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Abstract .  One of the main objectives of third generation databases is to design database management 
systems which provide users with more and more functionalities. In such a wide context, various 
proposals have been made in order to introduce some kind of explicit or implicit flexibility into user 
queries. In this paper, we propose a classification of the various approaches dealing with imprecise 
queries, Moreover, we show that the approach based on fuzzy sets is powerful enough to answer 
a wide range of imprecise queries in an appropriate way and to support the expression of the 
capabilities available in the other classes of solutions. An outline of an SQL-like language allowing 
for a variety of imprecise queries is also presented. 
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1. Introduction 

The database domain is currently a matter of research and development so that 
a third database generation can be created which will extend the capabilities of 
those relational systems currently available. If object-oriented data models are 
an important research topic, other areas are also worthy of interest, especially 
those aspects connected with the comfort of DBMS's users. It is often said that 
commercial DBMS's suffer from a lack of flexibility even if this term has different 
meanings depending on the authors concerned, Two principal interpretation 
aspects can be distinguished: the first one is mainly syntactical and it addresses 
the rigidity of the systems with respect to their use, the other is more semantic 
and concerns the capabilities which are provided. 

More precisely, A. Motro points out some of the constraints tied to the use of 
a regular DBMS (Motro, 1989): preliminary knowledge of the data model, the 
query language and database contents, but also the existence of a well-defined 
querying goal which is able to be expressed in terms of a boolean criterion. 
Thus, a system may be considered flexible if it ever frees the user from some 
constraints, for instance in 

�9 Performing an automatic correction of syntactical and/or semantic errors. 
| Providing browsing capabilities (D'Atri and Tarentino, 1989; Motro, 1986). 
�9 Giving "indirect" answers i.e. where the answer is something else other than 
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a list of tuples; several approaches have been suggested among which are 
included: (i) summaries; (ii) an explanation of an empty answer due to a 
contradiction between the query and one or several integrity constraints, as 
well as an explanation of an answer which is too extensive due to the presence 
of at least two redundant conditions inside the query (Gal, 1988; Janas, 1981; 
Kaplan, 1982); and (iii) answers obtained by the weakening of the initial query 
(Guyomard and Siroux, 1989). 

�9 Allowing a qualitative distinction between the selected elements. 
�9 Introducing imprecise conditions inside queries, which is especially useful in 

the two following situations: (i) when the user is not able to define his need 
in a definite way, (ii) when a prespecifled number of responses is desired and 
therefore a margin is allowed to interpret the query. 

In the remainder of this paper, the term flexible will concern DBMS's sup- 
porting discriminated answers, in particular thanks to imprecise queries (whose 
interpretation is flexible). In this context, the problem is no longer to decide 
whether an element satisfies a condition (or not) but rather to what extent it 
satisfies this condition, which, as a matter of course, implies an order over the 
responses. Thus, we shall focus essentially on the last two points mentioned. 
However, it can be noted that, in so far as we intend to avoid empty answers 
through the flexibility of conditions, our view presents a connection with the 
works related to cooperative answers. 

Several approaches for the support of imprecision in user queries can be 
envisaged, and some of them have been proposed and implemented in the 
context of research prototypes. A first idea is to consider queries made up 
of two components: a usual one aiming at tuple selection and another to 
specify how to rank the previously selected elements. A second method is based 
on queries involving imprecise conditions which are translated into boolean 
conditions referring to intervals of acceptance rather than single values. In this 
framework, local distances (related to each elementary condition) and a global 
distance applying to the entire tuple are used to determine the rank of the 
selected elements. Finally, a third solution is based on fuzzy sets to interpret 
imprecise conditions. Here again, one can roughly consider that a distance is 
calculated for each tuple concerned by the query. However, one of our main 
aims in this paper is to show that the framework offered by fuzzy sets is the most 
general, in the sense that it supports the expression of the other approaches and 
that it is adaptable enough to provide users with results which will meet their 
wishes better. Despite the apparent paradox, we believe that fuzzy sets offer a 
more precise (with respect to expression power) and a more suited tool to deal 
with imprecise queries than usual sets. 

The paper is organized as follows. In Section 2, an overview of the three 
previously introduced approaches is presented and in particular the necessary 
key points of fuzzy sets are given. Each of these approaches then becomes 
the subject of an entire section (Sections 3 to 5) where the principles of some 
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Figure 1. Three approaches for imprecise querying. 
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representative systems are described and discussed in a more detailed way. We 
shall pay particular attention to point out the basis for the expression of all 
queries in the context of fuzzy sets. Moreover, in Section 5, we give an outline 
of the main characteristics of an SQL-like language, allowing for a wide range of 
flexible queries. To conclude, we recall the main points of the paper and draw 
some working directions for the future. 

2. An Overview of the Various Approaches 

2.1. General presentation 

As previously mentioned, three approaches to the queries we are interested in 
can be envisaged. The first two are based on the usual boolean logics and 
one of their major advantages lies in the fact that some kind of (often limited) 
imprecision can be taken into account through an adaptation which extends the 
capabilities of an existing system. Conversely, fuzzy set based solutions require 
a specific interpretation and cannot be achieved by an adaptation of a DBMS. 
These various views are illustrated in figure 1. 

2.2. Basic notions related to fuzzy sets 

2.2.1. The concept of a fuzzy set. The purpose of fuzzy sets (Zadeh, 1965) is 
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particularly to extend usual sets in order to express classes or sets whose borders 
are not adequately defined. Then, there is a gradual rather than crisp transition 
between the full membership and the full mismatch. Any element x of a universe 
U is provided with a membership degree with respect to the fuzzy set A, denoted 
/ZA(X), whose values belong to the interval [0, 1] instead of the couple {0, 1}. 
The extension of a set A is represented by couples (x/IzA) where the elements 
with a null degree do not generally appear. For instance, if we look for the 
definition of the fuzzy set related to heights close to 1.65 m, we could have 

{(1.60/.1}, (1.61/.3), (1.62/.6}, (1.63/.9), (1.64/1), (1.65/1), (1.66/1), 

(1.67/.9), (1.68/.6), (1.69/.3}, (1.70/.1}}. 

It is clear that one can argue about the values chosen in this example, but an 
important fact is the gradual feature that allows a ranking of the values since it 
is expressed that 1.63 m is closer to 1.65 m than to 1.61 m, which is itself closer 
to 1.65 m than to 1.59 m (whose degree is 0). 

2.2.2. Operations on fuzzy sets. Usual operations on regular sets may apply to 
fuzzy sets, according to the following definition where A and B stand for two 
fuzzy sets defined over the universe U (it can be noted that when the arguments 
are regular sets these definitions correspond exactly to those of the classical set 
operations): 

1. Intersection: Vx e U,~AnB(X) = opl(#A(X),PB(X)), where opl is a triangular 
norm (Dubois and Prade, 1985; Yager, 1991a), i.e., an operator from [0, 1] x 
[0, 1] into [0, 1] satisfying 

(i) op l (a  , b) = opl(b, a). 
(ii) opl(a , opl(b, c)) = opl(opl(a,  b), c). 

(iii) op~(a,b) > opl(c,d ) if a > c and b > d. 
(iv) oPl(a , 1) = a. 

2. Union: Vx ~ U, ttauB(x) = opz(tt~(x),/~B(x)), where op2 is a triangular co- 
norm (Dubois and Prade, 1985; Yager, 1991a), i.e., on an operator from 
[0, 1] • [0, 1] into [0, 11 satisfying 

(i) op2(a, b) = op2(b, a). 
(ii) oP2(a, op2(b, e)) = op2(opz(a, b), c). 

(iii) op2(a, b) > op2(c, d) if a > c and b > d. 
(iv) oP2(a,0 ) = a. 

Among the pairs norm/co-norm of operators opl/op2, let us mention 

�9 opl(x , y) = min(x, y); oP2(X , y)  = max(x, y), which will be assumed later. 
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,, opl(x , y) = xy; opz(x , y) = x + y - x y  (known as probabilistic product 
and sum). 

* OPl (X,y  ) = max(x + y - 1,0), o P 2 ( x , y  ) = min(x + y, 1) (known as bold 
conjunction and bounded sum). 

The complement relies on the notion of strong negation (application f from 
[0, 1] into [0, 1] which is involutive, decreasing, continuous such that f(0) = 1) 
and we shall retain 

v =  e = 1 

It is easy to see that according to these definitions the double property (De 
Morgan laws) holds: 

A A B  = A u B  a n d A U B = A n B .  

The set difference may be extended as A - / 3  = A N B, and thus 

V x  r U, # A - B ( x )  = opl(#A(X), fig(x)). 

In the context of usual sets, the intersection, union and complement operations 
are similar to AND, OR, and NOT in the boolean algebra over the pair {0, 1}. 
However, it has been shown that the interval [0, 1] could not be provided with a 
Boolean algebra structure. Thus, whatever the definitions retained, some of the 
usual properties (distributivity, idempotence, etc.) of the set oriented operators 
are no longer valid in the context of fuzzy sets. 

