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1. Introduction 

Data stored in database management systems (DBMSs) are supposed to represent por- 
tions of the real world for the use of computerized applications. Most  DBMS models 
and tools were designed to support information with relatively simple structure, thus lim- 

iting the scope of applications that can be naturally supported by this technology. This 
restriction has become an obstacle with the increasing sophistication of  applications such 
as decision support systems and the need for fast applications development.  The lack 
of  support for highly complex knowledge in DBMS products either deters organizations 
from developing such applications or forces system developers to create ad-hoc solutions. 
The latter case is usually not general enough to be reusable; it is also expensive, t ime 
consuming and hard to verify. 

This research is intended to bridge the gap between current DBMS technology and 
the technology required to support applications which use highly complex knowledge. 
The proposed strategy is to extend the database schema to include various types of  meta 
data that will enable to represent complex knowledge and reason about it. The main 
components of  these meta data entities that were identified in the context of  decision 
support systems are: 

Derivation Rules: rules that derive the value of a data item as a function of values of  
other data items. 
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Temporal Knowledge: time points or intervals that are associated with each data item. 
Examples: the time point in which the value becomes known or believed, an interval 
during which the value is believed to be valid etc. 

Data Quality: knowledge about the quality of each data item's value; this knowledge 
may either be related to the information source or be specified according to some 
ordinal scale. 

Epistemic Knowledge: different concurrent viewpoints of the same knowledge. 

The use of these meta data entities as DBMS primitives extends DBMS functionality. 
This extension enables to capture complex decision support systems in a more natural 
fashion using high level language and structure. 

The model presented in this paper is aimed to support the different elements discussed 
above, where each element is called a dimension. The PARDES model (Etzion, 1993a) 
that supports the first requirement (derivation rules), was chosen as a basis, while other 
requirements are extensions of this model. Each data item is represented in the database 
as an ordered pair < d, e > where d is a data item and e is the extension of a data item, 
including knowledge associated with the different dimensions. 

We assume an append-only database where changes can occur to data, meta-data, rules 
and constraints. Any of those changes can also be retroactive or proactive. The active 
property of the model is more general than the common active databases approach of 
Event-Condition-Action (ECA) (McCarthy, 1989) in that it allows a general definition 
of statements called invariants (Etzion, 1993a). These statements enforce the database 
to maintain consistency at all times without the need to explicitly define the triggering 
events. The work done so far in other studies, as will be shown in Section 1.2, did not 
introduce suitable solutions to problems resulting from integrating the above elements in 
a database. 

The construction of a model supporting all these elements is not a trivial extension 
of existing models. This was demonstrated in (Etzion, 1994), where the combination of 
active and temporal database functionalities are discussed. 

1.1. A motivating Example 

As a motivating example we present an application that requires the combination of both 
active and multi-dimensional knowledge in a database. The case study is based on the 
Cournot game (Tirole, 1989); (Cournout, 1997): 

There are three manufacturers of instant coffee (Snowhite, LRR (Little Red 
Ridinghood) and Goldilox) that have to decide each month on the quantity to be 
produced for the following month. Each manufacturer makes the decision about 
its production quantity based on its assessment of the quantities produced by 
other manufacturers (Estimated-Production), its own strategy (maximum revenue, 
a certain market share etc.) and general knowledge about the market's behavior. 
Each manufacturer has its own deadline for the production decision. 
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We assume in this paper that there is a single market price for this type of instant 
coffee that is determined periodically as a function of the total quantity produced in that 
period, and that the following equation represents that function: 

Total-Quantity * Market-Price = Market-Constant 

Historical information is needed in order to obtain an accurate estimation of the Market-  
Constant. 

Each manufacturer attempts to estimate its competitors' decisions prior to making its 
own decision. For example, a s s u m e  that all three manufacturers  have  an objective 
function of maximum revenue. Each of the manufacturers wants to manufacture 
as much as possible, yet without decreasing the price of the instant coffee to such 
a level that would cause a decline in its total revenue. If Snowhite knows the 
competition's strategy of both LRR and Goldilox, it can estimate their production 
decisions, and maximize its revenue through an optimal production decision. 

The use of the different dimensions in the manufacturers' domain is demonstrated in 
the following examples: 

. The production decision of each manufacturer is derived using an algorithm that is 
automatically triggered by the modification of the estimated production of any of the 
manufacturers. 

2. In order to assess the competitor's decisions, a manufacturer needs to have the in- 
formation that was available to a competitor at a given time point. 

