual, h (Y )  = 
2 -2-(t, YT1) + (e(Vu~ Vu~ 

Next, we consider global aspects of the function f on RP 2. Denote by /-I = 
{It ] h = 7 § B} the space of polynomials of degree ~ 2 on sym, which vanish 

at the origin. Define Z = {h E / t  I h(Y) on RP 2 has a degenerate critical point}. 

Thus h E z0 \ Z' if and only if/~ is a Morse function. Clearly, the bifurcation 

se tS i s  a closed set invariant under the actions O �9 h(Y) = 7t(OYO-*),  0 E S0(3) ,  

and 2.  h(Y) = 2h(Y), 2 E R. 

3.5 Proposition. Z' is a semialgebraic set o f  codimension ~ 1 in [-1. 

Proof. Consider the polynomial m a p ~ : / ~ r • 2 1 5 2 1 5  3 given by 
(h, X ,  tz) v-~ ( X T X  - -  1, D x ~ )  , where Le(X, #) = h(0(X)) +/z(XTX - -  1) 
stands for the Lagrangian function with multiplier #. Since 9 [ $2 is a local diffeo- 

morphism onto RP 2, by varying l i n  h ---= )" + B and X, one sees that the map 
has {0} as a regular value. Thus gJ-l({0}) is an algebraic manifold with the same 

dimension as ~r. The critical point set Z of the projection zr : k~-l({0}) -+ H, 
~r(h, X, #) = h, is {(ft, X,/z) E YJ-~((0}) [ det Dx,  ~ ~ = 0}, and zr(~) = z~. 
Therefore, by the Seidenberg-Tarski theorem and Sard's theorem, our proposi- 
tion follows. �9 

Next, we want to estimate the number of critical points for /~ = l ' +  B not 
in 2?. 
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c(e) = e - -  ~-- d iag  (e l , ,  e22, e33) ---- (e U) - -  -~- 

W e  shall  show tha t  

3 . 6 E x a m p l e .  Let  ~ Q R  a be a region with unit  volume.  S e t / o - ~  ( 0 N ) a t y p e 2  

load  where N is the ou tward  unit  no rma l  vector  a long ~M. Consider  a hyperelas t ic  
mater ia l  with elastic tensor  

/e,, 0 0) 
1 1 

t~ �9 0 C33 

(~) 

a n d  

B,o(Y ) = ( y ~ ) z  + (Y22) 2 + (yaa) 2 + (Y,  Y) 

(/3) h = Bto is a Morse  funct ion on R P  2 with 13 crit ical po in ts .  

Proof .  (~) F o r  

and  so 

Y E sym, we have 

u~(x) = (c -~ Y) x 

Bto(Y) : ( Y ,  c - a Y )  : ( Y ,  Y q- diag Y)  (since c - I y  = Y q- diag Y) 

---- (Y,  Y)  + (y11) 2 + (y22) 2 q- (yaa) z. 

(fl) W e  use the  me thod  o f  Lagrange  mult ipl iers  to  find the  cri t ical  points  o f  
B = Bto on R P  2 (or  of  B o ~  on $2). Set 

= [(X 2 __ y2 __ 22)2 ~t_ (y2 __ X2 __ 2.2)2 _~_ (Z2 __ X2 __ y2)2 _~_ 3] 

+ / ~ ( x  2 + y2 + z 2 _ 1). 

Then  the condi t ions  for  a crit ical po in t  are 

~qx = 4x[ 3x2 - -  yZ _ z 2] + 2#x = 0, 

.CPy = 4y[3y 2 - -  x 2 - -  z 21 q- 2#y ----- O, 

s z = 4z[3z 2 _ x 2 _ y2] + 2/zz ----- O, 

x 2 - k y z + z  2 _  1 = 0 .  

I t  is easy to  see this system has  the fol lowing solut ions:  

1 
(x, y, z) = vx-'-~ + y2 + ~ (~, ~, z--), 

where  x, y, z = 0, 1, or  - -1  except  (~, ~, ~) = (0, 0, 0); consequently,  Blo on 
R P  z has  exact ly  13 cri t ical  points .  [Fur ther  computa t ions  show tha t  Bto is a 

1 
Morse  funct ion,  having 4 cri t ical  poin ts  O(x,y, z), x, y, z = 4- - ; = - o f  index 2.] 

g 3  
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3.7 Proposition. The number c(h) of critical points for a Morse function of  the form 
= l +  B on RP 2 (i.e., h~ S) is between 3 and 13. 

