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Abstract. Databases and information systems are often hard to use because they do not explicitly 
attempt to cooperate with their users. Direct answers to database and knowledge base queries 
may not always be the best answers. Instead, an answer with extra or alternative information 
may be more useful and less misleading to a user. This paper surveys foundational work that has 
been done toward endowing intelligent information systems with the ability to exhibit cooperative 
behavior. Grice's maxims of cooperative conversation, which provided a starting point for the field of 
cooperative answering, are presented along with relevant work in natural language dialogue systems, 
database query answering systems, and logic programming and deductive databases. The paper 
gives a detailed account of cooperative techniques that have been developed for considering users' 
beliefs and expectations, presuppositions, and misconceptions. Also, work in intensional answering 
and generalizing queries and answers is covered. Finally, the COOPERATIVE ANSWERING SYSTEM at 
Maryland, which is intended to be a general, portable platform for supporting a wide spectrum of 
cooperative answering techniques, is described. 
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1. Introduction 

Whenever we ask a question, we expect to receive a worthwhile answer in reply. 
This is certainly true in conversation, and this expectation remains whenever we 
interact with information systems. While people have always built databases and 
knowledge bases with this intention in mind, they have not necessarily succeeded. 

Databases and information systems are often hard to use because they do 
not explicitly attempt to cooperate with their users. Unlike people, they answer 
literally the queries posed to them. Answers will be correct, but can often be 
misleading. Responses to queries may not contain the information the user 
really wants. A user may need more information, or might even need different 
information, than the query requests. The user may have misconceptions about 
the database and what the database knows. 

If we are to build information systems that meet users' expectations, it is 
first necessary to determine what it means for an answer to be appropriate. 
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Grice (1975) proposes a number of maxims that characterize a cooperative 
answer. According to his maxims, a cooperative answer should be a correct, 
nonmisleading, and useful answer to a query. As we seek to endow information 
systems with cooperative behavior, the maxims can be used to serve as a measure 
of the cooperative performance of our information systems. A number of 
researchers have used Grice's maxims as guidelines in their work. The maxims 
describe fundamental properties of cooperative behavior. They describe what 
people do in conversation. 

The maxim of quality requires that each contribution to a conversation be valid. 
One should only say things that one believes to be true, and one should not say 
anything for which one has inadequate evidence. In other words, one should not 
lie or overstate what one knows. Joshi (1982) extends this maxim to say that one 
should never say anything which may imply to the listener something that oneself 
believes to be ++false. Given this cooperative maxim, both Joshi and Kaplan 
(1981, 1982) consider how to apply it to information systems and databases. In 
particular, a system should never give an answer which might mislead the user. 
If a literal answer to a query would lead the user to false assumptions, the system 
must provide further information to prevent this. 

The maxim of quantity states that a contribution to a conversation should be as 
informative as required. However, it should not be more informative, or more 
detailed, than necessary. As databases become more complex and very large, 
an answer to a query can result in a huge table, much larger than is possible 
to read. In deductive databases, research has been done in intensional answers, 
which are succinct logical formulas that entail the answer. An intensional answer 
will often be as informative to the user as the table would be, and often will be 
much easier to understand. Intensional answers also can be more informative 
than the table itself by informing the user of general facts about the table. 

The maxim of relation says a contribution should be relevant. In particular, 
an answer should be relevant to the user who asked the question. Much work 
(Allen, 1987; Allen and Perrault, 1986; McCoy, 1984, 1988; Pollack, 1983) has 
been done to model users and to determine a user's goals and intentions. Their 
work provides a basis for determining whether an answer is relevant. 

The maxim of manner states one must avoid obtuse expression and avoid 
ambiguity. Also, one must be brief. When an information system provides an 
answer, it ought to be presented in a form that is easy for the user to understand. 
It should not be ambiguous, leaving the user with choices to make about its 
meaning. Otherwise, the answer could be misleading. The answer should be as 
succinct as possible without encroaching on any of the other criteria. 

In part, Grice's intent in introducing a set of conversational maxims was to 
show that first-order logic suffices to model cooperative dialogue. The maxims 
describe what should happen in a natural conversation. They also serve to 
explain when a conversation fails to be cooperative. One can evaluate whether 
an answer is cooperative with respect to the maxims and generate cooperative 
responses by adhering to them. 
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Others have held the view that more powerful logics, such as logics of inten- 
tionality and modality, are needed to handle cooperative discourse. Many of the 
philosophical considerations expressed in Smith (1987) reflect this concern. Of 
course, whether or not first-order logic can serve as an adequate ontology for 
cooperative answering is an open question. Much research is being conducted on 
nonclassical and higher-order logics. These may play a role in future cooperative 
answering work. 

Once we have established the criteria for an answer to be cooperative, we must 
determine how to build information systems that exhibit cooperative answering 
behavior. Databases, and information systems in general, satisfy the standard 
of providing correct answers, in so far as the system contains valid information. 
However, for answers to be useful to users, they must ask the appropriate queries 
in order to arrive at the desired information. To do so, the user must know 
something about the database's schema, and just what it is that the database 
knows. When a user's suppositions about the system are inaccurate, most 
information systems do not do much in the way of correcting the user. Once 
users do ask the queries that comply with the database organization, the answers 
returned may still be misleading, less informative than desired, or ambiguous. 

