
Journal of Intelligent Information Systems, 3, 185-203 (1994)
(g) 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Representation of Highly-Complex Knowledge in a
Database

AVIGDOR GAL AVIGAL~,.~IE. TECHNION. AC. I L

OPHER ETZION IERETZN~IE.TECHNION.AC.IL
Information Systems Engineering Group, Faculty of Industrial Engineering and Management, Technion-Israel
Institute of Technology, Haifa 32000, Israel

ARIE SEGEV SEGEV@CSR.LBL.GOV
Haas School of Business, University of California and Information & Computing Sciences Division, Lawrence
Berkeley Laboratory, Berkeley, CA 94720, USA

Abstract. This paper presents a unified framework for representing highly-complex knowledge in a database as
a new paradigm for handling large and complex information in an easy and efficient manner. The framework
provides a database with the capabilities to support next generation databases for decision support systems
through the use of derivation rules, temporal information, knowledge from multiple sources with different
measures of quality and epistemic knowledge. The model integrates concepts from both the database mad the
artificial intelligence disciplines.

Keywords: Complex Information Modeling, Intelligent information systems, Temporal databases, Active
databases

1. Introduction

Data stored in database management systems (DBMSs) are supposed to represent por-
tions of the real world for the use of computerized applications. Most DBMS models
and tools were designed to support information with relatively simple structure, thus lim-

iting the scope of applications that can be naturally supported by this technology. This
restriction has become an obstacle with the increasing sophistication of applications such
as decision support systems and the need for fast applications development. The lack
of support for highly complex knowledge in DBMS products either deters organizations
from developing such applications or forces system developers to create ad-hoc solutions.
The latter case is usually not general enough to be reusable; it is also expensive, t ime
consuming and hard to verify.

This research is intended to bridge the gap between current DBMS technology and
the technology required to support applications which use highly complex knowledge.
The proposed strategy is to extend the database schema to include various types of meta
data that will enable to represent complex knowledge and reason about it. The main
components of these meta data entities that were identified in the context of decision
support systems are:

Derivation Rules: rules that derive the value of a data item as a function of values of
other data items.

186 GAL, ETZION AND SEGEV

Temporal Knowledge: time points or intervals that are associated with each data item.
Examples: the time point in which the value becomes known or believed, an interval
during which the value is believed to be valid etc.

Data Quality: knowledge about the quality of each data item's value; this knowledge
may either be related to the information source or be specified according to some
ordinal scale.

Epistemic Knowledge: different concurrent viewpoints of the same knowledge.

The use of these meta data entities as DBMS primitives extends DBMS functionality.
This extension enables to capture complex decision support systems in a more natural
fashion using high level language and structure.

The model presented in this paper is aimed to support the different elements discussed
above, where each element is called a dimension. The PARDES model (Etzion, 1993a)
that supports the first requirement (derivation rules), was chosen as a basis, while other
requirements are extensions of this model. Each data item is represented in the database
as an ordered pair < d, e > where d is a data item and e is the extension of a data item,
including knowledge associated with the different dimensions.

We assume an append-only database where changes can occur to data, meta-data, rules
and constraints. Any of those changes can also be retroactive or proactive. The active
property of the model is more general than the common active databases approach of
Event-Condition-Action (ECA) (McCarthy, 1989) in that it allows a general definition
of statements called invariants (Etzion, 1993a). These statements enforce the database
to maintain consistency at all times without the need to explicitly define the triggering
events. The work done so far in other studies, as will be shown in Section 1.2, did not
introduce suitable solutions to problems resulting from integrating the above elements in
a database.

The construction of a model supporting all these elements is not a trivial extension
of existing models. This was demonstrated in (Etzion, 1994), where the combination of
active and temporal database functionalities are discussed.

1.1. A motivating Example

As a motivating example we present an application that requires the combination of both
active and multi-dimensional knowledge in a database. The case study is based on the
Cournot game (Tirole, 1989); (Cournout, 1997):

There are three manufacturers of instant coffee (Snowhite, LRR (Little Red
Ridinghood) and Goldilox) that have to decide each month on the quantity to be
produced for the following month. Each manufacturer makes the decision about
its production quantity based on its assessment of the quantities produced by
other manufacturers (Estimated-Production), its own strategy (maximum revenue,
a certain market share etc.) and general knowledge about the market's behavior.
Each manufacturer has its own deadline for the production decision.

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 187

We assume in this paper that there is a single market price for this type of instant
coffee that is determined periodically as a function of the total quantity produced in that
period, and that the following equation represents that function:

Total-Quantity * Market-Price = Market-Constant

Historical information is needed in order to obtain an accurate estimation of the Market-
Constant.

Each manufacturer attempts to estimate its competitors' decisions prior to making its
own decision. For example, a s s u m e that all three manufacturers have an objective
function of maximum revenue. Each of the manufacturers wants to manufacture
as much as possible, yet without decreasing the price of the instant coffee to such
a level that would cause a decline in its total revenue. If Snowhite knows the
competition's strategy of both LRR and Goldilox, it can estimate their production
decisions, and maximize its revenue through an optimal production decision.

The use of the different dimensions in the manufacturers' domain is demonstrated in
the following examples:

. The production decision of each manufacturer is derived using an algorithm that is
automatically triggered by the modification of the estimated production of any of the
manufacturers.