Proof. (o 0 for R P  2, the Betti numbers o v e r  Z 2 are bo = 1, bl = 1, b2 = 1. 
By the Morse inequality, we have mo -? ml q- m2 ~ bo q- b~ + b2 ---- 3, where 

mi is the number of  critical points of index i. Now c(h) = mo + m~ q- m2, so 

c(h) > = 3. 
(fl) Set L a = [ ( 2 X X  T - 1 ) + B ( 2 X X  T - 1 ) §  with X T =  

(x, y, z). 
The equations for critical points are: 

.o~ax= Tx d- Bx q- 2#x=O,]  

.oq~y= ly q- By + 2 # y =  O,~ 

.L,r = ~ + B: q- 2/~z ----- 0,[  

X2-~'Y2 -}-Z2-- 1 = 0 "  / 

Consider the homogeneous system (31) in x, y, z, ~ over the complex field C,: 

1" -}- B* + 2r2x = 0, 

1" -k- B* -}- 2~2y ---- 0, (31) 

U + B* + 2•2z = 0, 

where l* + B* is obtained by replacing each constant term A in ix -t- Bx by 

A(x 2 + y2 + z2), etc. Clearly, z~ = {ft I the system (31) has degenerate ray solu- 
tions or a solution in the form (x, y, z, 0)} is an algebraic set. The previous ex- 

ample 3.6 shows that ~ is proper (i.e. z~ =/= I~). Thus by introducing a perturba- 
tion, if it is necessary, one may assume that the system (31) has only simple ray 
solutions and that they are not in the form (x, y, z, 0). By Bezout's theorem, the 
system (31) has exactly 27 ray solutions. Now each critical point ( i x ,  q-y, 4-z, #) 

gives rise to two ray solutions (4-x, + y ,  q-z, ), 4- l/~) of the system (31). Since 

(0,0,0, 1) is always a solution of  the system (31), 2c(h) + 1 ~ 27 or c(/~) __< 13. �9 

Our main result on global bifurcation from ]I~P 2 is as follows. 

3.8 Theorem. Let lo be a load of  type 2. Assume that the Betti form Blo(Y) is a 
I l l  - -  lo l l  

Morse function on RP2. Then for 2 > 0, and ~ small, the number of  critical 

points o f f  on R P  2 is between 3 and 13. Therefore, our traction problem has be- 
tween 4 and 14 equilibrium solutions. 

( 2)_ 
Proof. The function -- -~- f is a small perturbation of  the Morse function Bt o, 

with 3 ~ c(Bto) ~ 13 by Proposition 3.7. �9 
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We note that as ;t and I are varied, the solutions vary smoothly. In particular, 
as 2 - +  0 the solutions tend to the critical points of  the Betti form on Sao. 

By Proposition 3.1 (a)double  cusps can occur as singularities of  the Betti form 
Blo. E.g., suppose that Bto = x 4 + kx2y 2 --~ Y'* (with k < --2). Then this double 
cusp accounts for 9 critical points. Since its gradient has vector field index --3, 
R P  2 must have 4 other critical points, so that the total number of  critical points 
is the maximum permitted. Thus the existence of (a certain type of) double cusp 
at one point in R P  z imposes strong restrictions over what happens elsewhere 
on R P  2. 

w 4. Analysis of Loads of Type 3; Parallel Loads 

As in w 3 we can, without loss of  generality, take k( io )= diag (0, 0 , - - c )  
where e :4: 0. In this case, Sao is a union of two circles: Sao = C L/C*,  where 

and 

From Section 2, we have 

yx0 i) l X 2 -~- .1, '2 = 1[ 
- u  t u ~ + v 2 = 1 

01 

~ O )  : - < t ,  q ~ l >  - T < c ( V u ~  Vu~,> + o ( I a  I II t - toll) + o ( z ~ ) .  