To address these problems, specific cooperative techniques have been developed 
to identify and correct false presuppositions and misconceptions apparent in the 
question. Other techniques ensure that answers are relevant with respect to the 
user's intentions. When an answer consists of several parts, it is important to try 
to make the answer cohesive across these parts, and coherent as a whole. Finally, 
if the answer is presented in natural language, the response should exhibit an 
appropriate conversational organization. 

Our focus in this survey is on the nascent field of cooperative answering for 
query/answer systems. Some of the key topics involved are 

�9 Maxims and criteria for cooperative behavior (as seen above) 

| Techniques to evoke cooperative behavior in query/answer systems 
| Issues of computational cost of such methods and containing that cost 
�9 Knowledge representation needs for constructing cooperative answers 

In the next section, we review foundational efforts in cooperative answering. 
In Section 3 we look at specific cooperative answering strategies and systems. 
These strategies are universal in that any system ought to support them and 
all users require them. In Section 4 we consider when an answer ought to 
be tailored for a particular user or class of users. This is necessary to attend 
properly to a user's particular needs and requirements. In Section 5 we review 
the work in cooperative answering at the University of Maryland at College Park. 
In finishing, we attempt to outline the directions in which the field of cooperative 
answering is evolving, which direction we should go, and further problems to be 
solved. 
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2. Query/answer systems 

Research in cooperative answering has grown out of three areas in which question- 
and-answer discourses arise: 

1. Natural language interfaces and dialogue systems built for the purpose of 
studying natural language exchanges between users and computers 

2. Databases 
3. Logic programming and deductive databases 

In this section, we discuss each in turn. 

2.1. Natural language interfaces 

Much of the initial work in cooperative answering focused on natural language 
dialogue systems (Joshi, 1982; Joshi et al., 1982; Lehnert, 1981; Pollack, 1982). 
Researchers sought to endow their information systems with the same normative 
cooperative behavior as described by Grice as occurring in human conversation. 
Many of the systems we discuss in this survey employ natural language interfaces 
or are tightly integrated with natural language facilities. The focus on natural 
language within the nascent field of cooperative answering can be considered 
both distracting and beneficial in different ways. 

Some researchers are interested in modeling human conversation. Others 
hope to use human discourse as a normative standard for information systems' 
behavior. Many believe natural language dialogue systems ought to be subject to 
the same cooperative conversational maxims as human discourse. Such systems 
are ideal settings for evaluating a systems' behavior against the conversational 
maxims. 

Natural language interfaces along with more fully integrated natural language 
query/answer systems are important in another way too: for information systems 
to be accessible by lay users requires an easily understood interface language. 
Many hope that natural language, or a subset thereof, will fulfill this need. As 
information systems become ever larger and more complex, we all become lay 
users, and the need for natural interfaces becomes even more vital. One cannot 
expect all users to understand a complex database's schema. Natural language 
conversation techniques are also for answering queries in an interactive fashion 
when answers become long and complex. One cannot expect users to understand 
overly complex answers expressed in arcane formalisms or expressed all at once. 

While the research in natural language systems is important in its own right, 
it risks confounding the issues faced in cooperative answering. The tenets of 
cooperative answering ought to be universal to queries themselves, regardless of 
whether the queries are cast in natural language, in logic, or in SQL. (Of course, 
there are many other issues particular to natural language.) The same maxims 
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for cooperation discussed above ought to apply to all information systems. 
This paper covers specific topics in natural language research when they relate 

directly to cooperative answering systems. There are many more topics indirectly 
related to cooperative answering with extensive literatures that we do not cover. 
We look at a number of natural language systems of importance to the cooperative 
answering field in Section 3.1. However, our focus is on the cooperative issues 
they tackle. We attempt to clarify the relation between natural language and 
cooperation in such systems as best we can throughout the survey. We do 
not consider the particulars of the natural language components in cooperative 
systems. 

2.2. Databases 

A number of researchers in the area of databases (Chu, et al., 1990, 1992, 
Kaplan, 1982; Motro, 1986) have recognized the practical need for cooperative 
answering behavior in standard, widely available information systems. This need 
has led people to consider how to adapt and develop cooperative techniques 
specifically for databases. 

Kaplan (1982) built a cooperative system on top of CODASYL (a network- 
model database) (CODASYL, 1971; Ullman, 1988). He pays special attention to 
making his system portable: the cooperative answering behavior is independent 
of the information system's knowledge and domain. His system was portable not 
only between databases using the network model, but also between other types of 
information systems too, such as relational databases and expert systems. Mays 
(1980) builds on Kaplan's work and considers how to use a relational database's 
schema to correct false presuppositions in a user's query. 

Motro (1986) considers modifications to the relational model which would 
be easy to incorporate into a relational database system to allow for certain 
cooperative behaviors. In Motro (1990) he considers a user interface for relational 
database systems that would allow users to interact with the database in more 
cooperative ways. The database can correct queries that have apparent mistakes 
or that return no answers, and yield to the user corrected queries with which to 
proceed. He also explores the notion of returning to a user related queries that 
may closer match the user's intended question. 