2.2.3. Fuzzy relations and fuzzy predicates. In the following, we shall use the 
notion of fuzzy relations. Such a relation R is defined on a set of domains 
D1, . . . ,D, ,  and each tuple x is provided with a grade of membership Izn(x)  

in [0, 1] revealing to what extent this tuple belongs to the relation R. In this 
context, a regular relation is just a special case such that # n ( x )  is equal to 1 for 
any x. More precisely, fuzzy relations will be issued from regular ones by means 
of fuzzy predicates. A fuzzy predicate P is similar to a fuzzy set in the sense 
that it expresses to what extent a given value given as an argument satisfies P. 
It is defined as an application from a set of domains into [0, 1]. 

Similarly to ordinary predicates, we have elementary fuzzy predicates (involving 
one or several variables) allowing for the comparison between a variable and 
a value or between several variables, and also compound predicates linking 
elementary predicates. The conjunction and disjunction (binary or n-ary) are 
defined in terms of intersection and union of sets, thus generalizing the boolean 
AND and OR. However, it is important to note that other operations (detailed in 
Sector 5.1.1) called aggregates are possible, such as means (arithmetic, geometric, 
harmonic, (order-) weighted) which express some compensation effect (Dubois 
and Prade, 1985; Yager, 1988, 1991a) as well as fuzzy quantifiers (Yager, 1991a; 
Zadeh, 1983). 
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2.2.4. Initial query expression in terms of fuzzy sets. In the next sections, 
we shall show that a given system (based on the usual logics) is able to be 
expressed in terms of fuzzy sets. Two main aspects must be dealt with: a 
selection mechanism and a ranking mechanism. In any non-fuzzy-based system 
considered later, a query (not necessarily the initial user query) can be seen as 
comprising two components: 8 a boolean selection condition and ~R a ranking 
condition. The semantics of such a query is "select the tuples satisfying $, then 
rank them according to ~R." Its expression in the framework of fuzzy sets will 
rely on one component for 8 over {0,1} (generally 8 itself since a boolean 
condition is a special case of a fuzzy one) and one for ~R expressing the ordering 
behavior of the system as a membership degree over [0,1]. These two parts 
cannot be connected by a conjunction since we have to translate the "then" 
operation which is not symmetric. Let us consider an element which matches 
the selection part ($) but receives a null grade with respect to ~R. A usual 
conjunction would result in discarding this element since its overall grade would 
be null, as well as for an element which does not satisfy 8 and should really be 
eliminated. To distinguish between these two very different situations, a specific 
asymmetric combination operator similar to those presented in (Yager, 1991c), 
denoted THEN, is introduced: 

A THEN B = A n (B U LB]) where 0 < [B 3 < inf{#B(X) > 0}. 

According to this definition, any element matching the selection part obtains an 
overall membership degree which is strictly positive, whereas it is null for any 
element which does not satisfy the selection part. 

2.2.5. Concerning order preservation. Let us now turn to the ranking mech- 
anisms. The expression ~R depends on each system as we will see, but the 
important point is that there is a function 9: (whose values are generally integers) 
associated with ~R such that a tuple x is better than a tuple x' in accordance to 
the ranking condition ~R is represented by 

Y~(x) ~ Y~(x') ( ~ is an order over the integers, < or >). 

We shall say that this order is preserved by the transformation in terms of fuzzy 
sets, if the function defining the grade of membership according to ~, denoted 
#~(x) is such that 

�9 + > 

where > is the usual order on the real line (here restricted to [0,1]), which 
ensures that the order defined on # is equivalent to the initial one (in particular 
elements identical with respect to ~ are identical with respect to /~). Since 
often, the considered conditions are compound, each composition e has a related 
operator Oe such that 

. . . . .  = . . . ,  
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and we have to find an operator O~ with 

= 

such that x is better than x ~ initially stated: 

O e ( ~ ,  r  ~ ,  r  ~ O e ( ~  (x ' ) , . . . ,  ~% (z')) 

is now stated 

0 ~ ( ~  r  . . . ,  #~(x))  > 0 ~ ( ~ ,  (x'), . . . ,  #~(x')) .  

Consequently, in the next two sections, for each system we shall specify both the 
initial and fuzzy sets oriented expressions of ordering (essentially the functions 
J" (together with ~=) and # applying to elementary ranking conditions and the 
triples 12, Oe, and O~). 

3. Use of an explicit Secondary Criterion 

In this section, two systems are presented in which the user query is explic- 
itly composed of two parts: a mandatory condition and a secondary criterion 
intended for tuple ordering. In Deduce2, the latter component relies on an 
imprecise expression, whereas in Preferences, a boolean condition expressing 
user preferences is used. 

3.1. Deduce2 

3.1.1. Presentation. This system is detailed in (Chang, 1982) and aims at an 
extension of Deduce, a deductive system providing users with a predicate calculus 
query language. Here, a query involves two parts which are connected by an 
AND: a boolean condition denoted F1 and an imprecise condition %F2 which 
may refer to elementary terms like young, well-paid, around 36, etc., which are 
connected by means of AND/OR. The general semantics of a query may be 
stated "rank according to %F2 the tuples which satisfy FI." 

The central point of Chang's proposal resides clearly in the ordering mechanism. 
First, let us consider the case where %F2 contains only a single imprecise term, 
T. T is indifferent, except that it must be represented by a monotonous function 
of a single reference attribute A (base or derived attribute). Thus, the term 
young can be represented as a decreasing function of the base attribute age, 
well-paid by an increasing function of the base attribute salary and around $5000 
by a decreasing function of the derived attribute [salary - 5000 I. Under this 
assumption, the adequation with respect to T is measured by the rank obtained 
by the sort of the tuples according to the reference attribute A of T. The 
sort is performed increasingly or decreasingly depending on the fact that T is 
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a decreasing or increasing function of A according to "the smaller rank, the 
better the satisfaction." When two terms T1 and T2 occur, the semantics of their 
combination is defined as follows. Each tuple is assigned a rank vl according to 
T~ and r2 according to T2, and the final rank r is given by 

rT~ AND T~ = max(r1, r2), rT~ OR T2 = min(rl, r2). 

Such a method is not surprising since the most unfavorable ranks is assigned for 
an AND and the most favorable for an OR. 

3.1.2. Discussion. In order to illustrate the behavior of this system, let us 
consider the example EX1 with the relation EMPLOYEE (num, name, salary, 
age, city) and the query: "find the employees living in San Francisco and rank 
them according to the fact that they earn about $2500 and they are about 40 
years." The boolean criterion (F1) is city = "San-Francisco" and the imprecise 
one (%F2) is around(salary,2500) AND around(age,40). The first one is a 
decreasing function of I salary - 25001 and the second is a decreasing function 
of l age - 40[. Let us take the following extension of EMPLOYEE: 

17, smith, 2200, 40, San-Francisco 
76, martin, 2400, 40, Los-Angeles 
26, jones, 2500, 38, San-Francisco 
12, woods, 2750, 39, San-Francisco 

The sorts will concern the three tuples referring to people of San Francisco 
and yield: 

Tuples ranksalary rankage rankconj 

17, smith, 2200, 40, San-Francisco 3 1 3 

26, jones, 2500, 38, San-Francisco 1 3 3 

12, woods, 2750, 39, San-Francisco 2 2 2 

Finally, in this situation, Woods is the first, whereas Jones and Smith are both 
second. It should be noted that the result would have been the same if the ages 
of these people were 25, 23, and 24 years respectively, which is surprising since 
the age condition is not satisfied at all by any of them. Moreover, the difference 
between the initial values is not reflected by the ranks. Thus, Smith and Jones 
are both second and would remain so even if Smith's salary or Jones's age were 
significantly less. 

We can conclude that the results delivered by Deduce2 are not always conve- 
nient since this system does not take enough semantic aspects into account (in 
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particular, the combination of ranks issued from sorts is not meaningful). In 
addition, let us mention that the expression power of user queries is restricted 
since the imprecise part: (i) only aims at the ordering of tuples previously 
selected by a boolean condition, (ii) may only involve those terms that can be 
supported by monotonous functions. On the other hand, such a system may be 
easily developed on top of a conventional DBMS (Deduce here). 

Now, let us turn to the expression of Deduce2 ordering in the scope of fuzzy 
sets. Initially, z is better than z'  with respect to the condition J~ and is expressed 

ranks(x) < ranks(x') 

(here ~ is <)  and we have 

rankAND(S~22)(x) = max(ranksl(x),ranks~(x)), 

rankoR(sl,s2)(x) = min(ranks~(x),ranks~(x)). 

Let us consider the function t such that a rank r of [1, n] (n > 1 is the number 
of tuples to be ordered) is mapped into ( n  - r ) / ( n  - 1). The latter value can 
clearly be viewed as a grade of membership (the smaller the rank, the better the 
grade) and we adopt the notation #s(x) = t(ranks(x)). Then, we have 

n -- rankAND(Sl,S2)(x) 
/ZAND(Sl,S2)(X) = t(rankAND(S 1,s~)(x)) = n -- 1 

n -- max(ranks1 (x), ranks~(x)) 
n - 1  

n - (n - (min((n - ranks, (x)), (n - ranks~ (x))))) 
n - 1  

min(n - ranks, (x), n - ranks~(x)) 
= n - 1 = min(/~s, (x), #s~(x)). 