We now regard the Betti form B(Y) = (c(Vu~ Vu ~  as defined on the linear 

,'(i  r!)r s p a n /  d of  the union C U  C*. Therefore we can write 

01 
= lalx2 + a2xy  + aay 2 + a4x  --~ a s y  + a6, 

B(Q) [a~u 2 + a~uv + a*v ~ + ,,*u + a*v + ,~, 

For  small 2 > 0, one needs to examine the function 

Q ~ c ,  

QE c* .  

2 
h(O) = T  <t, oT1) + B(O) 

[o~aX 2 + o~2xy -{- ocay 2 -{- 0r -~- 0r + 0% on  C 

L~x 2 + ~ x y  + ~y2 + ~,:x + ~*y + ~ on  C*.  
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At this point, it is useful to recognize that the bifurcation problem for type 3 loads 
from the circle C or the circle C* is formally the same as that for type 1 loads 
analyzed in [I, w 8]. 

For  a local study of the critical points of h on C (or C*), we may assume that 
u 1 

( y ) = ( 1 0 )  (or  ( v ) =  ( 0 ) ) i s  a critical point of h or equivalently 

O~z q- ocs ---- O (or ~* § o~' = 0). Thus, in terms of polar angles 0 and ~p on 
the two circles, 

-t- higher order terms in 0. 
~= 

+ + + 

+ higher order terms in % 

In other words, folds and cusps can be the singularities of/~. 

For  a global study of h orJ~ we may assume oc2 = 0 and o~* = 0. This can 
be achieved by rotations in the (x, y) plane and the (u, v) plane separately. 
Carrying out the same analysis as that for type 1 loads in [I], we obtain the bifur- 
cation set: 

2 2 2 

[2(o~ 1 - -  o~3)1 ~ = o~I + ~ 
o r  

Alternatively, A �9 A* ---- 0, where 

A = [2(0r 1 --  o~3) 2 --  or -- or ~ -- 108o~2o~2(o~1 --  0r 2 

and 

A *  = [ 2 ( ~ *  - ~ ) 2  _ ~ 2  _ ~ , 2 1 3  _ 1 0 8 ~ , 2 ~ , ~ ( ~ ,  _ ~)~. 

One could phrase our results on loads of type 3 in terms of generic bifurcations 
with corresponding bifurcation diagrams. However, in keeping up with the 
other results on bifurcation in this Part II, we shall be content with the following 
version. 

4.1 Theorem. Let k(lo) = diag (0, 0, --c), c ~ 0, and suppose that B(Q) is a 
Ill - lo l l  

Morse function on C k) C* (i.e., A �9 A * =~ 0). Then, for  small 2 and 

small 2 ~ O, the number o f  equilibrium solutions o f  our traction problem is between 
4 and 8. 

The next example shows that the upper bound 8 is indeed sharp. 
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4.2 Example. Let the reference configuration & be the unit ball in R 3 with the 
load lo -- (Bo, To) where ro ---- diag (x, x, - - c , )  N, c,  =t= 0, and where Bo = 
(--1, 0, 0). Consider a homogeneous hyperelastic material with the elasticity 

i diag e. tensor e(e) = e -- 

Direct computations show that IOE6r and k(lo) + diag (0, 0, -- ~ - -~)  . 
~ t 

Thus lo is a load of type 3. We claim that 

(~x) B ( Y ) =  

and 

8 ~  2 8 
T5(2s + 5 t  2) + T  c2.' where Y = (i ' 

S 

0 i) 
8~r 2 8 c2,, "i-ff(2u + v 2 ) + - ~  - where i n 

0 - -  

E C ,  

E C*, 

@ B has 4 critical points on C and 4 critical points on C*. 

Proof. To each 

set 

c y ( x )  = 

Y =  d 

0 

(ax  +byCXO cxli) O w , where Xr(x, y, z) T E ~ .  

There exists exactly one displacement field ur  (which is linear + quadratic) 
such that e(Vuy) ---- cr.  It is easy to establish that 

and 

where 

- -DIV (c(Vuy)) = YBo 

c(TUy). N = Y*o, 

1 
.-~ (VUy + Vu T) (X) = ev(X) = e-~(cr(X)) ---- cy(X) + diag Cv(X) 

0 0 -- 2c, w /  
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Consequently, 

B ( Y )  = (e(Vur) ,  7 u r )  ---- (e(Vur) ,  e r )  

8~ 2 d2 8n = ]-~ [a + (b -- e) 2 -t- q- c2] "q- T C2W2" 

This proves (00 and (fl) follows from it. �9 

4.3 Remarks. (1) It is not hard to see that the Betti form is a constant for a homo- 
geneous material (isotropic or not) with a "homogeneous" load of  type 3 (i.e., 
B o = O ,  T o = K N  for some KEsym) .  See Theorem 2.13. 