Chu, Chen, and Lee (1990, 1992) explore methods to generalize and refine 
queries to generate new queries related in direct ways to the user's original. 
Such related queries can find answers outside of the scope of the original query 
which may be of interest to the user. 
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2.3. Deductive databases 

A large portion of the work in cooperative answering has been done within deduc- 
tive databases. The logic model both subsumes and extends the relational model 
(Ullman 1988) for databases. The logic model offers a uniform representation 
for data, knowledge, 1 and queries. Logic also offers a suitable representation for 
expressing cooperative answers, whereas SQL and other database languages must 
be extended to do this. Finally, the rules and integrity constraints of deductive 
databases allow for a rich semantics, which plays a vital role in generating coop- 
erative response. In the remainder of this section, we provide basic definitions 
about deductive databases that will be used throughout this paper. 

A deductive database (Gallaire, and Minker, 1978; Gallaire et al., 1984; Minker, 
1988) employs the logic model instead of the relational model as its data model 
(Ullman, 1988). A deductive database consists of three parts: facts, rules and 
integrity constraints. We denote this by the tuple (EDB,1DB, IC). A rule is of the 
form 

A0 ~ Ai, . . . ,  An. (Ci) 

A rule is a clause, and C1 is equivalent logically to V. A0 v -~ A1 v . . . .  An. 
The A~'s, 0 < i < n, are atoms. For this paper, a clause contains a single 
positive atom, A0, and some negative atoms, A1, . . . ,  An, n > 0. An atom is a 
predicate instantiated across variables and constants. (Logic programs are more 
general in that they also permit functional terms.) For instance, student(chris) 
and student(X) are atoms of the unary predicate student~1. The former is over 
the constant chris, the latter over the variable X. 2 Each variable appearing in a 
clause is considered to be universally quantified across the clause. 

The Atom A0 in C1 is called the head, and A~, . . . ,  An the body. The atom 
A0 is necessarily a logical consequence of the database if each Ai, 1 < i < n, is 
a logical consequence of the database. A ground atom is one that contains no 
variables. A fact is a ground clause with an empty body, n = 0. 

The set of all facts constitute the extensional database (EDB), the set of 
rules the intensional database (IDB). It is assumed that a given predicate either 
appears only in facts or in the heads of rules. The EDB predicates are equivalent 
to relations from the schema in a relational database, and individual facts to 
individual tuples. The rules for the IDB predicates are analogous to views, but 
are more powerful than views as they admit recursion. Clauses and facts as we 
have defined them constitute DATALOG, and a finite set of such clauses and 
facts is a DATALOG database (Ullman, 1988). 

A relational database is conceptualized as two parts: its schema and its state. 
The schema is its relations and views. The state is the database's collection of 
tuples, the data. Databases are designed with the assumption that the schema 
seldom changes and remains fairly constant through time, but the state will 
change rapidly as new data are added and old data are revised. Likewise, in 
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a deductive database, it is assumed the IDB and the ZC are mostly static. The 
EDB will change often as new facts are added and old ones revised. 

The type of question permitted in a deductive database is an existentially 
quantified conjunction of atoms. For instance, if one wanted to know whether 
there is a student who has passed CMSC 420, the logical formula would be 

3X. student(X) A passed( X, 'CMSC-4 20') ? 

It is standard to take the negation of the question, which is then called the 
query, to resolve against the database. A query then is a clause, and has the 
same form as a rule but without a head. For instance, our questions above is 
represented as 

student(X), passed(X, 'CMSC-420'). (QI) 

An answer to a query is a substitution of the query's variables such that (the 
negation of) the substituted query is a logical consequence of the database. For in- 
stance, X = chris is an answer to QI if student(chris) andpassed(chris, 'CMSC-420') 
follow from the database. 

The third component of a deductive database is an associated set of integrity 
constraints, ZC. An integrity constraint (IC) is a logical formula that must be true 
of the database. 3 We often limit our concern to denial constraints, ICs which 
state facts that cannot be simultaneously true in the database. For example, the 
following IC states that no one can be both a student and a professor: 

c professor(X), student(X). (ZC1) 

One may note that (denial) integrity constraints have the same syntactic form 
as queries, 4 but a different meaning with respect to the database. We may write 
other ICs in the same form as denials, but allowing for negation in the body. 
For instance, 

C student(X), not enrolled(X). (ZC2) 

states that all students must be enrolled. In other words, if someone is a 
student, then it is not possible that he or she is not enrolled. This not is not 
classical negation, 5 but negation as failure (Shepherdson, 1984; Lloyd, 1987). 
Thus, not enrolled(chris), say, is true if enrolled(chris) cannot be proven. Such 
constraints are more expressive and we use such ICs in some of our examples. 

We now turn to a detailed overview of cooperative techniques that have been 
developed and explored in each of these three areas over the past two decades. 

3. Foundational work in cooperative answering 

The cooperative answering techniques that have grown out of research in each 
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of the areas that were reviewed in the previous section can be separated into five 
categories. The techniques in each category are differentiated by the following 
capabilities. 

1. Consideration of specific information about a user's state of mind 
2. Evaluation of presuppositions in a query 
3. Detection and correction of misconceptions in a query (other than false 

presuppositions) 
4. Formulation of intensional answers 
5. Generalization of queries and of responses 

This section describes each in turn. 