Similarly, for a disjunction: 

#or~(sl,s2)(x) = t ( r a n k o n ( ~ l , s . ~ ) ( x )  ) = max(psi(x), #s~(x)). 

We note that Deduce2 defines conjunction and disjunction in a way similar to 
fuzzy sets, except that the grades of membership are calculated from the ranks 
issued from sorts, and not from membership functions applying to attribute 
values directly. From these two formulae, it is easy to deduce that for any 
atomic condition T, conjunction or disjunction of atomic conditions: 

ranks(x) < ranks(x') 4* #s(x) > # s ( x ' ) .  

The initial order is preserved as far as we adopt the transformation /~,(x) = 
( n  - r a n k s ( x ) ) / ( n  - 1) along with the triples (C, 0c,O~) = {(AND, max, rain), 
(OR, rain, max)}. 

Nevertheless, we must admit that it would be almost impossible to express 
this system in terms of fuzzy sets except if we assume that it is possible to state 
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that the argument of a membership function is no longer the attribute value but 
its rank. Since this system is not semantically sound, we do not consider this 
limitation significant. 

3.2. Preferences 

3.2.1. Presentation. This system has been designed and implemented at Philips 
Research Labs (Lacroix and Lavency, 1987) and allows for the expression of 
preferences in user queries. A query involves a selection condition 8 and a 
component 3" devoted to preferences, both of them relying on boolean expressions. 
Basically, a user query can be stated as "find the tuples which satisfy necessarily 
8 with a preference for those which satisfy also 3"." 

This system supports the combination of preference conditions by means of 
two constructs: nesting (hierarchy of preferences) and juxtaposition (preferences 
having the same importance). From Rs, the subset of tuples of a relation R 
which satisfy the selection expression 8, the nesting of the preferences 3'1, . .-,  3"n 
leads to point out the sets: 

S0: 
o~ 
S2: 

S.: 

subset of tuples of Rs which do not satisfy Yl 
subset of tuples of R~ which satisfy 3'1 and not 3'2 
subset of tuples of R~ which satisfy 3'1 and 3'2 but not 3'3 

subset of tuples of Rs which satisfy all the 3'i's. 

The juxtaposition of the preferences T1, . . . ,  T,~ leads to the sets 

To: subset of tuples of Rs which satisfy none of the 3"i's 
TI: subset of tuples of Rs which satisfy exactly one of the 3"i's 
T2: subset of tuples of Rs which satisfy exactly two of the Ti's 

T,~ = Sn: subset of tuples of R~ which satisfy all the 3"i's. 

The initial answer to the system is the nonempty set, Si or Ti, with the highest 
index. The user may then access the previous sets, which corresponds to a 
weakening of the condition. Here we can note that it would also have been 
useful to define a weighted juxtaposition of predicates. 

Example EX2. Let us consider the query "find the names of the employees of 
San Francisco with the nesting of the two preferences: to earn less than $2500 
and to be more than 38 years" with the following tuples: 

17, smith, 2800, 38, San-Francisco 
76, martin, 3000, 40, San-Francisco 



SOME APPROACHES FOR RELATIONAL DATABASES FLEXIBLE QUERYING 333 

26, jones, 2200, 37, San-Francisco 
12, woods, 2300, 39, San-Francisco 

We will have So = {Smith, Martin}, $1 = {Jones}, o~ = {Woods}. 

3.2.2. Discussion. One of the major advantages of this system is that it frees 
the user from a set of successive questions/answers which is often necessary to 
reach a desired number of responses. The authors point out that an equivalent 
formulation in a classical system would not be easy, since the number of queries 
submitted to the DBMS would be combinatorial to the number of preferences. 
However,  it should be noted that two tuples can be qualitatively distinguished if 
they belong to two distinct sets, but not inside a single one where all the tuples 
are equivalent with respect to the considered set of preferences. 

We can now introduce the expression of the order implied by a set of preferences 
in the context of fuzzy sets. In the system Preferences, the quality of a tuple x 
depends on the value of the index (function ind hereafter) of the set Si or T,. to 
which it belongs. More precisely, a nesting N works according to the operator  

indNj,~,. . . ,~,)(x ) = i if x belongs to Si, 

and x is better than x' with respect to the nesting of T1, ...,Yn is represented 
by 

ind~;(yl ..... ~,)(x) > ind~;(~ 1 ..... ~,)(x'). 

Similarly, the behavior of a juxtaposition g can be represented by the operator 

ind,0, ~ ..... y,,)(x) = i if x belongs to Ti, 

and x is better than x' with respect to the juxtaposition of :P~, . . . ,  5'~ is represented 
by 

ind~(y~ ..... ~,)(x) > ind~(yx,...,e,)(x'). 

In both cases, the order :~ is the same, namely >. The expressions of indx and 
ind a are given in this form for the purpose of simplicity, although they could be 
expressed as compositions. 

Let us consider the function which maps T i ( x )  onto #~(x)  = 1 if Y i ( x )  is 
true, 0 otherwise. In the case of a nesting N, let us define the aggregate 3V[1 
characterized by 

 2L1(2" 'r 
2Vfl(Yl(x) . . . .  , T , , ( x ) )  = #~(~'1 ..... j, ) (x )  = 2 " -  1 ' 

where fi'~,(~) = minj_<i(l%(x)). 
2v[1 is a weighted  m a s k i n g  m e a n .  Similarly, for a juxtaposition J, let us define the 
operator  512: 
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~/[2(~[:~1(x) . . . .  ' [ P n ( X ) )  ~--- #~q(~P1, . . - ,5),)(~) - -  2~Iz=1 /~P i (X)  
n 

This aggregate is the arithmetic mean which is a specific weighted mean. The 
two following equivalences hold: 

indx(~, ..... ~,,)(x) > ind~(~,.. .~)(x') r #~(~, . . jo)(z)  > jz~(~,...,~,)(z'), (a) 

inda(y~,...~,~)(x) > inda(~,~,...,y,,)(x') r #~(~,,,...yo)(x) > iz~(~,~,..,,e~)(x'). 

We now give the outline of a demonstration for formula (a). Let  us assume that 
indN~,~,_.2,d(x ) > ind~(~,...,e,d(z'), which implies that 

Sk, m such that k > m, indn.(~,~,...,e~)(x) = k, ind~ff~5,...,~, )(x ) = m. 

This means that J~l(x) = 1, . . . , T , ~ ( z )  = t . . . .  ,J'~,(x) = 1,~P~,+l(x) = 0 and 
J' f f z ' )  = 1 , . . . ,  ~m(z ' )  = t ,  ~ + f f x ' )  = 0. Therefore,  

m x'~k 9 n - i  , : J ' , ( z ) )  = 2 

"" 2 " -  1 

is greater than 

2 

"" " '  = > - 1  

Conversely, assume that 3~ff~ffx),  . . . ,  ~ . ( z ) )  > 2~{f fT f f z*) , . . . ,  T,~(cd)). Then 

~ = 1 (  2 11" Y'i(x)) z-,i=1", 'p, 9,(x')) 
> 

2" - 1 2 " - 1 

and 

"-~^ ~ ( 2 " - i / 2  " z' ~ ( 2  /~ e~(x)) > :~(, )), 
i = l  /=1 

which implies that there exists k > m such that J 'ffx) = 1, ...,:Pro(x) = 
1,...,~P~:(x) = 1,Yk+i(z) = 0 and Tt(x')  = 1, . . . ,Y,~,(x ')  = 1,Tin+fix') = 0, 
since the decomposition of  a number according to the powers of  2 is unique and 

~ 2 ~ < 2 v+l. 
i=1 

Consequently, indx(e~ ..... e,d(z) = k and ind~-(e,,...2,d(x') = m with k > m and 
we are done. 

A similar reasoning can also apply for the second formula. 
Finally, the behavior of Preferences could be reached by a fuzzy-set-based 

system, in which any query would involve three parts: 

1. The initial condition 8 which is left unchanged (each atomic criterion is 
interpreted as a fuzzy predicate whose values are only 0 and 1). 
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2. The preferences which are viewed as fuzzy predicates whose values are only 
0 and 1, are also left unchanged; they are combined using either N" or ~J 
depending on whether it is a nesting or a juxtaposition. 

3. A THEN connecting these two components. 

Example EX2 gives rise to a global fuzzy condition as 

THEN(city = "San-Francisco", N(salary < 2500, age > 38)). 

When applied to the previous tuples, the ranking part leads to the partial grades: 
Smith, 0; Martin, 0; Jones, 2/3; Woods, 1. The final result (where Smith and 
Martin receive a non-null grade under 2/3) yields the same order as that exhibited 
at the end of Section 3.2.1, in accordance with formula (a). More generally, in 
doing so, it is clear that the result is exactly the same as the one provided by 
the initial system. 