3. A new information regarding a competitor's Estimated-Production may re-activate 
(possibly proactively) the production decision algorithm. 

4. Information may arrive from many sources, each of them has a different reliability 
level. A measure of confidence based on past performance is associated with each 
of them. 

. Each competitor should be able to reason about a data item as it is known by other 
manufacturers. For example: In Snowhite 's  da t abases ,  it is recorded that a 
knowledge-item c~ about Snowhite is known to LRR since May 1992 and to 
Goldilox since July 1992. LRR is believed to refer to c~ as a fact, while Goldilox 
is believed to assign c~ a certainty value of 0.5. 

1.2. Related work 

The active aspects of databases have been investigated in research such as (Dayal, 1988), 
(Etzion, 1993a), and (Stonebraker, 1991). Active databases extend the modelling capa- 
bility of a database schema by adding the rule construct. A rule is a database element 
consisting of two major components: the trigger component and the action component. 
The trigger component defines the prerequisites for the execution of the rule's operational 
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part. Most of the current active database research follow the E-C-A (Event-Condition- 
Action) architecture (McCarthy, 1989) in which the triggering component consists of 
two parts: event detection and condition evaluation. The action component contains the 
operational part of the rule applied in most contemporary active database models as a 
database operation or a user defined program. 

Temporal semantics was dealt with in works on temporal databases, such as: 
(Clifford, 1987); (Navathe, 1989); (Gadia, 1988); (Snodgrass, 1987); (Su, 1991); 
(Rose, 1991) and many others, yet the capabilities of the model with the presence of 
retroactive and proactive updates have not been investigated. Most of the research in 
this area focused on the structural semantics, assuming that the update process is ap- 
plied either in a procedural manner (Wuu, 1992) or as part of the retrieval language. 
Some models (such as (Ariav, 1986); (Shoshani, 1986) and (Wiederhold, 1991)) enforce 
a single value for each time point. As a result, a mechanism to handle retroactive and 
proactive updates is either disabled or applied in an unnatural manner. 

Information quality has been discussed in the context of AI, motivated by the fact 
that in the absence of information quality, decisions are taken based on an inaccurate 
or an out-of-date data ((Bonoma, 1985); (Johnson, 1990) etc.). The majority of research 
efforts on information quality has focused on providing quality indicators (Jang, 1992), 
data about data, from which the information quality can be derived. The decision- 
analytic approach (e.g., (Keeny, 1976)) and utility analysis under multiple objectives 
(e.g., (Chankong, 1983)) describe solution approaches for specifying preferences and 
resolving multiple objectives. The preference structure of the user is specified using an 
hierarchy of objectives. Through decomposition of objectives the hierarchy is reduced 
to a single value. The decision-analytic approach assumes the existence of continuous 
utility function. Later research (Jang, 1992) lessens this requirement to local dominance 
relationships between quality parameters. 

Reasoning about the world is contingent on the reasoner's knowledge known to those 
who process the reasoning. This knowledge is referred to as epistemic knowledge. Re- 
search of the ability to identify the epistemic knowledge and to maintain conclusions 
based on this knowledge, are mostly based on different versions of non-monotonic logic 
((Gardenfors, 1988); (Poole, 1988); (Levesque, 1989) etc.). For example, in 
(Levesque, 1989), two modal operators are defined, B and O, where Bo~ is read as "c~ 
is believed" and Oa is read as "a is all that is believed". These operators are used to 
develop a proof theory, by which derived knowledge is maintained, based on epistemic 
knowledge. 

The combination of the temporal and active aspects has been investigated in (Su, 1991); 
(Wuu, 1992); (Edera, 1993) and (Sistla, 1993). The OSAM*/T presented in (Su, 1991) is 
an object-based temporal knowledge representation model which combines update rules 
with temporal characteristics, extending the object oriented model OSAM* (Su, 1989). 
Rules are used to capture temporal semantics other than the valid start and end times 
of a tuple. Corrections result in overwrites or deletions so in this model information 
may be lost. The combination employs restricted update protocol, with no proactive and 
retroactive updates. Another model which do not allow proactive and retroactive updates 
is the model presented in (Sistla, 1993), which combines temporal triggers in a database. 
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The update is done by replacing the current value with a new one, adding the old one to 
the history of the variable. Issues related to processing rules where the event component 
is a temporal calendric expression are discussed in (Chandra, 1993) and (Chandra, 1994). 