2. In order to assess the competitor's decisions, a manufacturer needs to have the in-
formation that was available to a competitor at a given time point.

3. A new information regarding a competitor's Estimated-Production may re-activate
(possibly proactively) the production decision algorithm.

4. Information may arrive from many sources, each of them has a different reliability
level. A measure of confidence based on past performance is associated with each
of them.

. Each competitor should be able to reason about a data item as it is known by other
manufacturers. For example: In Snowhite 's da t abases , it is recorded that a
knowledge-item c~ about Snowhite is known to LRR since May 1992 and to
Goldilox since July 1992. LRR is believed to refer to c~ as a fact, while Goldilox
is believed to assign c~ a certainty value of 0.5.

1.2. Related work

The active aspects of databases have been investigated in research such as (Dayal, 1988),
(Etzion, 1993a), and (Stonebraker, 1991). Active databases extend the modelling capa-
bility of a database schema by adding the rule construct. A rule is a database element
consisting of two major components: the trigger component and the action component.
The trigger component defines the prerequisites for the execution of the rule's operational

188 GAL, ETZION AND SEGEV

part. Most of the current active database research follow the E-C-A (Event-Condition-
Action) architecture (McCarthy, 1989) in which the triggering component consists of
two parts: event detection and condition evaluation. The action component contains the
operational part of the rule applied in most contemporary active database models as a
database operation or a user defined program.

Temporal semantics was dealt with in works on temporal databases, such as:
(Clifford, 1987); (Navathe, 1989); (Gadia, 1988); (Snodgrass, 1987); (Su, 1991);
(Rose, 1991) and many others, yet the capabilities of the model with the presence of
retroactive and proactive updates have not been investigated. Most of the research in
this area focused on the structural semantics, assuming that the update process is ap-
plied either in a procedural manner (Wuu, 1992) or as part of the retrieval language.
Some models (such as (Ariav, 1986); (Shoshani, 1986) and (Wiederhold, 1991)) enforce
a single value for each time point. As a result, a mechanism to handle retroactive and
proactive updates is either disabled or applied in an unnatural manner.

Information quality has been discussed in the context of AI, motivated by the fact
that in the absence of information quality, decisions are taken based on an inaccurate
or an out-of-date data ((Bonoma, 1985); (Johnson, 1990) etc.). The majority of research
efforts on information quality has focused on providing quality indicators (Jang, 1992),
data about data, from which the information quality can be derived. The decision-
analytic approach (e.g., (Keeny, 1976)) and utility analysis under multiple objectives
(e.g., (Chankong, 1983)) describe solution approaches for specifying preferences and
resolving multiple objectives. The preference structure of the user is specified using an
hierarchy of objectives. Through decomposition of objectives the hierarchy is reduced
to a single value. The decision-analytic approach assumes the existence of continuous
utility function. Later research (Jang, 1992) lessens this requirement to local dominance
relationships between quality parameters.

Reasoning about the world is contingent on the reasoner's knowledge known to those
who process the reasoning. This knowledge is referred to as epistemic knowledge. Re-
search of the ability to identify the epistemic knowledge and to maintain conclusions
based on this knowledge, are mostly based on different versions of non-monotonic logic
((Gardenfors, 1988); (Poole, 1988); (Levesque, 1989) etc.). For example, in
(Levesque, 1989), two modal operators are defined, B and O, where Bo~ is read as "c~
is believed" and Oa is read as "a is all that is believed". These operators are used to
develop a proof theory, by which derived knowledge is maintained, based on epistemic
knowledge.

The combination of the temporal and active aspects has been investigated in (Su, 1991);
(Wuu, 1992); (Edera, 1993) and (Sistla, 1993). The OSAM*/T presented in (Su, 1991) is
an object-based temporal knowledge representation model which combines update rules
with temporal characteristics, extending the object oriented model OSAM* (Su, 1989).
Rules are used to capture temporal semantics other than the valid start and end times
of a tuple. Corrections result in overwrites or deletions so in this model information
may be lost. The combination employs restricted update protocol, with no proactive and
retroactive updates. Another model which do not allow proactive and retroactive updates
is the model presented in (Sistla, 1993), which combines temporal triggers in a database.

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 189

The update is done by replacing the current value with a new one, adding the old one to
the history of the variable. Issues related to processing rules where the event component
is a temporal calendric expression are discussed in (Chandra, 1993) and (Chandra, 1994).

The model presented in (Wuu, 1992) describes a database supporting a planning sys-
tem; it is based on the EER model in which the database components change states as
a result of external events. Unfortunately, the active part uses an imperative language,
thus reasoning about the application's flow is not possible. Furthermore, the well docu-
mented problems of imperative programming (time consuming, difficult to verify etc.),
(Abiteboul, 1988) and (Gal, 1992), are still present in this model.

An interesting work regarding performance issues is presented in (Edera, 1993); it
extends a technique for incremental recomputations of active relations (Qian, 1991) to
handle temporal active relations.

An example of a combination of several aspects of the data is given in ((Gadia, 1993)).
In that paper data has spatial, temporal and belief aspects organized in a relational
database. Unfortunately, the relational model, due to it simplicity and the normalization
processes, can hardly satisfy a semantic model of this sort and would probably require
a lot of unnecessary maneuvers to maintain the required functionality. The lack of the
active aspect significantly decreases the functionality of the model.