(2) A special class of loading of type 3 is given by the non-trivial parallel 
systems in which the load vectors are a scalar multiple of a fixed vector. For  such 
loads, the Betti form has to be a constant by symmetry. A study of  our traction 
problem in this degenerate case will be given immediately after the next remark. 

(3) Combining remarks (1) and (2), one realizes that to get a non-trivial ex- 
ample for homogeneous material with a loading of type 3, one must take a non- 
homogeneous and non-parallel system of loadings of type 3 (like the one in 
Example 4.2). 

We now examine a special class of loads of type 3, which occur very frequently 
in the literature. 

4.4 Definition. A load I is called a parallel system of loads if l(JO = f ( X )  a, where 
f :  ~ ~ R, 0 @ a E R 3. A parallel system 1 is said to be non-trivial if  

f =  f f(x) X dV + f f(X) X dA 4= O. 

4.5 Proposition. Let  lo be a equilibrated load, parallel to a E R a, a ~ O. Then 
the load lo is non-trivial i f  and only i f  it is o f  type 3. 

Proof. Suppose lo is of type 3. Then k(lo) = (ai~) 4 = 0 and so lo must be non- 
trivial. On the other hand, suppose the equilibrated load lo is non-trivial. Then 

the symmetry of k ( l o ) =  (ai~) implies that ~ = - - c a i  for some non-zero 
number c. Therefore, k(lo) = (--caiaj) = - -ca  | a. The matrix - -c (a  @ a) 
has eigenvalues 0, 0, --c[la][ 2, with eigenvectors 1), q, a in which p and q are 
orthogonal to a. Hence the equilibrated load l o is of type 3. �9 

For  a non-trivial parallel load lo, there exists a built-in symmetry in our 
traction problem with l = lo. Without. loss of generality, let us take the equi- 
librated load 1 o parallel to the z-axis. Clearly, the isotropy group of  Io, namely 

{Q E S0(3) [ QI o = 1o} = x x 2 ~_ y2  = 1 , is the circle group 

O - -  
S 1. By the material frame indifference of the stored energy function IV, and 
by the identity g- l lo  = to for gE S 1, the potential function V(~b) = f W(F) d V  
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-- (2lo, $) is Sl-invariant (i.e. V(gcb) : V(r for g E S~). The action g .  (Q, r 
: (Qg-~, cb), for g E SO(3), makes the map ~ equivariant (see w 2). Hence the 
function Ve : V o~ is also Sl-invariant under this action. 

4.6 Proposition. (a) The function f ( Q ) =  Ve(Q , r on SO(3) is Sl-invariant 
under the action g .  Q : Qg-1 for gE S 1. 

(b) SAo consists of  two Sl-orbits C and C*. 
(c) I f  an Sl-invariant normal bundle is used in the construction o f f  then f 

also becomes Sl-invariant on C kJ C*. 

Proof. (a)Since ~bog_l : ~b O for g - l E  S 1, we get 

f (g" Q) = Vo(Qg -~, 4'Qg-,) = Vo(Qg -x, ~bQ) = Ve(Q, ~bO) = f ( Q ) .  

(b) Straightforward computations imply that SAo = C W C*, where 

C = S x �9 1 and C* = S 1. --1 . �9 

0 0 -- 

From Section 2, we know that the set of equilibrium solutions for our trac- 

tion problem is in one-to-one correspondence with the critical points of)~ By (b), 

(c) of the proposition above f must be a constant on C and on C*. Thus every 

point in CW C* is a critical point o f f .  Therefore we obtain: 

4.7 Theorem. Let l o be an equilibrated non-trivial parallel load. Then, for 2 > 0 
small, there exist exactly two circles of  equilibrium solutions to our traction problem. 
One of  them is (neutrally) stable. 