3.1. Beliefs and expectations 

The genesis of the field of cooperative answering can, for the most part, be traced 
to work by Joshi and Webber at the University of Pennsylvania. In May of 1978 
a workshop entitled "Computational Aspects of Linguistic Structure and Discourse 
Setting" was held, sponsored by the Sloan Foundation at the University of Penn- 
sylvania. Several topics were discussed: question-answering-intensional verses 
extensional responses, direct and indirect answers; meaning representations- 
logical representations and their role in natural language processing; and in- 
ferences in context. A book ensued, Elements of Discourse Understanding, in 
1981, edited by Joshi, Webber, and Sag, based upon the articles presented at the 
workshop (Joshi et al., 1981). 

Most of the articles in the book fall under the following topics: 

1. Utterance meaning 
2. Discourse models 
3. Models of participants' beliefs 

(understanding the questions and answers) 
(following the query~answer discourse) 
(mutual ground between user and system) 

For query/answer systems, topic 1 concerns whether the system can understand 
and properly interpret the query. This covers a number of important issues. For 
instance, natural language queries can be ambiguous and must be disambiguated 
to be answered. Lehnert (1981) has noticed that a given query might be asked 
with different intentions in mind. Thus a user's intentions and goals must be 
taken into account. (See Section 4.) Even with logical queries (not asked in 
natural language), proper interpretation of the query is necessary. Cuppens and 
Demolombe (1988) consider rewriting queries to include more information in 
the answers than would be gathered with the original query in order to match 
a user's intentions and to provide generally more informative answers. (See 
Section 3.5.) 
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Topic 2 concerns whether a system is able to model its dialogue with a 
user. A system should account for a user's goals changing over time and what 
the user has learned through previous dialogue with the system (a building of 
mutual knowledge). Also, the system should gain a better understanding of 
a user's intentions as the dialogue progresses. Webber is interested in how 
aspects of discourse might shape the mental model that a listener has. Webber 
(1981) considers how people understand (definite) anaphora. McKeown (1982) 
and Gaasterland (1992a,b) have both considered such issues as involved in the 
presentation of answers which are crucial to the user's understanding of the 
answers. 
In general, Webber's work considers user beliefs in order to anticipate user 
expectations (topic 3). She explores how to provide extra information to prevent 
misconceptions. For example: 

Q: "Is Sam an associate professor?" 

User believes most associate professors have tenure. 

Sam is not tenured. Sam is an associate professor. 

A: "Yes, but he doesn't have tenure." 

Pollack, Hirschberg, and Webber (1982) consider the effects a user's interaction 
should have in the reasoning of expert systems. Joshi, Webber, and Weischedel 
(1984) consider how to generate expert responses that match the user's expecta- 
tions. Webber and Mays (1983) focus on detecting and correcting misconceptions 
(Section 3.3). 

Joshi (1982) considers some of the abstract problems of establishing mutual 
knowledge in question/answer systems. The paper appears in the 1982 collection 
Mutual Knowledge, edited by N.V. Smith (1982). 6 The book is a philosophical 
treatise on mutual knowledge: what mutual knowledge is, its ramifications in 
dialogue, and how it is established. Joshi, in his article, considers the ramifications 
for cooperation in dialogue. 

Lehnert (1981) devised a system to analyze questions within an ongoing dis- 
course between a user and a computer in order to determine the user's intent 
behind the questions. Her system strives to answer questions in a cooperative 
manner. Her system, called QUALM, parses its English questions into a concep- 
tual dependency representation (Schank, 1975) which represents the question's 
meaning. It analyzes the question and surrounding context in the conversation 
to decide the question's intent. The analysis helps determine the type of answer 
the system should provide. 

One might respond to the question below with any given one of the following 
answers, depending on what intent is behind the question. 
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Q: "How did John take the exam?" (intent?) 

-h,l: "He crammed the night before." (enablement) 

A2: "He took it with a pen." (instrumental/procedural) 

A3: "He took it badly." (emotional) 7 

Lehnert points out that her system is more than a natural language front-end. 
The conceptual dependency representation also serves as the core knowledge 
representation, and for her system there is necessarily no clear distinction between 
translating the query and answering it. 

Many of Webber's and Joshi's students have worked in this area, and established 
many cooperative answering techniques. Mays (1980) considers how to employ 
the database's schema to detect user misconceptions (as discussed in Section 2.2). 
Kaplan (1981, 1982) detects presuppositions in queries, and Hirschberg (1983) 
accounts for implicatures in answers. (See next section.) McKeown (1982) 
considers natural language response to database queries. Pollack (1983) studies 
how users' questions fit with their plans. (See Section 4.) 

3.2. Presuppositions 

A student asks an appropriate university database 

"Who passed CMSC 420 in the fall semester of 19917" 

The database returns with the answer "No one," leaving the student to think, 
possibly, that CMSC 420 is a very hard course. The student then asks 

"Who failed CMSC 420 in the fall semester of 19917" 

Again, the database returns with the answer "No one." Finally, the student is 
suspicious and asks 

"Who taught CMSC 420 in the falls semester of 1991 ?" 