As a conclusion, there is no unified model that combines all of the above aspects along
with sufficient database support and decision tools. Despite having useful parts of the
required solution, current models cannot properly support the functionality we require.
nevertheless some of them contain useful ideas for the required solution.

2. The data model

2.1. The basic model

This Section introduces briefly an active object-oriented database model that follows the
ideas of the PARDES model (Etzion, 1993a) as a basis for the temporal extension.

A database consists of a collection of objects. Similar objects are instances of the same
class, while classes are organized in a generalization lattice. A class definition contains
the specification of properties that are applicable to its instances, along with their types.
An object has a set of associated variables, each variable is an instance of a property. A
variable state is a value belonging to the range of the relevant property, bounded to the
variable. The value can be an atom, a set, a sequence, a tuple or a reference to another
object. An object state is a set of all its variable states. Although each object has a
unique object identity, for convenience reasons, an object is identified by a subset of
the object's state. This subset is referred to as the object identifier.

Figure 1 shows the database schema of a manufacturer's knowledge about manufac-
turers (including itself).

Periodic-lnfo and Global-Periodic-Info are nested properties that consist of the required
information for each production period.

190 GAL, ETZION AND SEGEV

class=
properties=

Class =
Generalizations =
Properties =

class=
properties=

Manufacturer
Name
Unit-Cost
Competition-Strategy
Periodic-lnfo:set of"

Period
Estimated-Production
Actual-Production
Decision-Deadline

Self
Manufacturer
Periodic-Decision: set of"

Production-Decision

Global-Knowledge
Globa1-?eriodic-Info: set of"

Period
Total-Quantity,
Market-Price
Market-Constant

Class = Competitor
Generalizations = Manufacturer

Figure 1. Schema of Manufacturer Knowledge

Sel f and Competitors are specializations of Manufacturer. They inherit all the properties
of Manufacturer; in addition Sel f contains the property Periodic-Decision, designating
the decision as derived by the system's rules.

The underlined property Name is the object-identifier of the class Manufacturer. Global-

Knowledge is a singleton class, hence no object-identifier is required.
Competit ion-Strategy denotes the strategy by which the manufacturer makes its decision

(example: maximum revenue). In the "self ' case, this strategy is the actual competition
strategy while in the competitors case it is only a conjectured one.

Estimated-Production represents the estimated production quantities of the competitors
and Actual-Production is the actual production decision as known for that period in
retrospect.

A class description describes the structure of its instances. A partial example of an
instance of the class Manufacturer in Snowhite 's database referring to LRR designating
Snowhite 's knowledge about LRR is presented in Figure 2.

The rules in our example are shown in Figure 3. The rules are expressed in the form
of invariants. An invariant is a declarative definition of dependencies that should hold
for any instance in a consistent database.

Rules (dl) and (d2) are data driven, that is, any change in one of the derivers (e.g.,
Competitor.Estimated-Production in (dl)) requires recalculation of the rule. Rules (d3)

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 191

Class= Competitor
Name= LRR

Unit-Cost=6
Periodic-lnJb :

Period=Dec 1991
Estimated-Production =280
Actual-Production=280
Decision-Deadline=Nov 1991

Periodic-lnfo:
Period=Jan 1992
Estimated-Production=260
Actual-Production=280
Decision-Deadline=Dec 1991

Figure 2. An Instance Example

Derivations

(dl) Competitors-Total-Estimation := sum(Competitor.Estimated-Production)
(d2) Production-Decision :=

sqrt(Market-Constant*Competitors-Total-Estimation/Unit-Cost) -
Competitors-Total-Estimation
when Competition-Strategy = max-profit

(d3) Total-Quantity := sum (Actual-Production)
(d4) Market-Constant := avg(Total-Quantity*Market-Price)

Constraints

(cl) LRR.Production-Decision_<600

Figure 3. Rules Definitions

and (d4) are even t dr iven, that is, they are calculated as a response to an event. Events
are not shown in Figure 3, but an example event is End-Of -Per iod . After the event is
specified it can be attached to more then one rule, in our case to (d3) and (d4).

(dl) sums, for each manufacturer, the Estimated-Production of all its competitors.
The formula presented in (d2) is the result of maximizing the revenue function of each
manufacturer. Different goal functions would yield other formulae.
In (cl) the production quantity of LRR is limited to 600 units per period.

192 GAL, ETZION AND SEGEV

Manufacturer Dec 1991

LRR 280; 300
Goldilox 300; 350

Figure 4. Estimation of Production Quantities

2.2. Variable States and Extensions

In our framework, unlike a conventional database where each variable has a unique
value, several values of the same variable (with different dimensional characteristics)
can coexist simultaneously.

VS(c~) (variable state of a variable c~) is a sequence of pairs representing different
variable's values. The symbol c~ designates a variable of a given object; each pair is a
state-element.
A state element is a an ordered pair < d, e > designating the combination of data and
the knowledge associated with it. d is the variable's value and e is the extension.
The extension is the set of all the dimensional variables associated with the value.
A dimensional variable is a set of variables associated with a particular dimension.
Example: (source, confidence value) is the dimensional variable associated with the
quality dimension.