The theorem above is a global, geometric version of a theorem of STOPPELLI 
(cf. Theorem I, p. 58 in GRIOLI [1962]). 

w 5. Analysis of  Loads of Type 4 

For loads of type 4, k(lo) = O, Sao = SO(3), and f = - - ( l ,  Q T 1 ) -  
2 

-~-(e(Vu~), Vu~)  + O([21 Ill -- lo[D + 0(22). Thus one needs to consider the 

2 
function h(Q) = L(Q) + B(Q), where L(Y)  = ~ ( l ,  yTI )  and B ( Y ) =  

(c(VU~ 7 u ~  the Betti form on M3. We start our investigation by considering 
linear and quadratic forms on Ma. It seems plausible that any quadratic form B 
on M3 can be the Betti form for some hyperelastic material (cf Corollary 3.2 in 
w 3). We do not prove this, but we do construct enough Betti forms to obtain 
sharp bounds on the number of solutions. 

The standard double covering o ] S a : S a - +  SO(3) is defined in terms of 
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a quadratic form ~ on 1~ 4. This is described as follows: Let 

H ~- (X  = Xo + ixa + ix2 + kx3), the quaternions, 

and 

~a, --- ( x c  ~ l IlXll 2 = ~ + x~ + xg + x~ = 1), the unit quaternions. 

Identify H~ with S 3 in t{ 4 and {ix~ q- ix2 q- kx3 [ xl, x2, x3 E R} with R 3, in 
an obvious way. To each X E H, define 

9(X):R  ~-+lq, 3 by q ~ X q X  

('X : Xo -- ix~ -- ix2 -- lex3 is the conjugate of X). 

Then ~(X) is well defined and q(X)E SO(3) for  X E  H~. Indeed, 

Xo + ix1 + ix2 + kx3 

( xo ~ + x, ~ - x l  - x~ 2(x1~2 - x0x3) 2(xo~2 + ~1x3) \ 

(z~lx~ + ~ox~) ~o - x~ + x~ - x~ 2(x~x3 - xox,) ] .  
I 

2(x, x3 -- XoX2) 2(XoXl -k x2x3) x~ -- x~ -- x~ -k x],/ 

For a local study of  critical points, we use a local chart 4~ : SO(3) \ •p2 _+ R3 
(where R P  z ---- e(S 2) : SO(3)/5 sym \ {1)) so that ff-l(x, y, z) = 

"(1 d - i x q - j y +  " 'Kz) where r = ] / 1  + x  2 - ? y 2 q - z  2. For  YoESO(3),  the 
e r 

linear map Y ~-> Yo Y leaves SO(3), the form of B invariant, and sends the identity 
to Yo. Without loss of  generality, we can assume that 4~-1(0) = diag (I, 1, 1) 
is a typical point of  SO(3). 

Let 

r2L(o(1 + ix + ]y + kz)) § B(9(1 -k- ix + jy  + kz)) 
f,(x, y, z) = ~(~- ' (x ,  y, z)) - r"  

8(x, y ,  z) 
F 4 

Hence ~ is a polynomial of degree ~ 4 depending on L and B. Conversely, we 
have 

5.1 Lemma. Given any polynomial ~(x, y, z) of  degree <: 4, there exists a quadratic 
form B on M3 such that 

8(x, y, z) = B(9(1 + ix q- jy  -t- kz)). 

Proof. We have dim ( B I B  is a quadratic form on Ma} = 45, and dim (~ [~ is 
a polynomial in x, y, z of degree ~ 4) = 35. Now B lies in the kernel of the linear 
mapB~- -~  defined via ~ ( x , y , z ) = B ( Q ( l q - i x q - j y q - k z ) )  if and only if 
B ISO(3 ) = 0. Thus it suffices to prove that d i m ( B I B  is quadratic, and 
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B [ SO(3) ---- 0} ----- l0 (---- 45 -- 35). In fact, a basis of the kernel can be given 
explicitly as follows" 

y~ xUxit(j < t), y~ xiixsj(i < s), 
i i 

Z x?l - -  Z x22' Z X2i2 - -  Z x23' Z x 2 i -  E x2i, and E x2i - -  Z x2i' 
i i i i i i i i 

where B : (xij). �9 

5.2 Lemma. (a) The 4 th order Taylor expansion j(4)h(0) of h(x, y, z) at 0 can be 
any polynomial ~(x, y, z) of  degree ~ 4. 