The database answers again "No one" (Kaplan, 1982). 
Kaplan calls this behavior stonewalling. If the initial question had been asked 

to a person instead, he or she would have probably answered immediately, with 
a reply such as "Oh, there was no such course taught last semester." Databases 
stonewall. They will answer a yes~no question with a yes or a no regardless of 
whether the answer is misleading. As Grice said though, correct answers are 
not enough. Clearly a cooperative answer would be an explanation of why the 
query fails (why the answer is no), exposing any false presuppositions. Kaplan 
states that one should consider the presuppositions in a query to be statements 
that must be true for the query to have an answer (Kaplan, 1981, 1982). If any 
presuppositions are false, the query is nonsensical. 
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X student  

1 
x Y car owns 

Y X Y 

"Every s tudent  owns a car." 

VX.[student(X) ---~ 3Y.[ear(Y) A ow,, ,(X,  Y)]] 

Fig. t. Quantifier tree representation. 

Kaplan built a system called CO-OP (A Cooperative Query System), a natural 
language query system that operates with a CODASYL database management 
system (Codasyl, 1971; Ullman, 1988) CO-OP provides cooperative responses 
to simple natural language questions, requesting the relevant data from the 
database. The system runs as two processes: a FORTRAN process of the SEED 
database system (CODASYL) with a query processor and a LISP process of the 
natural language front-end with a report writer. The system has been tested 
over a real database from the National Center for Atmospheric Research over a 
domain on users and programmers. 

Kaplan devises and employs an intermediate representation for queries he calls 
the Meta Query Language (MQL). A query is represented as a graph structure 
in MQL, consisting of sets at the nodes and binary relations between sets (the 
arcs). The graph is a semantic network, and the query is re-expressed in a binary 
notation. The query answering system checks that each connected subgraph is 
non-empty. If any is empty, this is a failed presupposition that ought to be 
reported. 

Presumptions are distinguished from presuppositions. All presuppositions of a 
query must hold for the query to make sense. However, the query may contain 
presumptions too. If a presumption does not hold, then the query will have only 
one answer (usually no). For example, 

"What day does Mary have her lesson?" 

presupposes that Mary has a (weekly) lesson. If she does not, the query cannot 
be answered adequately. In other words, no day of the week can be given 
in reply. The reply "Mary has her lesson on no day." would not be a correct 
response since it, too, seems to presuppose that Mary has a lesson. (But when?) 
The query 

"Did Mahter complete an 11 th symphony?" 
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presumes that he began one, but it does not presuppose that he began one (Kaplan, 
1982). We can answer meaningfully and correctly "No" even if he never began 
his 11 th symphony, albeit "No, Mahler never began an 1U h symphony." would be 
a more informative answer. 

Presumptions are a wider class than presuppositions. They are also much harder 
to handle. For instance, the query "Did it rain yesterday?" could be answered 
"No, there were no clouds yesterday." This entails a fair amount of reasoning and 
domain knowledge, and can be considered a type of explanation. A system must 
be able to conduct such reasoning, and an appropriate explanation for the user 
must be chosen from many potential explanations. We explore these issues next 
in Section 3.3. when we discuss the closely related topic of misconceptions. 

A query containing a false presupposition can be considered to have no answer, 
positive or negative, even though the database may be able to deliver a "literal" 
answer. Colmerauer and Pique noticed this dilemma in their work to translate 
natural language queries into a logical formalism (Colmerauer and Pigue, 1981). 
They employed a three-valued logic that allows a sentence to be marked undefined 
when such false presuppositions occurred. (But in their work they do not develop 
a means to identify false presuppositions to the user.) 

In particular, in a natural language sentence, a speaker assumes the existence 
of the subject and objects (the noun phrases) of the sentence. If any of these 
do not exist, then the sentence does not have any clear meaning. Colmerauer 
and Pique translate natural language sentences (and queries) into a logical tree 
representation called three branch quantifier trees (3BQs). The first branch is 
a variable introduced in the sentence, the second a translation of the subject 
(this could be recursive), and the third a translation of the rest of the sentence 
(also can be recursive). In Figure 1 the statement "Every student owns a car." 
is represented as a 3BQ tree. Once a sentence is translated, they check that 
none of the typing relations (for instance, student~1 and car~l, unary predicates) 
representing the noun phrases are empty. If there are no students, then the 
sentence from Figure 1 is deemed to be nonsensical. 

Usually when one asks a query, one not only presupposes the existence of 
all the components of the query, but one also presupposes an answer to the 
query itself. For instance, suppose one asks "Which employees own red cars?" 
(query Q2, see Figure 2). Colmerauer and Pique are concerned that there be 
cars and employees known to the database. Otherwise, there would be a false 
presupposition in Q2, and so no valid answers. 

On asking a query, one assumes there are answers to the query too. If there 
are no answers, this deserves an explanation. For instance, if there are no 
employees who own red cars, the database can answer literally "No one" to query 
Q2. To be more informative, if there is some reason why there are no answers, 
the database should say so. (We discuss this in Section 3.3.) In the" least, the 
part of the query responsible for failure ought to be identified. There may be 
no employees owning red cars because no employee owns a car at all. Thus, the 
subquery (*--employee(X),owns(X,Y),car(Y).) would fail too. s Reporting this 
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red (g) I ~mp (x), ow.s (X, Y), ca~(~, .................. :] (Q~) 

[ _ l L 1 I ] I - cor(, , I 

Fig. 2. A lattice of subqueries. 

failure is more informative than just reporting the failure of Q2. 
Janas (1981) studies the feasibility of yielding such informative answers. His 

idea is to report the smallest subqueries that fail. If we consider a conjunctive 
query as a set of atoms to be satisfied, then the subqueries are the elements 
of the power set. In all, there are 2 ~- 2 subqueries for a conjunctive query 
with n atoms, disregarding the query itself (which has already been seen to fail) 
and 9, the empty query. Query Q2 has 4 atoms, so there are 14 subqueries to 
consider. The naive approach is to test all of them. This incurs exponential 
cost over the length of the query. More clever algorithms would cut this cost, 
especially for average case, but cannot reduce the worst case behavior to better 
than exponential. 