Figure 4 displays a table of Snowhite's estimations of its competitors' production
in December 1991. Values of each manufacturer's Estimated-Production are all state
elements of the variable Estimated-Production. Along the temporal dimension we
might have different values of Estimated-Production, for example, for LRR, the two
values may be the history as we see it from the observation time December 1991, where
the value 280 represents a belief in September 1991, and 300 represents the change of
belief in December 1991. Along the quality dimension we might have different values
as well; for example, we know Snowhite's estimation of Goldilox's production is 300
units, but a reliable informer notified Snowhite that the production is 350 units. 300 and
350 are both values of Estimated-Production that had the same temporal value, yet
each one of them has a different value in the quality dimension.

In some cases, two or more state elements overlap in the sense that several values
can be retrieved as a result of a query. For example, the result of the query: "What is
Snowhite's estimation of Goldilox's production quantity for December 1991 ?" could
be either 300 or 350. There is no trivial way of deciding which value is the "correct"
one. Furthermore, queries may yield different results when executed with respect to
different observation times.

In order to select the desired value among overlapping state elements a preference re-
lation has to be devised. Different assumptions may yield different preference relations.
Preference relations may be defined according to various criteria: the source of informa-
tion, a confidence value that is associated with the information, temporal information etc.

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 193

For example, a preference relation with respect to the temporal dimension, introduced in
the context of active temporal databases (Etzion, 1994), is based on the assumption that
a data item c~ is preferred to a data item/3 if it was decided at a later time. It represents
the belief that knowledge monotonically improves with time, and that all the previous
decisions are available when a later decision is made, thus a later decision is based on
a better knowledge than an earlier one, and can override all previous decisions. The
support of several dimensions requires a combination of preference relations from dif-
ferent dimensions (such as temporal and quality dimensions). For example, if a database
retrieval operation selects data items based solely on their decision time, it might chooses
a data item with very low confidence value, rather then a less current but more reliable
data item.

2.2.1. The Dimensional Variables

Each aspect of the data is represented by a dimensional variable, which is a set of
variables defining the dimension. In this section we describe the different dimensional
variables:

The Temporal Dimension: The fundamental assumption is that for each object, several
time types (Snodgrass, 1986) are required to model the desired functionality. A basic
set of time types, as defined in (Etzion, 1994) consists of:

Transaction Time (tx)- The commit time of the transaction which updates the vari-
able state.

Decision Time (td) - The time in which the variable's value has been decided in
the database's domain of discourse.

Valid Time (tv) - The time points in which the decision maker believes that this
value reflects the object's value in the real world. ~v is expressed by a temporal
element (Gadia, 1988) which is a time-point or an interval [~s, ~] or a collection
of intervals and time-points. If tv is an interval, it is believed that the object
value is constant in this interval. This case has been classified as stepwise change
(Segev, 1987). Other possible cases are discrete events change where the value
is defined only in given time-points and continuous change where the value
changes continuously according to some function. In this paper we consider the
stepwise case only, while the other cases are natural extension of this discussion.

Observation Time (~o)- a time point associated with a retrieve operation that des-
ignates the time point from which the retrieve operation is viewed.

These time types are restricted by the following constraints:

1. t8 _< t~. (negative intervals are not allowed).
2. t~: > t~. (decisions cannot be speculated).
3. to <_ NOW() . (future observation times are undefined).

194 GAL, ETZION AND SEGEV

The temporal dimensional variable is a set of variables that represent transaction
time, decision time and valid time. Observation time is discussed in Section 3.

The Quality Dimension: The quality dimension associates a data item with its source
and the degree of confidence in it. The dimensional variable is a set of the following
variables:

Source (c~)- an identifier of the source that provided the information. A source may
denote a specific agent, or a general source such as: a newspaper, a rumor, an
industrial espionage, inside information, etc.

Confidence value (Cv)- a value which designates the degree of confidence in the
variable's value, expressed in some ordinal scale such as [0,1]. The confidence
value may be attributed to the source; in this case, the confidence values of all
the information provided by a certain source are defaulted to a given value.

The Epistemic Dimension: The epistemic dimension associates a knowledge item with
a set of viewpoints. Each of this viewpoints is assumed to have access to the
knowledge item, possibly under certain conditions.

The dimensional variable of the epistemic dimension is a set of pairs As. Each pair
at C A~ is of the form <w, cond>, where w is a world and cond is a condition.

A world is a collection of viewpoints. Each viewpoint may belong to a single
world. For example, in our case study the knowledge of LRR is a world and so is
the knowledge of Goldilox.

A condition is an assertion that restricts the accessibility to the knowledge only
when the assertion is satisfied. For example, the condition ~x < (N O W () - 1)
stands for the fact that a world is entitled to a knowledge item only one month
after it was committed in the database. The default condition is "null" designating
unconditional accessibility. A condition may refer to variable values as well as
dimensional variables such as temporal types (~ , ta and t~), confidence values (ca
and c~) or members of As. Circular conditions are considered as a system design
error.

Worlds are ordered in an inheritance lattice. The lattice imposes a partial order
relation denoted as _<w, that is, ?J31 ~w ll)2 stands for the fact that wl inherits all the
knowledge accessible to w2.

2.2.2. An Example

Figure 5 presents an example of state elements. All state elements consist of a value and
dimensional information. The state elements sl and s2 belong to the variable Est imated-
Product ion of LRR in the Period December 1991. The state elements s3, s4, s5 and s6
belong to the variable Es t imated-Product ion of LRR in the Period January 1992.