(b) I f  j<4)h(O) : c, then ~h : c identically. 

The proof  of this lemma is basically the same as that of Lemma 3.4 and so we 
omit the proof. 

Using these two lemmas, we obtain the next proposition, which provides a 

description of the singularities of h on SO(3). 

5.3 Proposition. (a) I f  the Betti form can be any quadratic form o n  M 3 for loads 
N 

of type 4, then the 4 th order Taylor expansion of h at any given point X in SO(3) 
is arbitrary. 

(b) I f  j(4)fffX) = c, a constant, then h(X) ~ c identically on SO(3). 

2 
Recall that here h(Q) ----L(Q) + B(Q) : --~-(I, QTI) =(c(V/./~),V/./~). 

Now let us consider the global aspects: 

Denote by /~ = (/Tt ] h ---- L + B} the space of polynomials of degree ~ 2 

in M3, vanishing at the origin. Define 27 = {h E H ] h(Y) -~ L(Y)  + B(Y) on 
SO(3) has a degenerate critical point}. Replacing the double covering S 2 --~ Rt  ~2 
in the proof  of Proposition 3.5 by the double covering S 3 -+ SO(3) here, we 
obtain a proof  of the following: 

5.4 Proposition. The set S is a semi-algebraic set of  codimension ~ 1 in ffI. 

Now we want to estimate the number of critical points for h = L + B not 
in S. 

5.5 Example. Consider a hyperelastic material with elasticity tensor e ( e ) =  
e - k / ~ d i a g e  where --1 </~,  which occupies the unit ball in R 3. Let l o =  
(Bo, do), with Bo = (--1, --1, --1), and d o = ( X  2,y2,z2). Since k( lo)=O, 
this load is of type 4. We claim that 

(1) The Betti form Bto(Y)=-ff f t - -2(yuq-yZ2+Y~3)-~ + Y>}, 

and 
(2) h ( Y ) =  B~o(Y ) is a Morse function on SO(3), with 40 critical points. 



Symmetry and Bifurcation in Elasticity. Part II 389 

To prove (1), let Y = (y/j), and consider 

{ Yi lX--Y21Y--YalZ  y21x-~Yi2Y 

cy(X)= ~ yElx-~yl2y  - -y l zx@Y22y--Y32 z 

\ Yaix-~ylaZ YaEY~-y23z 

yaxx+YiaZ ) 

yazy+Y23Z 

--YlaX--y23yq-YaaZ 

It is easy to see that there exists exactly one displacement field u r  (which is 
quadratic) such that c(7Ur) = cr. 

Since 

1 
T ( V u y  + guwy) : ey : c-l(c(Vu~)) 

ylax -- Y21Y -- YaaZ 
1 + / *  

= y21x q- Yl2Y 

Y31X q- YlaZ 

yzxX'~-ylzy 

--Y122"~-yZzy--Y32 Z 
1 §  

Ya2Y-~y23z 

\ 
YalX 4- yl3z 

Ya2Y q- Y23Z l 

--yaax -- YzaY -Jr- Y33 z 
1 + #  

a simple computation shows that 

--DIV (e V u r )  = YBo,  

e(Vur) .  N = Y~o. 

Thus 

Blo(Y) : (c(Vuy), Vuy} : <c(VUy), ey> 

1 2 (2 1 
~- k { ~  i T - ~ y i i -  ~ i~] ~- 1--~) y~/j} , where 

4az( z (2 q - 1 - ~ )  (Y' " 

k = f x  2 dV  

To prove assertion (2), we use the method of Lagrange to find the critical points 
of Blo on SO(3) or equivalently of Bto ~ ~ on S a. 

Set 

L _ 4~15 { 2[(x2 %- Xl 2 -- x 2 -- x2) z -k (x 2 q- x 2 -- x~ -- x2) 2 

+ ( x  2 q - x  2 - x } ~ - x 2 )  2 ] -  2q-  3 q-2(Xo 2 q - x  2q-x2 z q - x  2 -  1). 