4. Similarity Operators 

Several approaches relying on an explicit on implicit similarity operator have 
been proposed and we focus on the most representative. The systems called 
Ares and Vague are rather close and the latter can be seen as a refinement of 
the former. Both of them make use of an explicit operator (similar to), which 
extends the usual equality. Another technique known as nearest neighbors makes 
use of a global implicit similarity operator. 

4.1. Ares 

4.1.1. Presentation. In order to free the user from an outtiring querying process 
when a given umber of responses is desired, a similarity operator denoted ~, 
standing for "more or less equal to," is introduced in Ares (Ichikawa and 
Hirakawa, 1986). The interpretation of the elementary condition (A ~ value), 
relies on the notion of distance between any two values of a same domain. 
Depending on the domain, a relation expressing the distance d : ( I v : -  v21) or 
d2(vl,v2) is defined. An imprecise atomic condition can compare the value of 
an attribute and a constant (A ..~ v), or the values of two attributes (A ~ B) in 
case of join predicates. The authors of the paper describe in detail how such 
conditions are translated into boolean cases, in order to produce a relational 
query which will be processed by a conventional DBMS. As an illustration, 
Figure 2 gives the translation of the atomic condition A ~ v assumed to apply 
to a relation R, such that the distance between two A values can be found in 
a relation DA(v:, v2, dist). In order to work, the translation procedure requires 
the knowledge of a threshold, t. In fact, t is a maximum allowed distance and 
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A = v = - - = = >  

z 
f select: 
~, ='~-&-'dist _<) 

4 
DA base relation R 

Figure 2. Trans la t ing  the  a tomic  cond i t ion  A ~ v. 

al and a2 are considered somewhat similar as far as the tuple (al, a2, d) in DA 
is such that d _< t. 

Given a query comprising boolean and imprecise predicates connected by 
ANDs, the following process takes place. The user supplies a threshold value 
max,: for each imprecise predicate P~ and the system carries out the translation 
into a boolean query, as mentioned above. The produced query will then select 
acceptable tuples for which a global distance is calculated. More precisely, it 
is obtained by summing up the elementary distances d~(< max,) tied to each 
imprecise predicate P~.. Finally, it is possible for the system to return the p best 
tuples (whose global are the smallest) to the user. 

4.1.2. Discussion. The semantics of a query are not straightforward in this 
system, mainly because the distances manipulated are not normalized. In this 
context, the maximum distances chosen by the user can be interpreted either as 
a normalization, or as a weighting tool. Moreover, the lack of normalization 
denies the conjunction of conditions any canonical meaning. It must be least be 
pointed out that the disjunction of conditions is not permitted, which limits the 
expressiveness of the language. 

Let us illustrate this system with Example EX3 and the query: "find the 
employees living in San Francisco earning about $2500 and aged around 40." 
We assume that the relations expressing distances over the salaries (DSAL) and 
ages (DAGE) are 

DSAL(sall-sal2, distsal) DAGE(agel-age2, distage) 

0 0 0 0 

150 1 1 1 

. . . . .  2 1 

400 2 3 2 
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and we consider the following extension of the relation EMPLOYEE: 

17, smith, 2500, 38, San-Francisco 
76, martin, 2900, 40, San-Francisco 
26, jones, 2500, 37, San-Francisco 
12, woods, 2650, 39, San-Francisco 

Let us assume that the user chooses the maximal acceptable distances: 2 on 
salary, 1 on age. Ares will return the answer (the global distance values are 
inside brackets) 

Smith [1], Martin and Woods [2]. 

Although close to Smith (the best), Jones has been discarded. This shows that 
Ares results may be surprising since they strongly depend on the border values 
(here 38 is accepted, whereas 37 causes the rejection). This point is an essential 
characteristic of any boolean system and will be discussed in Section 5.2. 

Now, we shall show how Ares ordering may be expressed in the context of 
fuzzy sets. Firstly, we can see that only imprecise conditions are to be taken 
into account, since boolean ones must be satisfied and Ares works as if a null 
distance were tied to them with respect to ranking. Secondly, there is a single 
composition C, namely the conjunction. For any atomic imprecise condition 
~P~ (of type A ~ v) an elementary distance, diste~(x), tied to a selected tuple 
x is calculated. For a conjunction (AND) involving the imprecise conditions 
T1, . . . ,  :!',~, and the boolean conditions :B,~+l . . . .  ,23v, the global distance dist~,(x) 
is given by 

n 

dist.(x) = diStAND(~h...,~.,~.+~ ..... ~)(X) = Ed i s t~ ' (x )  
i=i 

= gll3V[(disty~(x),...,diste.(x)). 

x is better than x' is stated dist~,(x) < dist~(x') ( ~  is <). Let us consider the 
function which maps the distance diste,(x) onto the degree 

#~,~(x) = max~-diste~(x) if distj,~(x)< max/, 0 otherwise. (b) 
m axi 

In fact, the null value which is assigned when dist~,~(x) > max/ is only intended 
for a safe definition of the degree. In that case, x will be discarded by the 
selection part and the value of the ranking part will not play any significant role. 
Let us define the conjunction by the aggregate 3Via: 

= E i = I  .e ; (X)  maxi (C) 
max  
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Here, the aggregate 2~Ia is a weighted mean where the weight attached to the ith 
term is m a x i / ~  max/. The following equivalence is valid: 

diSthND(~, ..... ~.,~,+, ..... Sp)(x)  < diStAND(~,, . . . ,S,,~+,, . . . ,$,)(X')  

/ZAND(T1 ..... ~',,~B,+,,...,~Bp)(:E) > /ZAND(~I,.. ,:P,,:D,+,,.. ,:Bp)(Z') �9 

We have 

diStAND(y, . . . . .  ~]~,,~n+l,...,~p)(X) < distAND(:~I,...,~,,,:~+I,...,:B,)(x') 

r s diste,(x) < s dist3@c') 
i=1 i=1 
n n 

r ~ ( m a x l  -disty, (x)) > ~-~'(maxi -disty~ (x')) 
i=1 i=1 s max,) 
i=1 max~ ~ = l  max,. > 

s  w----maxi '~ 

~=1 maxi ~i=l  maxi J 

r 1 6 3  . .  maxi ) /  , , ,  maxi , 
~#~'i (x) ~-'~= 1 max i > s 

~;' #AND(Tb...,~,IB,+h...,IBp)(~) > /ZAND(T,,...,~,,IB,+h...,IBp)(Z')" 

So, in Ares, we have the correspondence: (e, Oc, O~) = (AND, 8tt2V[, 3V[3). 
To conclude this point, we investigate the expression of Ares' queries in the 

context of fuzzy sets. Let us consider a query comprising the conjunction of 
the imprecise conditions Yl, . . . ,  J',~, and the boolean conditions ~Bn+l, . . . ,  ~p. It 
will be expressed as a THEN combination between the conjunction (AND) of 
the initial boolean conditions ~ and the boolean predicates derived from the 
imprecise conditions J'4 (acting as intervals) on the one hand, and on the other 
hand the aggregation of the imprecise conditions Pi (introduced by around) by 
means of the operator denoted AND~t.~, to avoid confusion with the standard 
AND. 

The query of example EX3 "find the employees living in San Francisco, earning 
about $2500 and aged around 40" will be expressed as 

THEN(AND((city = "San-Francisco"), (2100 < salary < 2900), 

(38 < age < 42)), 

AND~t3(around(salary, 2500), around(age, 40))). 
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The predicate around (...) is the counterpart of ~ and it is calculated from the 
relations DSAL and DAGE according to formula (b). Moreover, according to 
(b) and (c) this expression assigns the following grades to the tuples of Example 
EX3: Smith, 2/3; Martin, 1/3; Jones, 0; Woods, 1/3. The order implied by this 
result is exactly the same as that given at the beginning of this subsection. 

4.2. Vague 

4.2.1. Presentation. The system called Vague (Motro, 1988) has the same goal 
as Ares. It may be seen as an improvement of Ares since some of our criticisms 
are no longer valid (clear distinction between normalization and weighting, OR 
and AND allowed). Each domain of the base is associated with one or several 
data metrics, thus allowing the users to have different interpretations of one 
same condition (A ~ v). A data metric M over a domain D is an application 
from D x D into the real line such that 

V x, y M(x,  y) > O, 

M(x ,y )  = O r x = y, 

y) = M(y ,  x), 

V v, y) _ + y). 

A data metric (whose values are integers in practice) is provided with a radius r, 
the maximum value for which the similarity is satisfied. Consequently, the 
predicate A ~ v satisfied whenever M(A, v) <_ r. The notion of radius is very 
similar to the maximum distance allowed in Ares. Furthermore; the value 
M(x,  y)/r  provides a normalized distance which does not depend on the domain, 
which will make sense for future combinations of such values. 