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 195

Period=Dec 1991
Estimated-Production:

(sl) 280, tz=Oct 1991, td=Sep 1991, tv=lSep 1991, oc)
e~=LRR, cv=l, As = (< Snowhite , null >, < LRR, null >,
< Goldilox, (tx < (N O W () - 1)) >)

(s2) 300, tx=Nov 1991, td=NOv 1991, tv=[Dec 1991, co)
cs=LRR, cv=l, As = (< Snowhite , null >, < LRR, null >)

Period=Jan 1992
Estimated-Production:

(s3) 260, ix=Oct 1991, td=Sep 1991, tv=[Sep i991, ec)
es=LRR, ev=l, As = (< Snowhite , null >, < LRR, null >,
< aoldilox, (t~ < (N O W () - 1)) >)

(s4) 250, tx=Nov 1991, td=Nov 1991, t~=[Oct 1991, ec)
e~=LRR, ev=l, As : (< Snowhite , null >, < LRR, null >)

(s5) 270, tx=Nov 1991, td=NOv 1991, tv=[Nov 199l, ec)
es=Snowhite, Cv=0.8, As = (< Snowhite , null >,
< aoldaox, (t~ < (N O W 0 - 1) >))

(s6) 500, tz=Dec 1991, td=Dec 1991, tv=[Nov 1991, oc)
cs=rumor, ev=0.7, As = (< Snowhite , null >)

Figure 5. The Estimation of LRR's Production

3. Retrieving highly-complex knowledge from a Database

As demonstrated in Figure 4 and Figure 5, a single variable may include more than
one state element. The functionality of operations in a highly-complex knowledge envi-
ronment requires filtering out some state elements or creating new state elements based
on the aggregation of existing ones. The automatic elimination of state elements using
predefined preference relations is especially important for novice users, which do not
comprehend the complicated processes involved in query processing of such a database.

In our model we use a single primitive named filter, introduced in Section 3.1, to select
state elements based on a given selection criteria. The existence of a single primitive
eases the task of query optimization (see Section 3.2). On the other hand, the use of a
single primitive as a query language is tedious, hence a higher query language that is
automatically translated to filters is required. An example of such a query language in
the temporal active context is discussed in (Etzion, 1993b).

3.1. Multi-dimensional Filters

A substantial amount of work has been done on the optimization of queries in databases.
Alas, these optimizers assume the simple structure of the relational model, whereas op-
timizers for databases that support complex objects are still evolving (Lanzelotte, 1992).
Since our model employs a very complex structure, our goal is to simplify the retrieval

196 GAL, ETZION AND SEGEV

mechanism in order to ease the task of optimizing queries. In this section we shaw a
retrieval mechanism that is based on a single retrieval primitive, called filter.

A filter is a function that maps a set of state elements to a set of state elements based
on a given condition or operation. A filter is defined as:

f (sse , a r g) : s s e - - * s s e l

where sse and ssel stand for a set of state elements and arg stands for an argument
that is passed to the filter. Each filter has an associated f o (filter operation). Operation
types that are associated with filters are SELECT and GENERATE. 1

sse may be the entire database or a result of another filter. In all the examples
(unless mentioned otherwise) we assume that sse is the set of all state elements of the
Estimated-Production of Manufacturer LRR's production for the period of January 1992
as presented in Figure 5.

3.1.1. Atomic Filters

.

Variable Filters: (VF) returns a set of state elements of variables included in a
variable list vl and satisfying a set of conditions cored.
VF." arg=<vl, cond>; fo=SELECT {s C v I v E vl A v satisfies cond}. Example:
VF(DB, Estimated-Production,
{Manufacturer-Name=LRR, Period=Jan 1992})=
{s3, s4, s5, s6} where DB stands for "the entire database".

Temporal Filters:

Observation Time: (OT) is a filter that defines a variable state relative to an obser-
vation time to to be the collection of all state elements that were committed until
to (persisted in the database no later than to). Decisions that were made prior
to to but not committed in the database by ~o are not included in OT. The use
of observation time enable us to phrase queries about what would be the result
of a retrieval operation if it had been issued in a given time point that is not
necessarily NOW(). Queries of this type are useful in applications where tracing
of decisions or actions relative to a given knowledge is required. Examples of
such applications are auditing systems and decision analysis systems.
OZ" arg=to; fo=SELECT {s [tx(s) <_ to}. Example:
OT(sse, Nov 1991)={s3, s4, s5}

Relevant Time: (RT) is a filter that selects all the state elements whose validity
intervals intersect with a giyen temporal element tt.
RT." arg=h;fo= SELECT {s I tz n t~(s)) r 0}. Example:
RT(sse, [Aug 1991, Oct I991))={s3, s4}

Periodical Average: (PA) is a filter that creates new state elements whose values are
calculated by averaging the values of all state elements with overlapping validity
time. tv of the created state element is the intersection of tv's of the participating

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 197

state elements. Let t ,u~ : min(t s (se)) I se E sse; t~a~ : max(t~(se)) I se E
88e.

PA." fo=GENERATE state-elements { q l , . . . , qn} s.t.

(A) T = { r l , . . . , % } is a partition on the set of time-points TR where V~ E T P :

~min ~ ~ <_ ~max.