390 D.R . J .  CHILLINGWORTH, J. E. MARSDEN & Y. H. WAN 

Thus 

32 [15 x, 3x 2 -- ~] + 22x, ---- 0, i : 0, 1, 2, 3, 
j ~ i  

~ ] x 2 ~  1. 
i 

It is easy to see that this system has the solutions 

1 
(Xo, x,,  x~, ~ )  = r  + x~-" + zg + x~-" (xo, xl,  x2, X3), 

where x i = 0 , 1  or --1, i = 0 , 1 , 2 , 3 ,  except (Xo, Xl, Xz, X3) = (0, 0, 0, 0). 
Consequently, Bat on SO(3) has exactly 40 critical points. Further straightforward 
computations show Bit is a Morse function, having 8 points (Q(xo + ix1 +ix2 + kx3), 
xi = 4-~-) of index 3. Indeed, replacing 2 by #2, we see from Bezout's theorem that 
our system Lxi = 0, i = 0 . . . . .  3, has exactly 81 solutions in xi,/z including multi- 

plicity. Since our system has 81 solutions, the multiplicities have to be 1, so each 
ray solution is simple. 

5.6 Proposition. The number c(~h) of critical points for a Morse function of the form 
= L + B on SO(3) (i.e., / ~  27) is between 4 and 40. 

The proof  of this proposition is basically the same as that of Proposition 3.7. 
Thus we omit the proof. 

Our main result on the global problem is the following: 

5.7 Theorem. Let lo be a load of  type 4. Suppose the Betti form Bto(Y) is a Morse 
II l - to II 

function restricted to SO(3). Then, for 2 ~ 0 and -----if--- small, the number of 

critical points f o n  SO(3) is between 4 and 40. Therefore, our traction problem has 
between 4 and 40 equilibrium solutions. 

( Proof. The function --  ~ f is a small perturbation of the Morse function B~0, 

where 4 <= c(Blo) ~ 40 by Proposition 5.6. �9 

Finally, in this section, we analyze our problem for a non-zero parallel system 
Io of  type 4 (i.e. k(lo) = O) and l = lo. Without loss of generality, we can assume 
that lo is parallel to the z-axis. Thus the isotropy group of lo, namely 

{O ~ s o ( 3 )  I Oft = to} is 

the circle group. 

yx 
0 L + y 2 =  1 = S  1, 
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Clearly, the function V(~b) is Sl-invariant, i.e. V(~b) = V(g~b) for all g E S ~. 
The action g-  (Q, 4>) -- (Qg-~, ok), gE SO(3), makes the map equivariant. 
Thus the function Ve is S~-invariant under this action. 

5.8 Proposition. (a) The function f (  O) : Ve( Q, cbo) is Sl-invariant under the action 
g .  Q : Qg-1 for g E S 1. 

(b) There exist at least two invariant circles of  critical points o f f .  

Proof. (a) Since, ~bog_l = ~b o for g-1 E S l, 

f (g"  Q) = Vo(qg -~, chos ,-1) :- Ve(Og-', ~o) = V0(Q, ~bq) - - f (O) .  

(b) From (a), it suffices to say that f has a maximum and a minimum on 
SO(3). �9 

Remark. The action of S 1 on SO(3) via g-  Q : Qg-~ is free, and the orbit space / ~ S0(3)/S ~ is diffeomorphic to S 2 via [Q] ~ Q 0 . The circles ofcriticalpoints 

1 
of f on SO(3) correspond to the critical points of an induced function f on 
SO(3)/S 1 ~ S 2. One expects that an example with exactly two circles of solutions 
for our problem does exist. 

From the expression f ( Q ) = - - - ~ , ( c ( V u o ) , V u o )  + 0(22) given in w 

(here u 0 = u~, l = to, and (lo, QT1) = 0), oneneedstoexaminetheSl-invariant  
function (c(Vuo), Vu@ on SO(3). Notice that here L(VUK) = Klo since 
k(Klo) = Kk(lo) = O. 

5.9 Proposition. Let to be a non-zero parallel system of type 4, parallel to the z-axis. 
Then 

(a) Q E SO(3) is a critical point of  (c(7uo) , 7 u o )  i f  and only i f  

k(qlo,  uo) = fe(VuQ) Vu~ dVE sym. 