Janas shows that for most queries, many of the potential subqueries may be 
discounted. He defines that two atoms in a query are joined if they share a 
variable. The relation connected is then the transitive closure of joined. Janas 
defines a query to be connected if every two atoms in the query are connected. 9 
It is reasonable to insist that queries be connected. (A user can always ask any 
disconnected parts as separate queries.) In searching for failed subqueries, it 
is only necessary to consider connected subqueries. For instance, consider the 
subquery ( ~  employee(X),car(Y),red(Y).). This query is not connected. It can 
only fail if (+-- employee(X)) or (~- car(Y), red(Y)) fails. These latter subqueries 
are connected and will be considered anyway. It is not necessary to properly 
compute answers for each subquery considered; it is only necessary to compute 
if it has an answer. 

Even if the cost of this processing remains high, it may be offset by the 
benefits that these answers offer. When informed of the part of the query 
that fails, the user will not waste time asking many follow up questions that 
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also will necessarily fail while looking for the information that he or she is still 
trying to find. The overall reduction in cumulative query-answering cost could 
be significant, especially if the user would have asked many spurious queries (as 
in Kaplan's stonewalling) to get the desired information. The user can quickly 
become frustrated and dissuaded from his or her goal. 

Kaplan (1982) also considers the necessity of finding the smallest failing sub- 
queries and devises an algorithm very similar to Janas ~ that operates over a query 
translated into his MQL, but he does not consider the computational issues in- 
volved. He points out that his (as does Janas') algorithm to find presumptions 
(failed subqueries) is independent of domain specific knowledge. These are 
techniques that are applicable over any domain. Kaplan also introduces the 
notion of generalizing a query: if a query fails due to a failing subquery, the 
failing part can be removed, resulting in a new query that will have answers. 
This can serve as a tool in correcting possible errors in users' queries, and to 
give the user information related to the query asked. (We elaborate on this last 
idea in Section 3.5.) 

The statement "No employees own red cars." implies that employees do own 
cars. Otherwise, a stronger assertion should have been made according to the 
maxim of quantity. A response should be as informative as necessary, but 
no more so. In particular, Janas' queries and subqueries tie on a scale: if a 
subquery has no answers, then the query cannot have any answers either since 
the subquery logically subsumes the query. Such a tacit implication is called a 
scalar implicature. 

Hirschberg (1983) considers how scalar implicatures are involved in obeying 
the maxim of quantity. Many such implicative scales exist and are employed 
in conversation. Consider the following piece of dialogue, which takes place 
between, say, an engineer and an assistant across a remote radio link: 

Engineer: "Did you loosen the hose?" 

Assistant: "1 have detached it." 

If the assistant were to have (truthfully) answered "Yes" (he or she did loosen 
the hose in the process of detaching it), this would mislead the engineer, who 
assumes the whole story has been told, as in "Yes, I have loosened it (but no 
more)." Going from loosen to detached is a scale, the latter implying the former. 
It is assumed in conversation that one always give the response highest on such 
a scale that is true, that it implies the most possible and all implied is true. 

Q: Engineer: '~tre mushrooms poisonous?" 

A: Assistant: "Some are." 

Degree of existence is also a scale. To the question above, one can not answer 
correctly yes or no. Some mushrooms are edible, others are poisonous. The 
answer to the universal question ')Ire all mushrooms poisonous?" could be "No," 
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but this would be misleading. The cooperative response would be "No, but some 
are." 

3.3. Misconceptions 

A query may be flee of any false presuppositions, but still harbor misconceptions. 
False presuppositions concern the schema of the knowledge base. In contrast, 
misconceptions concern the domain of the knowledge base, and what is and is 
not possible within the domain. Misconceptions can mean a query will not have 
any answers, or that some subquery will not lead to any answers. Misconcep- 
tions can lead to logical redundancy in a query, so the query overspecifies the 
solutions, indicating the possibility that the user is unaware of certain properties 
of the domain. While false presuppositions usually occur with respect to the 
database's state and schema, misconceptions usually occur with respect to the 
database's semantics. Misconceptions arise when the user has a false or unclear 
understanding of what is necessarily true or false in the database. 

Mays (1980) employs schema information of a relation database to correct false 
presuppositions. By employing schema information, he introduces aspects of the 
database's semantics into answers and can detect and correct misconceptions of 
the user with respect to the database schema. For instance, say that only students 
take courses, whereas professors teach courses. Even though the following query 
is destined to fail having no answers, it is more informative to correct the user's 
misconceptions of the database by explaining why there are no answers. 

Q: "Which professors take CMSC 620?" 

A: "None." 

"Professors teach courses." 

"Students take courses." 