The model presented in (Wuu, 1992) describes a database supporting a planning sys- 
tem; it is based on the EER model in which the database components change states as 
a result of external events. Unfortunately, the active part uses an imperative language, 
thus reasoning about the application's flow is not possible. Furthermore, the well docu- 
mented problems of imperative programming (time consuming, difficult to verify etc.), 
(Abiteboul, 1988) and (Gal, 1992), are still present in this model. 

An interesting work regarding performance issues is presented in (Edera, 1993); it 
extends a technique for incremental recomputations of active relations (Qian, 1991) to 
handle temporal active relations. 

An example of a combination of several aspects of the data is given in ((Gadia, 1993)). 
In that paper data has spatial, temporal and belief aspects organized in a relational 
database. Unfortunately, the relational model, due to it simplicity and the normalization 
processes, can hardly satisfy a semantic model of this sort and would probably require 
a lot of unnecessary maneuvers to maintain the required functionality. The lack of the 
active aspect significantly decreases the functionality of the model. 

As a conclusion, there is no unified model that combines all of the above aspects along 
with sufficient database support and decision tools. Despite having useful parts of the 
required solution, current models cannot properly support the functionality we require. 
nevertheless some of them contain useful ideas for the required solution. 

2. The data model 

2.1. The basic model 

This Section introduces briefly an active object-oriented database model that follows the 
ideas of the PARDES model (Etzion, 1993a) as a basis for the temporal extension. 

A database consists of a collection of objects. Similar objects are instances of the same 
class, while classes are organized in a generalization lattice. A class definition contains 
the specification of properties that are applicable to its instances, along with their types. 
An object has a set of associated variables, each variable is an instance of a property. A 
variable state is a value belonging to the range of the relevant property, bounded to the 
variable. The value can be an atom, a set, a sequence, a tuple or a reference to another 
object. An object state is a set of all its variable states. Although each object has a 
unique object identity, for convenience reasons, an object is identified by a subset of 
the object's state. This subset is referred to as the object identifier. 

Figure 1 shows the database schema of a manufacturer's knowledge about manufac- 
turers (including itself). 

Periodic-lnfo and Global-Periodic-Info are nested properties that consist of the required 
information for each production period. 
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class= 
properties= 

Class = 
Generalizations = 
Properties = 

class= 
properties= 

Manufacturer 
Name 
Unit-Cost 
Competition-Strategy 
Periodic-lnfo:set of" 

Period 
Estimated-Production 
Actual-Production 
Decision-Deadline 

Self 
Manufacturer 
Periodic-Decision: set of" 

Production-Decision 

Global-Knowledge 
Globa1-?eriodic-Info: set of" 

Period 
Total-Quantity, 
Market-Price 
Market-Constant 

Class = Competitor 
Generalizations = Manufacturer 

Figure 1. Schema of Manufacturer Knowledge 

Sel f  and Competitors are specializations of Manufacturer. They inherit all the properties 
of Manufacturer; in addition Sel f  contains the property Periodic-Decision, designating 
the decision as derived by the system's rules. 

The underlined property Name is the object-identifier of the class Manufacturer.  Global- 

Knowledge is a singleton class, hence no object-identifier is required. 
Competit ion-Strategy denotes the strategy by which the manufacturer makes its decision 

(example: maximum revenue). In the "self '  case, this strategy is the actual competition 
strategy while in the competitors case it is only a conjectured one. 

Estimated-Production represents the estimated production quantities of the competitors 
and Actual-Production is the actual production decision as known for that period in 
retrospect. 

A class description describes the structure of its instances. A partial example of an 
instance of the class Manufacturer in Snowhite 's  database referring to LRR designating 
Snowhite 's  knowledge about LRR is presented in Figure 2. 

The rules in our example are shown in Figure 3. The rules are expressed in the form 
of invariants. An invariant is a declarative definition of dependencies that should hold 
for any instance in a consistent database. 

Rules (dl) and (d2) are data driven, that is, any change in one of the derivers (e.g., 
Competitor.Estimated-Production in (dl)) requires recalculation of the rule. Rules (d3) 
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Class= Competitor 
Name= LRR 

Unit-Cost=6 
Periodic-lnJb : 

Period=Dec 1991 
Estimated-Production =280 
Actual-Production=280 
Decision-Deadline=Nov 1991 

Periodic-lnfo: 
Period=Jan 1992 
Estimated-Production=260 
Actual-Production=280 
Decision-Deadline=Dec 1991 

Figure 2. An Instance Example 

Derivations 

(dl) Competitors-Total-Estimation := sum(Competitor.Estimated-Production) 
(d2) Production-Decision := 

sqrt(Market-Constant*Competitors-Total-Estimation/Unit-Cost) - 
Competitors-Total-Estimation 
when Competition-Strategy = max-profit 

(d3) Total-Quantity := sum (Actual-Production) 
(d4) Market-Constant := avg(Total-Quantity*Market-Price) 

Constraints 

(cl) LRR.Production-Decision_<600 

Figure 3. Rules Definitions 

and (d4) are even t  dr iven,  that is, they are calculated as a response to an event. Events 
are not shown in Figure 3, but an example event is End-Of -Per iod .  After the event is 
specified it can be attached to more then one rule, in our case to (d3) and (d4). 