The Vague operating principle is based on two mechanisms. The imprecise 
conditions are translated into boolean ones, in a similar way to Ares and the 
resulting query is used to select tuples. Besides this, an ordering process takes 
place, relying on the calculation of distances diste~ (by means of data metrics 
whose radius is denoted r~) for the elementary imprecise conditions ~i. The user 
assigns each imprecise condition Y~ a weight wl (integer) and finally an adjusted 
distance fdisb,,(x) is associated with a tuple x with respect to the elementary 
imprecise condition Y~: 

fdist~, (x) dist~ (x) 
- wi if x satisfies ~Pi, ee otherwise. (d) 

ri 

The distance value for an elementary boolean condition :131, denoted fdist~,(x) is 
either 0 (if x matches ~/) or co. As stated below and without loss of generality, 
the qualification C of a query is expressed under conjunctive normal form: 
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C = AND(OR(Ct,1 . . . .  , el,n, ), . . . ,  OR(6~m,t,..., Cm,n~)) , 

where C~,~ is either a boolean or an imprecise predicate. The adjusted distance 
attached to a selected tuple in case of a disjunction OR(C~,I, ...  ,Ci,,,,) is the 
smallest of the adjusted distances related to each satisfied C~,j. For the n-ary 
conjunction AND(T1, ... ,T,J, the global distance is obtained as the root of the 
sum of the squares (euclidean distance) of the adjusted distances tied to each 
term ~ which involves at least one imprecise condition. It must be noted that 
this operator is not associative unlike the usual semantics of a conjunction. 

Example EX4. Let us consider the query "find the employees earning about 
$2500 who are either living in San Francisco, or aged around 40." Moreover, we 
suppose that (i) the two imprecise conditions have the same importance (weight 
= 1) and (ii) the data metrics are 

DSAL(sall-sal2, distsal) (radius 2) DAGE(agel-age2, distage)(radius 1) 

0 0 0 0 

250 1 1 1 

500 2 2 1 

3 2 

When applied to the extension 

17, smith, 2500, 38, Los-Angeles 
76, martin, 3000, 40, San-Francisco 
26, jones, 2500, 37, San-Francisco 
12, woods, 2750, 39, Los-Angeles 

this query produces 

dists,~ dist~ge distcity fdistsal fdistage distoR diStAND 

Smith 0 1 ec 0 1 1 1 

Martin 2 0 0 1 0 0 i 

Jones 0 2 0 0 c~ 0 0 

Woods 1 1 c~ 1/2 1 1 v~/2  
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which leads to the order Jones, then {Martin, Smith}, and finally Woods. 

4.2.2. Discussion. If Vague is more satisfactory than Ares, these two systems 
suffer from two significant drawbacks: 

1. The answers returned to the user are not always in accordance with intuition 
(as illustrated at the beginning of Section 4.1.2.). One reason for this lies in the 
fact that two distinct (although not independent) mechanisms are successively 
used: the selection and the ordering of the selected tuples. Even if such a 
method may sometimes be interesting, it should not be the only one possible. 
In this respect, we shall see later that fuzzy sets based systems can support 
other capabilities. 

2. Only the equality has been extended whereas some imprecise conditions like 
well-paid, x much more . . .  than y ,x  very . . . ,  etc., cannot be taken into 
account by ~-,. 

Basically, a tuple x is better than a tuple x' with respect to a condition C if 

distc(x) < distc(x') ( +  is <). 

If a disjunction C includes the elementary imprecise conditions J'l, . . . ,  Y,~ and 
the elementary boolean conditions ~B~+I, . . . ,  :13 v, Vague calculates the distance as 

n p 
distoa(~l ..... ~'.,~.+1 ..... ~p)(x) = min(min(fdist~, (x)), min (fdist~i(x))). 

i=1 ~ i = n + l  

If we denote by ~D1, . . . ,  :D, the terms of the final conjunction including at least 
one elementary imprecise condition, and Yn+~, . . . ,  Yp the others, the final distance 
in Vague is obtained by means of the operator E:D (euclidean distance): 

I n 
distAND(• ...... ~,,,:r,+l ..... ~-)(x) = E(distD,(x))2 

i=1 

= gff)(dist~ l(x), . . . .  distD~(X)), 

where dist~9~(x) is either 0 (at least one boolean component of an OR is true) or 
has the form (diste~(x)wi)/ri with diste,(x) _< r~ (for the best imprecise condition). 

Now, we show how this behavior can be expressed in the context of fuzzy sets. 
For the elementary conditions, let us consider the two mapping functions: 

#~(x)  = 0 if dist~(x) = oe (23~(x) false), 1 otherwise, 

~ ( x )  = 1 - diste~(x) x wi _ 1 fdist~,~(x) 
ri wmax wmax 

if disty,(x) < ri ,  0 otherwise, (e) 

where wmax is the highest weight used in the query. The remark in Section 4.1.2 
after formula (b), regarding the significance of the value obtained when dist~,,(x) > 



342 BOSC AND PIVERT 

r~-, also applies for this latter formula. In case of a disjunction, we use the operator 
max in order to aggregate the basic degrees and we have 

/ZOR(Y, ..... ~,,B,+h ...,~p)(X) = max(/z~l  (x ) ,  . . . , / zg~  (x ) ,  ] ' ~ n + l  ( X ) ,  �9 �9 �9 , ~ p  (~) ) .  

In a similar way, for the conjunction, we define the operator 3V[4: 

 4(Dl(x), . . . ,  ---- /ZAND(D1, ...,D, ,:Y,+I, ...,tip) (X) 

2 
n 

where #~(x)  equals 1 if at least one boolean component of Di is true or has 
the form (1 -fdist~k(x)/wmax ). Here again, we have defined a mean since 2v[4 
is a quadratic mean. 

Appendixes 1 and 2 contain the proofs that these two operators maintain the 
initial order, and more precisely that the equivalences 

and 

distoR0,~ ..... ~n,~n+l, . . . ,~ , ) (X)  < distoa(~,~,...2,,~,+~ ..... ~,)(x') 

r t~oR(~,.. ,~,,,~+~ ...,~)(x) > tzoR(~,...,~,,~,+~,...,~)(x') 

diStAND(~D~,...,D~ < diSthNB(9~ ..... 9,,7,+~,...,7"p)(x') 

"r /ZAND(~D1,...,~D~,ff,+b...,9"p)(X ) > /2AND(2)I,...,D,,~Y~+,, ...,~Yp)(xt) 

are valid. 
In terms of fuzzy sets, any query will look like those of Ares except that 

disjunctions may also appear. So, it will contain a THEN, connecting predicates 
intended for the selection and the aggregation of the ranking predicates, denoted 
ANDre 4. In Example 3 we will have 

THEN(AND((2000 < salary < 3000), OR((city = "San-Francisco"), 

(38 < age < 42))), 

AN'DIn, (around(salary, 2500), 

OR(equal(city, "San-Francisco"), around(age, 40)))) 

where the predicate around(...) is given by the formula (e). When applied to 
the previous extension of EMPLOYEE, we obtain 



S O M E  A P P R O A C H E S  F O R  R E L A T I O N A L  DATABASES FLEXIBLE Q U E R Y I N G  343 

#sal #age #city # O R  #AND 

Smith 1 0 0 0 1/2 

Martin 0 1 1 1 1/2 

Jones 1 0 1 1 1 

Woods 1/2 0 0 0 3/8 

which leads to the same order as that given earlier. 
Finally in Vague, we have the two triples 

(e, Oe, 0~) = {(OR, rain, max), (AND, s ~V[4) }. 

4.3. Nearest neighbors 

This kind of query, also called best match queries (Friedman, et al., 1975; Rivest, 
1976), is defined by a set of values which characterize an ideal tuple M. Each 
concerned tuple is then compared with M by means of a global function which 
gathers the results of local distance functions applied to some attributes. One 
of the most used global functions is the L~,-norm defined as 

'~ disti(x)P with dist/(x) - 
i=1 

Ix -Md 
maxi -min / '  

where xi and Mi stand for the values of the ith attribute of the current tuple 
and the model which can vary between mini and max/. The querying mechanism 
remains generally implicit and is not part of a query language. 

The expression in terms of fuzzy sets of the order implied is based on the 
function which maps a local distance disti(x) onto #i(x) = (1 - (disti(z))P). The 
initial order is such that x is better than x' if 

y ~  dist~'(z)P < dist/(x')p 
i=1 i=1 

and it is easy to show that it is equivalent to 

 M_y) > 
n n 

i=1 i=1 

Consequently, the aggregation here is the usual average of the degrees: 
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. . . ,  = u (x) 
n 

i=1 

Since the original distances are normalized, this aggregation could only be null if 
M~ were mini or max~ for all i, which seems very unlikely; therefore this operator 
can be considered representing the behavior of this kind of system. 

5. Fuzzy selection of tuples 

5.1. Overview 

5.1.1. Fuzzy criteria modeling. Among the first people to advocate the use 
of fuzzy sets for database querying, were T Kunii (Kunii, 1976) and V. Tahani 
(Tahani, 1977). The idea consisted of allowing the expression of imprecise 
conditions (boolean conditions are only a special case) inside queries which 
are interpreted according to what has been presented in Section 2.2. Tahani 
suggested the extension of the SEQUEL base block (Chamberlin, et al., 1976) 
in order to support the imprecise comparison between an attribute value and a 
constant, or between two attribute values (joins). These elementary predicates 
can be combined using the connectors AND and OR working as min/max. One 
can thereby select one relation or the product of several relations and receive a 
projection of all the tuples provided with a non-null grade of membership. 