(S) Vt~,tb C Ti : [Vse �9 sse I t~ �9 tv(e) ~ tb e tv(Se)].
We denote the set of all se satisfying this condition as S E i

(C) Vi : t~(qi) = %.

(D) Vi: value(qd = avg <se (val e(e)).

Example: PA(sse)=

(ql) 260, tv=[Sep 1991, Oct 1991)
(q2) 255, tv=[Oct 1991, Nov 1991)
(q3) 320, t~=lNov 1991, co)

In this example we omit the rest of the extension variables.

3. Quality Filters

Weighted Average: (WA) is a filter that creates a new state element whose value is
calculated by averaging the values of all state elements based on their confidence
measure, c . of the created state element is the average of e~'s of the participating
state elements.

WA." fo=GENERATE state-element q s.t.:

(A) v a l u e (q) = ~s~'css~vaz~e(~)*ct'(~)

Example: WA(sse)=307, ev:0.88.

4. Epistemie Filters

Observer View: (OV) is a filter that selects all the state elements that are accessible
from a certain viewpoint (v).

OV: arg=v; fo= SELECT {s I Bat E As(s) , 3w' : v C w' Aw' <-w a t .wAa t . cond
is satisfied}. Example:
OV(sse, Goldilox)= { s3, s5}.

3.1.2. Compound Filters

The complex retrieval task requires the use of compound filters, non-atomic filters that
uses the results of other filters. A compound filter is represented either in an explicit

f o r m u l a or in the form of:

198 GAL, ETZION AND SEGEV

e f (sse , argl, arg2. .. , argo) = f l (f 2 (. . . (fn(sse, argn) , . . . , arg2), argl)

where f l , - �9 f~ are basic or compound filters and argi represents the argument list of
the i-th filter.

The following compound filters are useful in both retrieval and update processes.

Candidate State Elements: (CSE) is the set of all state elements in time t as observed
in time to by a viewpoint v, that is, all the state elements, as known in to by v, such
that t is included in their validity interval. Since knowledge is usually referred in the
context of viewpoint and observation time, this filter is essential in many queries.
CSE(sse, t, to, v)=OV(RT(OT(sse, to),t,v))). Example:
CSE(sse, Nov 1991, Nov 1991, GoIdilox)={s3}.

Multi Accessible Filter: (MAF) is the set of all state elements accessible to several
viewpoints. Let vl = {Vl , . . . , v~} be a sequence of viewpoints.
MAF(sse, v l) = N ~ v z OV(sse , v). Example:
MAF(sse, {LRt=i, Goldilox}) = {s3}.
MAF can be used to check the knowledge coordination of a group of competitors
and discover de-facto cartels.

Temporal Average: (TAG) is a filter that creates a new state element whose value is
calculated by exponential smoothing of the historical state elements 2. TAG can be
used for the calculation of the Market-Constant as defined in Section 1.

TAG(sse, coef t~, t~) =
coef * [V(tm) + (1 - coef) * V(~m-1) + (1 - eoef) 2 . V (t m - 2) + . . . + (1 - eoef) m- 2.
v(t2)] +
(1 - coef) m- I * V(t3),
where t l = t~,t,~ = t~, V(t i) = value(qi ~ PA(sse) It E tv(qi)) 3.
Example: TAG(sse, 0.5, Sep 1991, November 1991)=289.

The filters mentioned above are only a subset of the filters needed for retrieval and
update operations and often new filters need to be defined. A new filter is defined either
by an explicit definition of the f o and the arg (e.g., TAG) or by using existing filters
(e.g., CSE). In the latter case, the definition of f o and arg is implied by the predefined
filters.

3.2. Improving retrieval time of highly-complex knowledge

In this section we observe the special properties that should be considered while opti-
mizing queries in this model.

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 199

3.2.1. The database level

The database model defined in this paper has two outstanding properties:

. The database is an append only one. Due to this property, we can maintain in a single
database all its previous versions. This is done using the transaction time attached
to each state element in the database and the observation time filter that returns only
the relevant knowledge as of a certain time point.

2. For each data item in the database, in order to persist its dimensional knowledge
values, the required storage space is considerably larger than the space required for
representing a data item in conventional database.

The combination of these two properties implies that the type of storage media should
support high quantities of data, fast retrieval capabilities and no in-place update capabil-
ities. An optical storage media may be used to satisfy these requirements.

3.2.2. The object level

The dimensional variables have the following properties:

I. Due to the append only property, the data items are ordered in the database according
to their insert time (tx).

2. Some of the dimensional variables (c~ in the confidence dimension and w in the
epistemic dimension) usually have a small domain set of values.

. Although Cv has an infinite domain set of values, for practical purposes it can be
transformed into a small set of ranges. The granularity of these sets is application
dependent.

4. We assume that there is a close relationship between ~x and td, that is, tx - ta < M,
where M is an application dependent constant.

These properties enable developing specific optimization mechanisms that cannot be
applied on general data. For example: the values of dimensional variables such as e~ and
w can be pointed instead of actually being written in the extensions of all the relevant
state elements.