(dl)  sums, for each manufacturer, the Estimated-Production of all its competitors. 
The formula presented in (d2) is the result of maximizing the revenue function of each 
manufacturer. Different goal functions would yield other formulae. 
In (cl)  the production quantity of LRR is limited to 600 units per period. 
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Manufacturer Dec 1991 

LRR 280; 300 
Goldilox 300; 350 

Figure 4. Estimation of Production Quantities 

2.2. Variable States and Extensions 

In our framework, unlike a conventional database where each variable has a unique 
value, several values of the same variable (with different dimensional characteristics) 
can coexist simultaneously. 

VS(c~) (variable state of a variable c~) is a sequence of pairs representing different 
variable's values. The symbol c~ designates a variable of a given object; each pair is a 
state-element. 
A state element is a an ordered pair < d, e > designating the combination of data and 
the knowledge associated with it. d is the variable's value and e is the extension. 
The extension is the set of all the dimensional variables associated with the value. 
A dimensional variable is a set of variables associated with a particular dimension. 
Example: (source, confidence value) is the dimensional variable associated with the 
quality dimension. 

Figure 4 displays a table of Snowhite's estimations of its competitors' production 
in December 1991. Values of each manufacturer's Estimated-Production are all state 
elements of the variable Estimated-Production. Along the temporal dimension we 
might have different values of Estimated-Production, for example, for LRR, the two 
values may be the history as we see it from the observation time December 1991, where 
the value 280 represents a belief in September 1991, and 300 represents the change of 
belief in December 1991. Along the quality dimension we might have different values 
as well; for example, we know Snowhite's estimation of Goldilox's production is 300 
units, but a reliable informer notified Snowhite that the production is 350 units. 300 and 
350 are both values of Estimated-Production that had the same temporal value, yet 
each one of them has a different value in the quality dimension. 

In some cases, two or more state elements overlap in the sense that several values 
can be retrieved as a result of a query. For example, the result of the query: "What is 
Snowhite's estimation of Goldilox's production quantity for December 1991 ?" could 
be either 300 or 350. There is no trivial way of deciding which value is the "correct" 
one. Furthermore, queries may yield different results when executed with respect to 
different observation times. 

In order to select the desired value among overlapping state elements a preference re- 
lation has to be devised. Different assumptions may yield different preference relations. 
Preference relations may be defined according to various criteria: the source of informa- 
tion, a confidence value that is associated with the information, temporal information etc. 
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For example, a preference relation with respect to the temporal dimension, introduced in 
the context of active temporal databases (Etzion, 1994), is based on the assumption that 
a data item c~ is preferred to a data item/3 if it was decided at a later time. It represents 
the belief that knowledge monotonically improves with time, and that all the previous 
decisions are available when a later decision is made, thus a later decision is based on 
a better knowledge than an earlier one, and can override all previous decisions. The 
support of several dimensions requires a combination of preference relations from dif- 
ferent dimensions (such as temporal and quality dimensions). For example, if a database 
retrieval operation selects data items based solely on their decision time, it might chooses 
a data item with very low confidence value, rather then a less current but more reliable 
data item. 

2.2.1. The Dimensional Variables 

Each aspect of the data is represented by a dimensional variable, which is a set of 
variables defining the dimension. In this section we describe the different dimensional 
variables: 

The Temporal Dimension: The fundamental assumption is that for each object, several 
time types (Snodgrass, 1986) are required to model the desired functionality. A basic 
set of time types, as defined in (Etzion, 1994) consists of: 

Transaction Time (tx)- The commit time of the transaction which updates the vari- 
able state. 

Decision Time (td) - The time in which the variable's value has been decided in 
the database's domain of discourse. 