In addition to base (or atomic) predicates, we can define other predicates 
based on unary operators, called modified predicates when an atomic predicate 
is concerned: 

�9 The contrary of the initial term by means of the negation, according to the 
definition tZno~e(x) = 1 -  t~p(x). 

�9 Along with modifiers (adverbs) seen as either exponential operators (Lakoff, 
1973; Zadeh, 1972), in which case the predicate mod P is defined as 
/Zmo~e(x) = #z-(x) = (Izp(x)) n, or powers of fuzzy sets (Yong-Yi, 1981), where 
the predicate rood P is defined as/Zmodp(x) = /~p~(x) = (PO. . .OP)(x ) ,  where 0 

n times 
is a nonidempotent triangular norm for a concentrator (conorm for a dilator); 
if "extremely P"  corresponds to n = 4, we shall have /Zextremelyp(X ) = ( ]Zp(X) )  4 
in the former case and max(4/ze(x) - 3, 0) with 0 = max(x + y - 1,0) in the 
latter. 

�9 Along with modifiers defined in terms of translations. For instance, in 
(Bouchon-Meunier and Yao, 1992), the modifiers "really" and "relatively" are 
applying to an ordered sequence of predicates called labels {P1, . . . ,  P2~+1} ac- 
cording to the definitions #re~nyp~(x) = Iz~(x.a + 5), /Zrelative[yp~(X ) = t z~ (x .a -5 ) .  

�9 In terms of antonyms, such as small and large, or young and old. In this case 

I~.~ (x) = # p ( M  - x.a), where /~ is the antonym of P defined on a E [0, M]). 
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Lastly, it is possible to build compound predicates based on n-ary operators. 
Among these connectors, in addition to the usual AND/OR defined in terms of 
intersection and union of fuzzy sets, there is a class of operators called "means" 
allowing for compromises between the predicates used as parameters: 

�9 Arithmetic mean: am(P1, . . . ,  Pn)(x) = (Pl(z) + . . .  + P~(x))/n. 
�9 Geometric mean: gm(P1, . . . ,  Pn)(z) = (P l (x ) . . .  Pn(x))l/'L 
�9 Harmonic mean: hm(P1, . . . ,  Pn)(x) = n / (1 /Pl (x)  + . . .  + 1/P,(z)) .  
| Weighted mean: wm(P1, . . . ,  Pn)(x) = wlPl(x)  + . . .  + w,~P,~(x), where the sum 

of the weights wi's equals 1. 
,, OWA mean: owam(P1, . . . ,  P,~)(x) = wlPk~(x) + . . .  + w,~Pk,,(x), where Pk~(:r) 

denotes the ith largest value among the ~(z) ' s  and the sum of the wi's equals 
1; this aggregation performs a somewhat dynamic weighting with respect to 
the usual weighted mean (Yager, 1988). 

| The generalized mean has been initially introduced by Dujmovic and is de- 
veloped in (Dyckhoff and Pedrycz, 1984): Gm(P1, . . . ,  P,O(x) = ( W l ( P l ( x ) )  p 4- 
. . .  + 

Other aggregation operators such as the "y-model (Zimmermann and Zysno, 
1980) which combines regular union and intersection operators, or the weighted 
minimum and maximum (Dubois and Prade, 1986) have also been proposed. 
These latter are defined in the following manner. Let wl, . . . ,  w,~ E [0, 1] be the 
weights of the predicates P1, . .-,  P~ with maxi(wi) = 1. Then, for the conjunction 
( P l w - A N D .  " w-ANDP,,) we have 

/1 

#P1 w-AND . . . . .  AND P. (X) = min max(1 - wi, #p~ (x)). 
i=1 

When each wi equals 1, this gives the usual conjunction. Similarly, for the 
weighted maximum: 

/~P1 ,,,-OR ...... OR f', (X) = m]ix min(wl, #~ (x)). 
i=1 

Lastly, in order to extend the imprecise querying capability of a relational 
DBMS, in (Kacprzyk and Ziolkowski, 1986) an original imprecise fuzzy criterion 
including imprecise quantifiers is defined, thereby designing a new class of queries 
Q whose general form is "find those tuples such that s among the conditions 
{Yl, ...,Y,,} match." The conditions Yi may be imprecise and s is either an 
absolute quantifier (about 3, a dozen, etc.) represented by a fuzzy set over R 
or a relative quantifier (a few, almost all, etc.) represented as a fuzzy set over 
[0, 1]. The interesting point lies in the fact that the evaluation of such conditions 
is exactly the same as that suggested by Zadeh (Zadeh, 1983) to calculate the 
answer of quantified propositions such as "s elements match the condition Y." 
For instance, if #j,,(x) denotes the extent to which x satisfies ~P; and #zQ is the 
fuzzy set related to the relative quantifier s the degree of membership for any 
tuple x with respect to the query Q is 
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unary n-ary 

Predefined G e n e r i c  Predefined Generic 

Negation Exponential 
Power 

Translation 
Antonym 

Conjunction 
Disjunction 

Arithmetic mean 
Geometric mean 
Harmonic mean 

Weighted minimum 
Weighted maximum 

Weighted mean 
Generalized mean 

OWA 
Hybrid mean 
Quantifiers 

Weighted quantifiers 

Figure 3. A classification of the operators. 

Yager (Yager, 1991b) has proposed an interpretation for monotonous quantifiers 
which is founded on the OWA operator and he has suggested a methodology 
for the definition of the weights to be used. For instance, let us consider the 
proposition: "LQ elements match the condition Y," where s is a relative 
quantifier and n tuples are involved. The weighting vector associated to ,~Q is 
defined using an increasing function IQ as wi = I Q ( i / n )  - IQ((i - 1)/n), where 
IQ(O) = O. 

5.1.2. Toward an ex tended  SQL. Both these proposals are interesting but they 
have been suggested separately. That is the reason why we have designed a more 
general framework aiming at their integration. The idea is very simple: a well- 
known relational query language, namely SQL, has been extended to support 
a wide range of imprecise queries (Bosc, et al., 1988). Moreover, particular 
attention has been paid to the equivalences which exist in SQL (Bosc and Pivert, 
1991c; 1992). 

We give the principal features of the extended language. The "where" clause 
of the multirelation select block may involve both boolean and fuzzy predicates 
combined by several kinds of connectors, thereby achieving a large number of 
semantic effects. The DBMS will have to handle the atomic predicates as well as 
the functions tied to fuzzy operators. We can distinguish two types of operators: 
predefined and generic which can be seen as constructors from which specific 
instances can be defined by each user. Figure 3 gathers these operators. The 
use of nested blocks connected by [NOT] IN, [NOT] EXISTS, ANY, and ALL 
is allowed and the preexisting equivalences can be maintained by appropriate 
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35 40 45 2000 2500 3000 

Figure 4. Membership functions for "age around 40" and "salary around 2500." 

definitions of the extended operators. Set-oriented operations (at least the 
union) are also permitted and the intersection and difference can be equivalently 
expressed by queries including nested select blocks. Partitions issued from a 
group by can be selected by means of fuzzy conditions bearing on the results 
delivered by set functions (COUNT, SUM, etc.), but also using fuzzy quantifiers 
as introduced in the previous section. The result of a query is either the tuples 
whose grade is over a threshold t, or the n best (t, n given by the user). 

5.2. Comparison and assessment 

5.2.1. The functional aspect. In the previous sections, we have presented various 
attempts aiming at the support of flexible queries. In particular, we have shown 
that the context of fuzzy sets was powerful enough to express the approaches 
based on the boolean logic. We have also noticed that some responses of the 
boolean systems are not convenient. Now, we show how fuzzy sets can solve 
some of these shortcomings. One important difference between boolean and 
fuzzy systems is basically the fact that the former use two distinct mechanisms-  
selection then ordering-whereas the latter rely solely on a single mechanism, 
thus providing a global behavior. In other words, a fuzzy system orders all the 
elements and therefore a compromise between the various criteria is possible, 
whereas in a boolean system the order concerns only a subset of elements. Thus, 
these two kinds of systems cannot be expected to be equivalent. 

In Deduce2, a sort is very similar to a membership function, but it does not 
account for the concept of full membership and full mismatch since a single 
element has the grade 1 (resp. 0). Let us come back to Example EX1. We 
can assume that the curves given in Figure 4 provide reasonable interpretations 
of the predicates around (age, 40) and around (salary, 2500). Let us consider 
that the minimum is used for a conjunction. When applying the query "find 
the employees living in San Francisco and rank them according to the fact that 
they earn about $2500 and they are about 40 years" to the considered tuples, 
we obtain 
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~ . ~ ,  ~ 0 , t 
35 40 45 2000 2500 3000 

Figure 5. Membership functions close to Ares interpretation. 