3.2.3. The filter level

Optimization of filters compiler can be performed by replacing the order of filters' eval-
uation. For example, consider the CSE filter:

CSE(sse , t, to, v) = O V (R T (O T (s s e , to), ~, v)))

200 GAL, ETZION AND SEGEV

In the CSE case, the database first filters out state elements based on the OT filter. This
is appropriate, since the data are physically ordered according to the tx. However, if we
define a new filter, CSE~:

CSE'(sse , to, t, v) : OV(OT(RT(sse , t), to, v)))

we cannot rely on the physical order.
In this case, since the result of the CSE' filter is equal to the result of the CSE filter,

we can use the CSE filter instead of the CSE' . This type of filter is called a commutative
filter:

Commutative filter ef(sse, arg l , . . . , argo) = /1 (. . . (fn(sse, argn) , . . . , argl) is a
filter that for each two atomic filters f~, f j E ef: f i (f j (sse, argj), argi) = f j (f i (sse ,
arg{), argj)

Not all filters are commutative. For example, VSE is a compound filter, used in the
update process, to determine the preferred state element among several state elements:

VSE(sse , t, to, v) = C P (T P (C S E (s s e , ~, to, v)))

where TP (Temporal Preference) is an atomic filter that chooses the state element with
the higher td and CP (Confidence Preference) is an atomic filter that chooses the state
element with the higher confidence value.
Based on Figure 5:
CSE(sse, Nov 1991, Dec 1991, Snowhite)=s3, s4, sh, s6
VSE(sse, Nov 1991, Dec 1991, Snowhite)=s6.

Note that VSE is not commutative, since TP(CP(CSE(sse, Nov 1991, Dec 1991,
Snowhite)))=s4. VSE is a semi-commutative filter:

Semi-commutative filter
e f (sse, a rg l . . . , argo) = s (f~ (sse, argo) , . . . , argl)
is a filter that for some k < n, fk(. . . (fn(sse, argn) , . . . , argl) is a commutative filter.

In this example, the VSE is semi-commutative filter since CSE is a commutative filter.

4. Conclusion

This paper has presented a unified framework for representing a highly-complex knowl-
edge in a database. Such a model extends the capabilities of database technology to cope
with applications that use derivations rules, temporal information, and knowledge from
multiple sources with different measures of quality and epistemic knowledge. The model
enables the support of features which we believe are essential for the next generation of
decision support and decision management systems. Notable features that are supported
by this model, and are not easily supported by contemporary models are:

1. The ability to "go back to the past" and reason about the information that was
available to a decision maker at that time.

2. The ability to issue retroactive updates, and get an automatic propagation of the
consequences over the temporal space.

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 201

3. The ability to group data items according to different criteria, such as epistemic and
quality.

4. The ability to evaluate data using intra-dimensional criteria as easy as inter-dimensional
criteria in the retrieval process.

The number of applications using these features increase with the introduction of collab-
orative or competitive decision support systems, and intelligent auditing systems. These
applications are currently implemented using conventional technologies that require the
user to use self defined procedures to achieve these functionalities. Furthermore, in
many cases the application's functionality is compromised due to conceptual or technical
limitations.

Tile introduction of this framework is only one step in a long way. Further extensions
to this research include:

1.

.

Extending the model to support adaptable extension, by eliminating some dimensions
and defining new ones (such as space).

Devising a complete query language and inference mechanism using the data and the
dimensional variable.

.

4.

Extending the active temporal database update algorithm to support multi-dimensional
update.

Dealing with performance issues. This includes a variety of optimization problems,
such as: storage management, detecting possible cases of incremental updates, us-
ing flexible transaction protocol to allow asynchronous subtransactions and query
optimization based on the observations given in Section 3.2.

Acknowledgements

The case study was adjusted with the help of Dov Monderer.
The work of the second author was supported by the fund for the promotion of research
at the Technion.
The work of the third author was supported by NSF Grant Number IRI-9000619 and
by the Applied Mathematical Sciences Research Program of the Office of Energy, U.S.
Department of Energy under Contract DE-AC03-76SF00098.

Notes

1. The GENERATE operation creates virtual state elements, for query uses only. Modification of the database
is done through the update mechanism.

2. Exponential smoothing is a weighing method giving exponentially higher weights to more recent periods.
3. The result of PA assigns each t to a unique qi.

202 GAL, ETZION AND SEGEV

References

Abiteboul S.- Update, The New Frontier, Lecture Notes on Computer Science, 326, pp. 1-18, 1988.
Ariav G.- A Temporally Oriented Data Model, ACM Transactions on Database Systems, I](4), pp. 499-527,

Dec 1986.
Bonoma T.V.- Case Research in Marketing: Opportunities, Problems and a Process, Journal of Marketing

Research, 22, pp. 199-208, 1985.
Chandra R., Segev A., - Managing Temporal Financial Data in Extensible Databases, Proceedings of the 19th

International Con[erence on Very Large Databases, Dublin, Ireland, Aug 1993.
Chandra R., Segev A., Stonebraker M.- Implementing Calendars and Temporal Rules in Next Generation

Databases, Proceedings of the IEEE Conference on Data Engineering, Houston, Texas, February 1994.
Chankong V., Haimes Y.Y.- Multiobjective Decision Making: Theory and Methodology, New York, N.Y.:

Elsevier Science, 1983.
Clifford J,, Crocker A. - The Historical Relational Data Model (HRDM) and Algebra Based on Lifespans,

Proc. International ConJerence on Data Engineering, pp. 528-537, Feb 1987.
Cournot A. - Researches into the Mathematical Principles of the Theory of Wealth (ed. N. Bacon), Macmillan,

New York, 1897.
Dayal U., Buchmann A.E, McCarthy D.R. - Rules Are Objects Too: A Knowledge Model for an Active

Object-Oriented Database Model, Proc. 2nd lnt'l Workshop on Object-Oriented Databases, pp. 140-149,
Sep 1988.