Valid Time (tv) - The time points in which the decision maker believes that this 
value reflects the object's value in the real world. ~v is expressed by a temporal 
element (Gadia, 1988) which is a time-point or an interval [~s, ~]  or a collection 
of intervals and time-points. If tv is an interval, it is believed that the object 
value is constant in this interval. This case has been classified as stepwise change 
(Segev, 1987). Other possible cases are discrete events change where the value 
is defined only in given time-points and continuous change where the value 
changes continuously according to some function. In this paper we consider the 
stepwise case only, while the other cases are natural extension of this discussion. 

Observation Time (~o)- a time point associated with a retrieve operation that des- 
ignates the time point from which the retrieve operation is viewed. 

These time types are restricted by the following constraints: 

1. t8 _< t~. (negative intervals are not allowed). 
2. t~: > t~. (decisions cannot be speculated). 
3. to <_ NOW() .  (future observation times are undefined). 
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The temporal dimensional variable is a set of variables that represent transaction 
time, decision time and valid time. Observation time is discussed in Section 3. 

The Quality Dimension: The quality dimension associates a data item with its source 
and the degree of confidence in it. The dimensional variable is a set of the following 
variables: 

Source (c~)- an identifier of the source that provided the information. A source may 
denote a specific agent, or a general source such as: a newspaper, a rumor, an 
industrial espionage, inside information, etc. 

Confidence value (Cv)- a value which designates the degree of confidence in the 
variable's value, expressed in some ordinal scale such as [0,1]. The confidence 
value may be attributed to the source; in this case, the confidence values of all 
the information provided by a certain source are defaulted to a given value. 

The Epistemic Dimension: The epistemic dimension associates a knowledge item with 
a set of viewpoints. Each of this viewpoints is assumed to have access to the 
knowledge item, possibly under certain conditions. 

The dimensional variable of the epistemic dimension is a set of  pairs As. Each pair 
at C A~ is of the form <w, cond>, where w is a world and cond is a condition. 

A world is a collection of viewpoints. Each viewpoint may belong to a single 
world. For example, in our case study the knowledge of LRR is a world and so is 
the knowledge of Goldilox. 

A condition is an assertion that restricts the accessibility to the knowledge only 
when the assertion is satisfied. For example, the condition ~x < ( N O W ( )  - 1) 
stands for the fact that a world is entitled to a knowledge item only one month 
after it was committed in the database. The default condition is "null" designating 
unconditional accessibility. A condition may refer to variable values as well as 
dimensional variables such as temporal types (~ ,  ta and t~), confidence values (ca 
and c~) or members of As. Circular conditions are considered as a system design 
error. 

Worlds are ordered in an inheritance lattice. The lattice imposes a partial order 
relation denoted as _<w, that is, ?J31 ~w ll)2 stands for the fact that wl inherits all the 
knowledge accessible to w2. 

2.2.2. An Example 

Figure 5 presents an example of state elements. All state elements consist of  a value and 
dimensional information. The state elements sl and s2 belong to the variable Est imated-  
Product ion of LRR in the Period December 1991. The state elements s3, s4, s5 and s6 
belong to the variable Es t imated-Product ion  of  LRR in the Period January 1992. 
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Period=Dec 1991 
Estimated-Production: 

(sl) 280, tz=Oct 1991, td=Sep 1991, tv=lSep 1991, oc) 
e~=LRR, cv=l, As = (< Snowhite ,  null >, < LRR,  null  >, 
< Goldilox, (tx < ( N O W ( )  - 1)) >) 

(s2) 300, tx=Nov 1991, td=NOv 1991, tv=[Dec 1991, co) 
cs=LRR, cv=l, As = (< Snowhite ,  null  >, < LRR,  null  >) 

Period=Jan 1992 
Estimated-Production: 

(s3) 260, ix=Oct 1991, td=Sep 1991, tv=[Sep i991, ec) 
es=LRR, ev=l, As = (< Snowhite ,  null >, < LRR,  null  >, 
< aoldilox,  (t~ < ( N O W ( )  - 1)) >) 

(s4) 250, tx=Nov 1991, td=Nov 1991, t~=[Oct 1991, ec) 
e~=LRR, ev=l, As : (< Snowhite ,  null >, < LRR,  null  >) 

(s5) 270, tx=Nov 1991, td=NOv 1991, tv=[Nov 199l, ec) 
es=Snowhite, Cv=0.8, As = (< Snowhite ,  null  >, 
< aoldaox,  (t~ < ( N O W  0 - 1) >)) 

(s6) 500, tz=Dec 1991, td=Dec 1991, tv=[Nov 1991, oc) 
cs=rumor, ev=0.7, As = (< Snowhite ,  null >) 

Figure 5. The Estimation of LRR's Production 

3. Retrieving highly-complex knowledge from a Database 

As demonstrated in Figure 4 and Figure 5, a single variable may include more than 
one state element. The functionality of operations in a highly-complex knowledge envi- 
ronment requires filtering out some state elements or creating new state elements based 
on the aggregation of existing ones. The automatic elimination of state elements using 
predefined preference relations is especially important for novice users, which do not 
comprehend the complicated processes involved in query processing of such a database. 