Tuples 

17, smith, 2200, 40, San-Francisco 

26, jones, 2500, 38, San-Francisco 

12, woods, 2750, 39, San-Francisco 

#salary /Zage //,AND 

.5 1 .5 

1 .8 .8 

.7 1 .7 

Even if this result differs from the initial one, it seems acceptable. Moreover, 
if the ages were 25, 23, and 24, this result would definitely be different (even if 
the conjunction is not a minimum). Similarly, a significant decrease of Smith's 
salary or Jones's age will be reflected in the result, unlike in Deduce2. 

The approaches which use the notion of similarity transform the condition 
{A ~ v} into A C [v - r, v + r], where r stands for the authorized deviation with 
respect to the initial value v. The effect of this transformation is to replace the 
initial discontinuity in v by two discontinuities in v - r and v + r. Here again 
the introduction of a transition by means of fuzzy sets may contribute to obtain 
results more in accordance with user wishes. Let us come back to Example EX3 
where the query is searching for the employees living in San Francisco who are 
about 40 and earn about $2500. These two predicates can be represented by the 
membership drawn in Figure 5 which are very close to Ares interpretation and 
the result will be 

Tuples /Zage /Zsalary /ZAND 

17, smith, 2200, 38, San-Francisco .5 

76, martin, 2900, 40, San-Francisco 1 

26, jones, 2500, 37, San-Francisco .2 

12, woods, 2650, 39, San-Francisco .9 

1 .5 

.2 .2 

1 .2 

.9 .9 
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In this case, Jones is just a little bit worse than Smith and is not definitely 
rejected. It is clear that the order obtained can be discussed, but the wide range 
of membership functions and connectors (especially means) would allow it to be 
possible to cope with various users' needs. One point worth mentioning concerns 
a limitation of fuzzy sets (as well as usual ones) which cannot distinguish between 
values provided with a same degree (0 or 1) even if these values are significantly 
different. 

5.2.2. About performances. In addition to the intrinsic capabilities offered by 
fuzzy set approaches, it is necessary to consider the performances of the systems. 
It is beyond the objectives of this paper to undertake a thorough comparison 
between the systems previously presented, but we would like to point out an 
interesting fact. For some of them, the development of a particular system 
was clearly a matter of performance according to the usual conflict between 
generality and efficiency. However, we have studied some aspects of fuzzy query 
processing (Bosc and Pivert, 1991a) and it appear that reasonable performances 
can be expected for some kinds of queries, especially through the use of a regular 
DBMS in charge of performing some kind of boolean preprocessing (Bosc and 
Pivert, 1991b). In the particular case of Preferences, Ares, and Vague, we have 
shown that the queries expressed in terms of fuzzy sets involved a "THEN" 
combination comprising a boolean part. In this situation, it is clear that any 
"reasonable" processing strategy in an extended DBMS would take advantage of 
that to reduce the computations. As a consequence, we are quite sure that the 
performance attained in these particular systems, and in DBMS supporting fuzzy 
queries, would be very close. 

6. Conclusion 

In this paper, we have dealt with flexible querying of relational databases by 
introducing imprecise criteria inside user queries. Such an approach is intended 
for coping more closely with user needs, especially with the querying goal cannot 
be stated as a pure boolean condition and allows for a qualitative or quantitative 
calibration of the size of the result returned to the user. 

When looking at the various proposals or prototypes depicted in the literature, 
three main directions can be pointed out. In the first one, a separate component 
devoted to the ordering of the results is added to the selection part of the query; 
the systems Deduce2 and Preferences illustrate this point of view. The second 
approach is based on a similarity operator weakening the strict equality. Such 
conditions are transformed into usual boolean conditions including a tolerance 
interval (or deviation) with respect to the initial central value. This process 
aims at the selection of tuples which are then subject to a distance calculation 
based on the principle: the smaller the deviation, the smaller the distance. The 
final global distance is finally used to rank the selected tuples. This kind of 
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approach is followed in the systems Ares, Vague, and so-called nearest neighbors. 
The last approach which relies on a fuzzy-sets-based interpretation of imprecise 
conditions gives several intrinsic advantages: the discontinuity between acceptance 
and rejection disappears, compensation effects between elementary criteria can 
take place thanks to a wide variety of connectors, imprecise conditions can be 
seen as a natural extension of boolean conditions and it provides a general 
powerful querying framework. 

Further to a detailed explanation of the behavior of the systems belonging to 
the first two classes, we have shown how their queries could be expressed in the 
scope of fuzzy-sets-based statements, so that the same results are obtained. This 
point requires the definition of (i) a grade of membership tied to each atomic 
imprecise (and boolean) condition, (ii) appropriate semantics of the connectors 
appearing in the queries (such as AND and OR), and (iii) a particular connector 
(THEN) expressing the interaction between the selection part and the ordering 
part. We have pointed out the fact that, very often, the semantics of the 
connectors could be stated as particular means. This work is somewhat a proof 
that fuzzy sets provide a more general framework than each of these systems 
considered separately. Moreover, we have noted that some behaviors of these 
systems were not very suitable, which could at least be partly obviated if more 
adequate connectors were used. 

At this point, we must explain that the reason why some specific systems have 
been designed and implemented is twofold: they are likely to solve practical 
problems and they can easily be developed on top of a usual DBMS so that 
query processing is efficient. We have given the outline of an extension of an 
SQL-like language supporting a wide range of imprecise queries (see Section 5). 
Finally, we have pointed out the fact that for the queries considered here, an 
extended DBMS could be efficient and reach performances close to those of the 
initial systems, even if the processing of general queries remains a crucial point 
and is a matter of research. Another research topic concerns the improvement 
of the discrimination capability of the fuzzy sets based approach in two extreme 
cases: no element is selected (null degree) and a too large number of elements 
which have received a degree equal to 1. 

Appendix 1 

We must show that the following equivalence is valid: 

distoa(~l,...2,,~,+,, ...,~p)(x) < distoR(Y~,...2,,~,+l,...,~p)(x') 

r ~o~(~,...,~..,~.+1 ..... ~.)(z) > lZoa(~,,,...,~,o,~~ 

where 
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n p 
distoa(e~ ..... e.,~.+~ ..... ~ ) ( x )  = min (min( fd is te~(x ) ) ,  m i+n( fd is t~ , (x ) ) ) .  

fdist~, (x) dist. ,  (x) - • w~ if x satisfies ff'~, ~ otherwise. 
?'i 

UOR(~, ..... ~.,$.+, ..... . , ) (x)  = max(#~(x ) ,  . . . ,  #~.(x),  #~.+~(x), . . . ,  #~,(x)) .  

#~(x )  = 0 if d i s t~(x)  = c~ (23i(x) false), 1 otherwise. 

#~ (x )  = 1 - d is t~(x)  x w~: = 1 fdis t~(x)  
ri wmax wmax 

if dist~,~(x) _< r~, 0 otherwise.  

Case I. 3 k such that  ~Bk(x) is true, 3 m  such that  ~B.~(x') is true. 
So 

distort(e~ ..... ~,.,$.+,,..,,$.)(x) = 0 and diston(e~,...,e.,~.+..,.,~.)(z') = O, 

which contradicts the assumption.  
Similarly, 

~ort(~,~,....~,.,$.+~ ..... ~ ) (x )  = 0 and #oR(~, ..,~,:s~+~ ..... ~ ) (x ' )  = 0 

contradicts  the  assumption.  

Case 2. Vi  ~Bi(x) is false, S k such that  fdisty~(x) = min(fdisb,~(x)), 3 m  such tha t  
~B~(x') is true. 

So 

distoR(~l ..... ~.,~,,+1 ..... ~p)(x) > 0 and distoR(~ ..... ~,,,,~.+~ ..... ~p)(x') = O, 

which, once again, contradicts the assumption,  as 

#oIt(y~ ..... ~,~.+~,...,~,)(x) > 0 and #OR(~'I,..,T,,~:S.+~ ..... ~B~,)(X t) = 0. 

Case 3. 3 k  such that  ~Bk(x) is true, Vi 231(x') is false, 3 m  such tha t  fdisty~(x')  = 
min(fdis t~(x ' ) ) .  

So, we have 

~Bk(x) is t rue =~ fdist~,(x) = 0 ~ min( fd is t~(x) )  = 0; 

~ ( x )  = 1 ::v max(#~,(x))  = 1; 

9'm(x') is true and fdiste~(x') = (dist:,~(x') x w.,)/(r,~ wmax) > 0 

0 1 - d i s t y ~ ( x ' )  x wm ( d is t~(x ' )  x w l )  
= m a x  1 -  < 1 .  

rm wmax ri wmax 

Moreover ,  Vi ~Bi(x') is false and m a x ( / ~ ( x ' ) )  = O, so 
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max(/z~,,(x'), . . .  ' ' , #e . (x  ),/ ,~.+,(x ), . . . ,  #:B~(x')) =/z~, (x') < 1, 

and finally 

(#ORO'~ ..... ~',,,~,,+~ ..... ~,)(x) = 1) > (#Oa(~'l,...,~',,~,< ..... ~ ) (x ' )  < 1). 