McCoy (1984) uses world (or general) knowledge to correct object related 
misconceptions that a user might have, misconceptions about the properties of 
a given object or class. For instance, a user might ask: 

Q: "Where are the gills on a whale?" 

The system knows the user probably thinks whales are fish 

because fish use gills to breathe. 

A: "Whales do not have gills. They breathe through lungs." 

Whenever the user asks a query that cannot have an answer, the system infers 
the probable mismatches between the user's view of the world and the knowledge 
in the knowledge base. The system then answers with a correction to rectify the 
mismatch. 
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Again, Janas (1981) considers the use of ICs to eliminate subqueries from 
consideration. He shows how ICs that apply to a query can be used to rule out 
presuppositions that are certain to be true. An IC might reduce a query to a 
subquery. For instance, a constraint 

C car(X), not red(X). 

stating that all cars are red would reduce Q2 to ( ~  emp(x),owns(X, Y), car(Y).} 
If something is a car, it is certain to be red. An IC can logically subsume a 
query, meaning the query cannot have answers. For instance, say 

C emp(X), owns(X, Y), car(Y). 

were a constraint itself, meaning that employees do not own cars. This is a 
necessarily failing subquery of Q2, thus Q2 itself must fail. The SEAVE system of 
Motro (1986) also uses integrity constraints together with false presuppositions 
in order to provide additional information about failed queries. Consider the 
query 

+- professor(X), enrolled_in('CMSC-420'). (Qa) 

in a database with the following integrity constraints 

C professor(X), student(X). (ZC1) 
C enrolled_in(X, Y), not student(X). (ZC3) 

The 77CI states that professors cannot be students (and the contrary as well) 
and/?Ca states that all students are enrolled. The query Q3 violates these ICs. 
Semantic query optimization techniques (Chakravarthy, 1985; Chakravarthy, et 
al., 1986a,b) apply a set of constraints to a query. If any constraint, or set of 
constraints, are violated, the query is known to fail before any database search 
takes place. Not only do the constraints identify failed queries, but they also 
provide information about why the queries fail. Furthermore, they notify the 
user that if the same query is asked again in the future, the query will still fail, 
even if the state of the database has changed. 

The realization that failure assured by ICs is more meaningful than just 
exhaustive failure motivated the work in cooperative answering by Gal (1988) 
and by Gal and Minker (1985, 1988). They used the semantic optimization 
techniques (Chakravarthy, 1985; Chakravarthy, et al, 1986a,b) to determine when 
ICs applied to a query. The system developed by Gal (1988) identifies the ICs 
that guarantee failure. It then includes the constraints in an answer to the user. 
For the example above with query Qa, a cooperative response could say 

"No one is both a professor and a student. 

Anyone who is enrolled in a class is a student. 

So on one is a professor and enrolled in a class." 
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Gal's work also addresses some of the difficulties encountered with ICs are 
used for explanation. Sometimes several sets of ICs can independently explain 
the failure. In this case, Gal's system uses heuristics to select the best explanation 
to provide the user. Sometimes explanations can be quite complex and involved, 
to the point they would tax a user's attention and interest. The  user is allowed 
to impose a limit on the content  of an explanation prior to asking a query. 

1Cs can be used to do more than explain failed queries. Gal and Minker 
use them to summarize very large answers. When an IC indicates that a query 
must be true, the 1C can be returned as a summary. For example, the query 
"Which professors teach classes?" would be answered by an 1C that states ':/Ill 

professors teach classes." This is a type of intensional answer, as will be seen in 
the next section. In addition, 1Cs can identify logical redundancies in a query 
or subquery. For example, consider the query 

student(susan), enrolled(susan). ( Q4 ) 

to a database that has the associated IC 

c student(X), not enrolled(X). (ZC2) 

which states that all students are necessarily enrolled. This means the query is 
overspecified. Simply asking 

+-- student(susan). ( Qs) 

would be equivalent. If Susan is indeed a student, a cooperative response would 
say 

"Yes, Susan is a student. 

By the way, all students are enrolled." 

3.4. Intensional answers 

Instead of always responding to a query with a substitution for the variables 
in the query, it is sometimes more appropriate to provide the user with an 
intensional answer. An intensional answer denotes the complete set of answers, 
or some subset thereof,  to a given query. Query Q4 which stated "Which students 
are enrolled?" was overspecified since all students were necessarily enrolled. 
Enumerat ing the answers, say, chris, terry, josd, carol, . . .  is misleading, unless it 
is believed that the user would know that this enumerat ion constitutes the set of 
all students. Thus, the answer VX.student(X) is better. Such an answer is called 
a universal answer as it is a u,fiversally quantified formula. 

Motro  (1991) draws a distir ',lion between data and knowledge. In deductive 
databases, the data are represented in the EBD, and knowledge in the IDB and 
IC. Knowledge is the semantics of the databases, that which must be true of 
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the database's state, and the logical conclusions that must follow from given 
data. Usually, answers to a query are only in terms of data. Cooperative 
answers incorporate knowledge in the response. In particular, IAs are in terms 
of knowledge, not data. 