In our model we use a single primitive named filter, introduced in Section 3.1, to select 
state elements based on a given selection criteria. The existence of a single primitive 
eases the task of query optimization (see Section 3.2). On the other hand, the use of a 
single primitive as a query language is tedious, hence a higher query language that is 
automatically translated to filters is required. An example of such a query language in 
the temporal active context is discussed in (Etzion, 1993b). 

3.1. Multi-dimensional Filters 

A substantial amount of work has been done on the optimization of queries in databases. 
Alas, these optimizers assume the simple structure of the relational model, whereas op- 
timizers for databases that support complex objects are still evolving (Lanzelotte, 1992). 
Since our model employs a very complex structure, our goal is to simplify the retrieval 
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mechanism in order to ease the task of optimizing queries. In this section we shaw a 
retrieval mechanism that is based on a single retrieval primitive, called filter. 

A filter is a function that maps a set of state elements to a set of state elements based 
on a given condition or operation. A filter is defined as: 

f ( sse ,  a r g ) : s s e - - * s s e l  

where sse and ssel  stand for a set of state elements and arg stands for an argument 
that is passed to the filter. Each filter has an associated f o  (filter operation). Operation 
types that are associated with filters are SELECT and GENERATE. 1 

sse may be the entire database or a result of another filter. In all the examples 
(unless mentioned otherwise) we assume that sse is the set of all state elements of the 
Estimated-Production of Manufacturer LRR's production for the period of January 1992 
as presented in Figure 5. 

3.1.1. Atomic Filters 

. 

Variable Filters: (VF) returns a set of state elements of variables included in a 
variable list vl and satisfying a set of conditions cored. 
VF." arg=<vl, cond>; fo=SELECT {s C v I v E vl A v satisfies cond}. Example: 
VF(DB, Estimated-Production, 
{Manufacturer-Name=LRR, Period=Jan 1992})= 
{s3, s4, s5, s6} where DB stands for "the entire database". 

Temporal Filters: 

Observation Time: (OT) is a filter that defines a variable state relative to an obser- 
vation time to to be the collection of all state elements that were committed until 
to (persisted in the database no later than to). Decisions that were made prior 
to to but not committed in the database by ~o are not included in OT. The use 
of observation time enable us to phrase queries about what would be the result 
of a retrieval operation if it had been issued in a given time point that is not 
necessarily NOW(). Queries of this type are useful in applications where tracing 
of decisions or actions relative to a given knowledge is required. Examples of 
such applications are auditing systems and decision analysis systems. 
OZ" arg=to; fo=SELECT {s [ tx(s) <_ to}. Example: 
OT(sse, Nov 1991)={s3, s4, s5} 

Relevant Time: (RT) is a filter that selects all the state elements whose validity 
intervals intersect with a giyen temporal element tt. 
RT." arg=h;fo= SELECT {s I tz n t~(s)) r 0}. Example: 
RT(sse, [Aug 1991, Oct I991))={s3, s4} 

Periodical Average: (PA) is a filter that creates new state elements whose values are 
calculated by averaging the values of all state elements with overlapping validity 
time. tv of the created state element is the intersection of tv's of the participating 
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state elements. Let t ,u~  : min( t s ( se ) )  I se E sse; t~a~ : max( t~(se) )  I se E 
88e. 

PA." fo=GENERATE state-elements { q l , . . . ,  qn} s.t. 

(A) T = { r l , . . . ,  % }  is a partition on the set of time-points TR where V~ E T P  : 

~min ~ ~ <_ ~max. 

(S) Vt~,tb C Ti : [Vse �9 sse I t~ �9 tv( e) ~ tb e tv(Se)]. 
We denote the set of all se satisfying this condition as S E i  

(C) Vi : t~(qi) = %. 

(D) Vi:  value(qd = avg <se (val e( e)). 

Example: PA(sse)= 

(ql) 260, tv=[Sep 1991, Oct 1991) 
(q2) 255, tv=[Oct 1991, Nov 1991) 
(q3) 320, t~=lNov 1991, co) 

In this example we omit the rest of the extension variables. 