(b) The Hessian of  (e(Vuo), VuQ) is given by 

1 
--~ a~(WO) = ~e(Vuw~o), 7uQ) + ~e(Vuwo), Vuwo) 

o r  

1 
T ~ ( Q W )  = (e(VUQw0, VUQ) + (c(VUQw), VOQw>. 



392 D . R . J .  CHILLINGWORTH, J. E. MARSDEN & Y. H. WAN 

Proof .  F o r  W E skew, 

<e(VlleWtq) , VUeWtq> = <e(Vuq), r u e )  -~- 2<e(VUwo), 7 u o )  t 

+ ((e(VUw:q) , 7 u q )  q- (c(7Uwo), 7Uwo)} t 2 + O(ta). 

Since (e(Vuwo), Vuo> = <WOlo, u o) = - - (W,  k(Olo, uo)>, Q is a critical 
point  if and only if k(Ol o, uo) E sym. That  k(Olo, uQ) = f c(Vuo) VuXo dV 
follows f rom the divergence theorem as usual. �9 

Let S 1 �9 Q be a circle o f  critical points. Then ~ Q - 1 0 ---- 0, and 

0 0 
the nullity o f  ~ is ~ 1. The Hessian J(f is said to be non-degenerate if the nullity 
o f  ~ is 1. 

5.10 Theorem. Let l o be a non-zero parallel system of type 4 (parallel to the z-axis). 
Suppose that S ~ �9 Q is a non-degenerate circle of  critical points of  (e(Vuo),  VuQ> 
on SO(3). Then for small 2 > O, the traction problem q~(~b) = 2l o has a circle of  
solutions Slqb near S 1. Q. 

Proof.  It  suffices to observe that  

f(Q) 1 
~. --  2 (e(VuQ), VuQ) + 0(2), for 2 > O, 

and to use elementary results in equivariant differential topology. �9 

5.11 Example.  Consider a homogeneous  hyperelastic material with elastic tensor 
c(e) = e - -  ff diag e, and with reference configuration ~ the unit ball in R 3. 

l~ (~ t Let to = (Bo, %) be the parallel load with Bo ~ 0 on N, and ~o = 

1 z 2 

on ~N. Clearly, k(lo) = 0. We claim that  (1) the circles of  critical points o f  
(e (Vuo)  , VuQ) on SO(3) in the orbit  space SO/S 1 ~ S 2 correspond to the nor th  

pole S ~. 1 , the south pole S 1- --1 , and the equator  ; (2) 

0 0 - -  

the invariant circles S 1 �9 1 , S ~ �9 - -  1 are non-degenerate, with 

0 0 - -  
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Hessians of  index 0. Therefore ,  for  small 2 > 0, the t ract ion p rob lem has solu- 

(!~176 l(! itl / t ions S ~  with 4~ near  1 , - -  1 , and t s 2 + t 2 = 1 . 

0 0 - -  0 
(There are at least two of  the last form.)  

Proof .  (1) T o  each Y = (YU), set 

0 ylazX~ 

cy(X)  = ~ 0 y f fz] ,  

yaaz Y2aZ 
where h-~--ylax--yzay+yaaz.  

Then  there exists exactly one (indeed, quadrat ic)  displacement  field ur ,  such tha t  
e (Vuy)  = c r.  Clearly 

- - D I V  c ( 7 U ) r  = YBo, 

e(VUr)  �9 N = Yvo, 
and 

Vuy = e-l(c(Vuy)) = e(Vuy)+ (~  
\o 

0 

0 

No te  tha t  if  q = (gij), then 

o 

f e(VuQ) Vu~ dV : f c2o dV + f e 0 dV 
0 

! 0 glagaa f z 2 dV~ 

= f c b  dV+ 0 g23gaa f z 2 dVJ.  
0 fh2dV / 

Thus  f e(Vuo) vu~, dVE sym if and  only if (a) 
or  (b) gaa  = 0. 

(2) Direct  computa t ions ,  using the fo rmula  

g13 : g23 : O, gaa = 4-1 

1 
-~- J ~ ( Q W )  : (c(VUQwO, VuQ)  -]- (c(VUow), VUQw), 
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give 

and  

- ~ , ~ ( Q W ) : - - ~ ( 2 a  2 -[- 2b 2) where W ---- 0 , 

- - a  

Q - ~ I  or - -1  . �9 

0 - -  
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