This reasoning can be  carried out  in reverse to ensure  the equivalence.  

Case 4. Vi ~i(x) is false, Vi ~ i (x ' )  is false, 3 k  such that  fdiste~(x) = 
min(fdist~,~(x)), 3 m  such that fdisD~(x')  = min(fdis t~(M)) .  

fdist ,~(x) < fdisD=(x')  

fd is t~  (x) fdisty~ (x') r < 
w m ax w m ax 

fdisty~ (x) fdist~, (x') 
r  > 1  

wmax wmax 

Consequent ly ,  ~ ( x )  > # ~ ( x  ~) and since ~ ( x )  = max(~,~(x) ,  . . . , / ~ , ( x ) )  and 
#~,,(x') = max(#~,k(x'), . . . ,  #~,(x ' )) ,  finally, we also have in this case 

diStoR(Y>...,~,,$,+~,...,Sp)(x) < diStOR(~>...,9,.,S,+~,...,S,)(x') 

r ttoR(~,,...,~,,~o+l,...,~,)(x) > tzort(~ ..... ~%,~,+,...,~)(x'). 

Appendix 2 

Let  us consider  the equivalence 

diStAND(:D1 ..... ~n,t,+l,...,tp)(X) < diStAND(91 ..... ~Dn,tn+l,...,tp)(x') 

~tAND(D,, . . . ,D,, t ,+l ,  ...,tip)(X) > I-rAND(D, ' ...,:D.,tn+> . . . ,tp)(X') �9 

Recall  that  

diStAND(V~, ...,~,,t,,§ ...&)(x) ---- E ( d i s t D i  (x)) 2, 
i=1 

where  :D1 . . . .  ,~D, denotes  the terms of  the conjunct ion including at least one  
e lementary  imprecise condit ion,  7"n+l, . . .  ,9"p the others,  and dist~i(x) is ei ther  0 
(at least one boo lean  componen t  of an O R  is t rue)  or has the  form fdiste~(x) = 
(disb,~(x) x wi)/ri (for the best  imprecise condit ion),  

n 
. . . . . .  = - -  

n 
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where #D,(x) equals 1 if at least one boolean component  of 9~ is true, or 
has the form 1 -  fdist~,k(x)/wmax. We can unify the expression of # ~ ( x )  as 
1 - fdistD,(x)/wmax. 

diStAND(DI ..... D.,Tn+l,...,fp)(x) < diStAND(~D~ ..... D.,7.+~,...,Tp)(x') 

I E(distD~(X))2 < E ( d i s t ~ ( x ) ) 2  
i=1 i=l 

~=1 wmax2 ] i=1 ~ ] 

>D,(x)(2 - #D~(x)) > E #D~(x')(2 - #~(x ' ) ) .  
i=1 i=i 

The last transformation stems from the fact that (1 - d 2) = (1 - d)(1 + d), where 
( l - d )  = #  and ( l + d )  = ( 2 - # ) .  

References 

Bosc, P., Galibourg, M., and Hamon, G. (1988). Fuzzy Querying with SQL: Extensions and 
Implementation Aspects. Fuzzy Sets and Systems, 28, 333-349. 
Bosc, E and Pivert, O. (1991a). Some Algorithms for Evaluating Fuzzy Relational Queries. Lecture 
Notes in Computer Science, vol. 521, pp. 431-442. 
Bosc, E and Pivert, O. (1991b). On the evaluation of simple fuzzy relational queries. Proc. 4th 
IFSA World Congress, (pp. 9-12), Brussels, Belgium. 
Bosc, E and Pivert, O. (]991c). About equivalences in SQL f, a relational language supporting 
imprecise querying. Proc. Int. Fuzzy Engineering Syrup. (309-320), Yokohama, Japan. 
Bosc, E and Pivert, O. (1992). Fuzzy Querying in Conventional Databases. In J. Kacprzyk and L. 
Zadeh (Eds.), Fuzzy Logic for the Management of Uncertainty, New York: Wiley. 
Bouchon-Meunier, B. and Yao, J. (1992). Linguistic Modifiers and Imprecise Categories. Journal 
of Intelligent Systems, to appear. 
Chamberlin, D.D., et al. (1976). SEQUEL2: A Unified Approach to Data Definition, Manipulation 
and Control. IBM Journal of Research and Development, 20, 560-575. 
Chang, C.L. (1982). Decision Support in an Imperfect World. Research Report RJ3421, IBM San 
Jos6, CA. 
D'Atri, A. and Tarantino, L. (1989). From Browsing to Querying. Data Engineering Bulletin, 12, 
47-53. 
Dubois, D. and Prade, H. (1985). A Review of Fuzzy Set Aggregation Connectives. Information 
Sciences, 36, 85-121. 
Dubois, D. and Prade, H. (1986). Weighted Minimum and Maximum Operations in Fuzzy Set 
Theory. Information Sciences, 39, 205-210. 
Dyckhoff, H. and Pedrycz, W. (1984). Generalized Means as a Model of Compensative Connectives. 
Fuzzy Sets and Systems, 14, 143-154. 
Friedman, J.H., Baskett, E, and Shustek, L.J. (1975). An Algorithm for Finding Nearest Neighbors. 
IEEE Transactions on Computers, 1001-1006. 



354 BOSC AND PIVERT 

Gal, A. (1988). Cooperative Responses in Deductive Databases. Technical Report CS-TR-2075, 
Department of Computer Science, University of Maryland, MD. 
Guyomard, M. and Siroux J. (1989). Suggestive and Corrective Answers : A Single Mechanism. 
In M.M. Taylor, E N6el and D.G. Bouwhuis (Eds.), The Structure of Multimodal Dialogue, pp. 
361-374. Amsterdam: North-Holland. 
Ichikawa, T. and Hirakawa M. (1986). ARES: A Relational Database with the Capability of 
Performing Flexible Interpretion of Queries. IEEE Transactions on Software Engineering, 12, 624- 
634. 
Janas, J.M. (1981). On the Feasibility of Informative Answers. In H. Gallaire, J. Minker, and 
J-M. Nicolas (Eds.), Advances in Database Theory, New York: Plenum Press. 
Kacprzyk, J. and Ziolkowski A. (1986). Database Queries with Fuzzy Linguistic Quantifiers. IEEE 
Transactions on Systems, Man and Cybernetics, 16, 474-478. 
Kaplan, J. (1982). Cooperative Responses from a Portable Natural Language Database Query 
System. In M. Brady (Ed.), Computational Models of Discourse, Cambridge, MA: MIT Press. 
Kunii, T.L. (1976). Dataplan: An Interface Generator for Database Semantics. Information Sciences, 
10, 279-298. 
Lacroix, M. and Lavency P. (1987). Preferences: putting more knowledge into queries. Proc. 13rd 
VLDB Conf. (pp. 217-225), Brighton, Great Britain. 
Lakoff, G. (1973). Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts. Journal 
of Philosophical Logic, 2, 458-508. 
Motto, A. (1986). BAROQUE: A Browser for Relational Databases. ACM Transactions on Office 
Information Systems, 4, 164-181. 
Motto, A. (1988). VAGUE: A User Interface to Relational Databases That Permits Vague Queries. 
ACM Transactions on Office Information Systems, 6, 187-214. 
Motto, A. (1989). A Trio of Database User Interfaces for Handling Vague Retrieval Requests. 
Data Engineering Bulletin, 12, 54-63. 
Rivest, R.L. (1976). Partial Match Retrieval Algorithms. SlAM Journal of Computing, 5, 19-50. 
Tahani, V. (1977). A Conceptual Framework for Fuzzy Query Processing; A Step toward Very 
Intelligent Database Systems. Information Processing and Management, 13, 289-303. 
Yager, R.R. (1988). On Ordered Weighted Averaging Aggregation Operators in Multicriteria 
Decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, 18, 183-190. 
Yager, R.R. (1991a). Connectives and Quantifiers in Fuzzy Sets. Fuzzy Sets and Systems, 40, 39-75. 
Yager, R.R. (1991b). Fuzzy Quotient Operators for fuzzy relational databases. Proc. Int. Fuzzy 
Engineering Symp., (pp. 289-296), Yokohama, Japan. 
Yager, R.R. (1991c). Non-Monotonic Set Theoretic Operations. Fuzzy Sets and Systems, 42, 173-190. 
Yong-Yi, C. (1981). An Approach to Fuzzy Operators. BUSEFAL, 9, 59-65. 
Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8, 338-353. 
Zadeh, L.A. (1972). A Fuzzy-Set-Theoretic Interpretation of Linguistic Hedges. Journal of Cyber- 
netics, 2, 4-34. 
Zadeh, L.A. (1983). A Computational Approach to Fuzzy Quantifiers in Natural Languages. 
Computer Mathematics with Applications, 9, 149-183. 
Zimmermann, H.J. and Zysno, P. (1980). Latent Connectives in Human Decision Making. Fuzzy 
Sets and Systems, 4, 37-51. 