3. Quality Filters 

Weighted Average:  (WA) is a filter that creates a new state element whose value is 
calculated by averaging the values of  all state elements based on their confidence 
measure, c .  of the created state element is the average of e~'s of the participating 
state elements. 

WA." fo=GENERATE state-element q s.t.: 

(A) v a l u e ( q ) =  ~s~'css~vaz~e(~)*ct'(~) 

Example: WA(sse)=307, ev:0.88. 

4. Epistemie Filters 

Observer View: (OV) is a filter that selects all the state elements that are accessible 
from a certain viewpoint (v). 

OV: arg=v; fo= SELECT {s I Bat E As(s) ,  3w' : v C w' Aw'  <-w a t .wAa t . cond  
is satisfied}. Example: 
OV(sse, Goldilox)= { s3, s5}. 

3.1.2. Compound Filters 

The complex retrieval task requires the use of compound filters, non-atomic filters that 
uses the results of other filters. A compound filter is represented either in an explicit 

f o r m u l a  or in the form of: 
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e f (sse ,  argl, arg2. .. , argo) = f l ( f 2 ( . . .  ( fn(sse,  argn) , . . .  , arg2), argl) 

where f l , -  �9 f~ are basic or compound filters and argi represents the argument list of 
the i-th filter. 

The following compound filters are useful in both retrieval and update processes. 

Candidate State Elements: (CSE) is the set of all state elements in time t as observed 
in time to by a viewpoint v, that is, all the state elements, as known in to by v, such 
that t is included in their validity interval. Since knowledge is usually referred in the 
context of viewpoint and observation time, this filter is essential in many queries. 
CSE(sse, t, to, v)=OV(RT(OT(sse, to),t,v))). Example: 
CSE(sse, Nov 1991, Nov 1991, GoIdilox)={s3}. 

Multi Accessible Filter: (MAF) is the set of all state elements accessible to several 
viewpoints. Let vl = {Vl , . . . ,  v~} be a sequence of viewpoints. 
MAF(sse, v l ) = N ~ v  z OV(sse ,  v). Example: 
MAF(sse, {LRt=i, Goldilox} ) = {s3}. 
MAF can be used to check the knowledge coordination of a group of competitors 
and discover de-facto cartels. 

Temporal Average: (TAG) is a filter that creates a new state element whose value is 
calculated by exponential smoothing of the historical state elements 2. TAG can be 
used for the calculation of the Market-Constant as defined in Section 1. 

TAG(sse, coef t~, t~) = 
coef  * [V(tm) + (1 - coef) * V(~m-1) + (1 - eoef)  2 .  V ( t m -  2) + . . .  + (1 - eoef)  m-  2.  
v(t2)] + 
(1 - coef)  m- I  * V(t3), 
where t l  = t~,t,~ = t~, V( t i )  = value(qi ~ PA(sse )  It  E tv(qi)) 3. 
Example: TAG(sse, 0.5, Sep 1991, November 1991)=289. 

The filters mentioned above are only a subset of the filters needed for retrieval and 
update operations and often new filters need to be defined. A new filter is defined either 
by an explicit definition of the f o  and the arg (e.g., TAG) or by using existing filters 
(e.g., CSE). In the latter case, the definition of f o  and arg is implied by the predefined 
filters. 

3.2. Improving retrieval time of highly-complex knowledge 

In this section we observe the special properties that should be considered while opti- 
mizing queries in this model. 



HIGHLY-COMPLEX KNOWLEDGE IN A DATABASE 199 

3.2.1. The database level 

The database model defined in this paper has two outstanding properties: 

. The database is an append only one. Due to this property, we can maintain in a single 
database all its previous versions. This is done using the transaction time attached 
to each state element in the database and the observation time filter that returns only 
the relevant knowledge as of a certain time point. 

2. For each data item in the database, in order to persist its dimensional knowledge 
values, the required storage space is considerably larger than the space required for 
representing a data item in conventional database. 

The combination of these two properties implies that the type of storage media should 
support high quantities of data, fast retrieval capabilities and no in-place update capabil- 
ities. An optical storage media may be used to satisfy these requirements. 

3.2.2. The object level 

The dimensional variables have the following properties: 

I. Due to the append only property, the data items are ordered in the database according 
to their insert time (tx). 

2. Some of the dimensional variables (c~ in the confidence dimension and w in the 
epistemic dimension) usually have a small domain set of values. 

. Although Cv has an infinite domain set of values, for practical purposes it can be 
transformed into a small set of ranges. The granularity of these sets is application 
dependent. 