Edara M.L., Gadia S.K.- Updates and Incremental Recomputation of Active Relational Expressions in Tem-
poral Databases, Proceedings of the International Workshop on an lnJrastructure J~)r Temporal Database,
Arlington, TX, June 1993.

Etzion O. - PARDES-A Data-Driven Oriented Active Database Model, SIGMOD RECORD, 22(i), pp. 7-14,
Mar 1993a.

Etzion O., Gal A., Segev A - Decision Support using Temporal Active Database, Technion - Israel Institute of
Technology, Technical Report ISE-TR-93-5, Nov 1993b.

Etzion O.,Gal A., Segev A - Retroactive and Proactive Database Processing. Proceed. RIDE- ADS 1994.
Gadia S.K.- The Role of Temporal Elements in Temporal Databases, Data Engineering Bulletin, 7, pp. 197-203,

1988.
Gadia S.K. - Parametric Databases: Seamless Integration of Spatial, Temporal, Belief and Ordinary Data ,

SIGMOD RECORD, 22(1), pp. 15-20, Mar 1993.
Gal A., Etzion O.- Updating Databases with an Invariant Language, Technion-lsrael Institute ~/' Technology,

Technical Report ISE-TR-92-4, Feb 1992.
Gardenfors E, Makinson D.- Revisions of Knowledge Systems Using Epistemic Entrenchment, Proc. 2nd

Conference on Theoretical Reasoning About Knowledge, 1988.
Jang Y., Kon H.B., Wang R.Y.- A Knowledge-Based Approach to Assisting in Data Quality Judgment, Proc.

WITS '92, pp. 179-188, Sep 1992.
Johnson J.R. - Hallmark's Formula for Quality, Datamation, pp. 119-122, 1990.
Keeney R.L., Raiffa H.- Decision with Multiple Objectives: Preferences and Value Tradeoff, New York: John

Wiley & Son, 1976.
Lanzelotte R.S.G., Valduriez E, Zait M.- Optimizing of Object-Oriented Recursive Queries Using Cost-

Controlled Strategies, Proc ACM SIGMOD 1992, pp. 256-265, June 1992.
Levesque H.J.- All I Know: A Study in Autoepistemic Logic, University of Toronto, Technical Report KRR-

TR-89-3, Jan 1989.
McCarthy D., Dayal U.- The Architecture of an Active Data Base Management System, Proc. ACM SIGMOD

89, pp. 215-224, June 1989.
Navathe S.B., Ahmed R.- A Temporal Relational Model and Query Language, Information Sciences, 49, pp.

147-175, 1989.
Poole D.- A Logical Framework for Default Reasoning, Artificial Intelligence, VoL 36, 1988.
Qian X., Wiederhold G.- Incremental Computations of Active Relational Expressions, IEEE Transactions on

Knowledge and Data Engineering, 3(3), pp. 337-341, 1991.
Rose E., Segev A.- TOODM-a Temporal, Object-Oriented Data Model with Temporal Constraints, Proc.

International Conference on the Entity-Relationship Approach, San Mateo, California, pp. 205-229, 1991.

HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 203

Segev A., Shoshani A.- Logical Modeling of Temporal Data, Proc. ACM SIGMOD 87. pp. 454-466, May
1987.

Shoshani A., Kawagoe K.- Temporal Data Management, Proc VLDB 86, pp. 79-88, Aug 1986.
Sistla A.R, Wolfson O.- Specification and Management of Temporal Triggers in Active Databases, Technical

Report, Univ of ll at Chicago, 1993.
Snodgrass R., Ahn I.- Temporal Databases, 1EEE Computer 19, pp. 35-42, Sep 1986.
Snodgrass R.- The Temporal Query Language TQUEL, ACM Transactions on Database Systems, pp. 247-298

, June 1987.
Stonebraker M., Kemnits G.- The POSTGRES Next-Generation Database Management System, CACM, 34(10),

pp. 78-93, Oct 1991.
Su S.Y.W, Lain H., Krishnamurthy V. - An Object-Oriented Semantic Association Model (OSAM*), in: S.T.

Kumera et al. (eds)-Al: Manufacturing Theory and Practice, Chap. 17, Norcross, GA, 1989.
Su S.Y.W., Chen H.M.- A Temporal Knowledge Representation Model OSAM*/T and its Query Language

OQL/T, Proc VLDB, 1991.
Tirole J.- The Theory of Industrial Organization, the M1T press, 1989.
Wiederhold G., Jajodia S., Litwin W. - Dealing with Granularity of Time in Temporal Databases, Lecture Notes

in Computer Science, 498, (R. Anderson et al. eds.), Springer-Verlag, pp. 124-140, 1991.
Wuu G., Dayal G.U.- A Uniform Model for Temporal Object-Oriented Databases, Proc. International Cor~fer-

ence on Data Engineering, 1992.