4. We assume that there is a close relationship between ~x and td, that is, tx - ta < M,  
where M is an application dependent constant. 

These properties enable developing specific optimization mechanisms that cannot be 
applied on general data. For example: the values of dimensional variables such as e~ and 
w can be pointed instead of actually being written in the extensions of all the relevant 
state elements. 

3.2.3. The filter level 

Optimization of filters compiler can be performed by replacing the order of filters' eval- 
uation. For example, consider the CSE filter: 

CSE(sse ,  t, to, v) = O V ( R T ( O T ( s s e ,  to), ~, v))) 
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In the CSE case, the database first filters out state elements based on the OT filter. This 
is appropriate, since the data are physically ordered according to the tx. However, if we 
define a new filter, CSE~: 

CSE'(sse ,  to, t, v) : OV(OT(RT(sse ,  t), to, v))) 

we cannot rely on the physical order. 
In this case, since the result of the CSE'  filter is equal to the result of the CSE filter, 

we can use the CSE filter instead of the CSE' .  This type of filter is called a commutative 
filter: 

Commutative filter ef(sse,  arg l , . . . ,  argo) = /1 ( . . .  (fn(sse, argn) , . . . ,  argl) is a 
filter that for each two atomic filters f~, f j  E ef: f i ( f j (sse,  argj), argi) = f j ( f i (sse ,  
arg{), argj) 

Not all filters are commutative. For example, VSE is a compound filter, used in the 
update process, to determine the preferred state element among several state elements: 

VSE(sse ,  t, to, v) = C P ( T P ( C S E ( s s e ,  ~, to, v))) 

where TP (Temporal Preference) is an atomic filter that chooses the state element with 
the higher td and CP (Confidence Preference) is an atomic filter that chooses the state 
element with the higher confidence value. 
Based on Figure 5: 
CSE(sse, Nov 1991, Dec 1991, Snowhite)=s3, s4, sh, s6 
VSE(sse, Nov 1991, Dec 1991, Snowhite)=s6. 

Note that VSE is not commutative, since TP(CP(CSE(sse, Nov 1991, Dec 1991, 
Snowhite)))=s4. VSE is a semi-commutative filter: 

Semi-commutative filter 
e f  (sse, a rg l . . . ,  argo) = s  (f~ (sse, argo) , . . . ,  argl) 
is a filter that for some k < n, fk( . . .  (fn(sse, argn) , . . . ,  argl) is a commutative filter. 

In this example, the VSE is semi-commutative filter since CSE is a commutative filter. 

4. Conclusion 

This paper has presented a unified framework for representing a highly-complex knowl- 
edge in a database. Such a model extends the capabilities of  database technology to cope 
with applications that use derivations rules, temporal information, and knowledge from 
multiple sources with different measures of quality and epistemic knowledge. The model 
enables the support of features which we believe are essential for the next generation of 
decision support and decision management systems. Notable features that are supported 
by this model, and are not easily supported by contemporary models are: 

1. The ability to "go back to the past" and reason about the information that was 
available to a decision maker at that time. 

2. The ability to issue retroactive updates, and get an automatic propagation of the 
consequences over the temporal space. 
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3. The ability to group data items according to different criteria, such as epistemic and 
quality. 

4. The ability to evaluate data using intra-dimensional criteria as easy as inter-dimensional 
criteria in the retrieval process. 

The number of applications using these features increase with the introduction of collab- 
orative or competitive decision support systems, and intelligent auditing systems. These 
applications are currently implemented using conventional technologies that require the 
user to use self defined procedures to achieve these functionalities. Furthermore, in 
many cases the application's functionality is compromised due to conceptual or technical 
limitations. 

Tile introduction of this framework is only one step in a long way. Further extensions 
to this research include: 

1. 

. 

Extending the model to support adaptable extension, by eliminating some dimensions 
and defining new ones (such as space). 

Devising a complete query language and inference mechanism using the data and the 
dimensional variable. 

. 

4. 

Extending the active temporal database update algorithm to support multi-dimensional 
update. 

Dealing with performance issues. This includes a variety of optimization problems, 
such as: storage management, detecting possible cases of incremental updates, us- 
ing flexible transaction protocol to allow asynchronous subtransactions and query 
optimization based on the observations given in Section 3.2. 
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Notes 

1. The GENERATE operation creates virtual state elements, for query uses only. Modification of the database 
is done through the update mechanism. 

2. Exponential smoothing is a weighing method giving exponentially higher weights to more recent periods. 
3. The result of PA assigns each t to a unique qi. 
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