Intensional answers (/As) can be more informative than enumerated answers. 
They can teach users about the structure of the database and of the domain 
and help to clear up misconceptions. Intensional answers can be more succint 
than concrete answers; this is an important cooperative behavior when databases 
contain huge stores of data. Users are often overwhelmed by the size of the 
responses of their queries. In logic programs, it is possible for a query to 
have an infinite answer set. /As can be used to characterize answer sets of 
infinite cardinality (Chomicki and Imielinski, 1989). i~ Intensional answers can be 
provided in lieu of concrete answers when the database system is under time 
and computational constraints (Imielinski, 1988). 

Let us formalize the notion of /As.  Let the query be an existential query 
(Section 2.3), 3g.Q. (Q here is not the negated formula for refutation.) Let ~7 
be the vector of all the variables of Q. Let ~" be a formula over ~7 and g where 

are the variables that occur in ~" but not in Q. The vector z7 can be empty. 
There are three definitions considered: V~73~7.~ is an intensional answer of the 
query Q iff I, II, or III alternatively: 

I. V~73 g..~" .: ? Q  
II. V ~ 3 g..~" = : * Q  

(equivalence) 
(sufficiency) 
(necessity) 

First, we must consider how/As can be computed. The number of potential 
/As for a query is infinite since an/A is a formula over the (nonempty) theory of 
the database, and there are an infinite number of tautologies. We want to find 
only the interesting ones. One notion of /As is that they are partial evaluations 
of the query. In a resolution based refutation proof procedure such as SLD. 
resolution (Lloyd, 1982), the query is rewritten at each step (in a deductive, sound 
manner) by a clause from the database until the empty clause remains. (A goal 
atom is removed from the goal list when it unifies with a fact.) The resulting 
substitution is an answer. 

Rules: B ~- Ci, C~. 

Go: ~-- A1, A2 . . . . .  Am. 

G1 : ~ (C1, C2, A2 . . . .  ,Am)Ol. 

G,~: ~ [] Answer = 01... On-1 

A101 -- B 01 
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The query is Go above. The substitution 01 . . .  On-1 at step Gn is an answer to 
the query. Once the definition for answer is revised to be any formula (meeting 
criterion II above) rather than simply being a substitution, any of the partial 
solutions above, G1 . . . . .  G,-1, may be considered as/As. These are intermediate 
answers in between the concrete answers found at the leaves of the solution tree 
and the query at the root. These/As are dependent on the search (proof) tree. 
Another notion of intensional answer is that it characterizes a set of answers 
(substitutions) in some natural way, independent of the search tree. 

Imielinski (1988) started the work in intensional answers. He defined an 
intensional answer to be a rewrite of the query that preserves its semantics. 
This satisfies the strict equivalence definition (I) for /As. In the degenerate 
case, a query is an intensional answer to itself. The rewritten formula, t he /A ,  
denotes the same answers as the query. For an/A to be an adequate answer, it 
must satisfy the user as being a sufficient, understandable characterization of the 
ground answers to the query. Obviously, the query itself is an /A by Imielinski's 
definition; however, it is not an adequate answer, since otherwise the user would 
not have asked the query. 

EDB: prerequisite('MATH-300', 'MATH-350') 
prerequisite ('MA TH- 3 50', 'MA TH-400 ') 
teaches (smith, 'MA TH-400") 

IDB: teaches(X, Y) ,-- teaches(X, Z), prerequisite(Y, Z). 
Q: Q(A) .-- teaches(smith, A). (Q6) 

IA: Q(A) ~ prerequsite(A, B). (C2) 
Q('MATH-400'). (C3) 

The/A in response to the query Q6 is composed of the clause C2 and the fact 
C3. If C2 and C3 were added to the database and the query ( ~  Q(A).) asked, 
the same answers would result as do with query Q6. 

Cholvy and Demolombe (1990, 1987) consider IAs under the sufficiency criterion 
(II). An /Ac  represents sufficient conditions for a query to be true if all ground 
substitutions of the /A are correct (ground) answers to the query. They focus on 
/As that are invariant. An /A  is invariant if it implies the query by the sufficiency 
criteria under any state of the database (Motro 1991). If a n / A  is based only 
on the IDB and ZC (does not include any facts from the EDB) and would still 
remain an answer to the query regardless of any changes to the EDB, then the/A 
is an invariant answer to the query. The intensional answer to query Q6 above 
is not invariant because it includes extensional information, Q('MATH- 4003, 
derived from a fact in the EDB, namely teaches(smith, 'MATH-400'). Consider 
the following database and the query about who receives bonuses: 
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EDB: started(michael, 1979). commended(carol). 
started(jos& 1985). commended(chris). 
started(susan, 1987). 

IDB: bonus(P) ~- started(P, D), today(N), 

elapsed(N, 1), Y), Y >_ 10. (C4) 

bonus(P) ~- commended(P). (C5) 
Q: ~- bonus(P). (QT) 

A's: "Everyone who has worked here for 10 years or more." (AI) 

"Everyone who has been commended." (A2) 

The ground answers to query QT are {michael, carol, chris}. However, these 
three do not receive bonuses for the same reason. Carol and Chris get bonuses 
because they were commended, A2, while Michael gets a bonus because he has 
been employed for more than ten years, A1. Answer A1 is a paraphrase of rule 
C4, answer A2 of rule C5. These are invariant answers that will always be true 
with respect to query Q7 (until the IDB changes). These answers may be better 
in the sense that they explain the semantics behind who gets a bonus rather than 
just listing the people. 

The /As that Cholvy and Demolombe can find may be less direct than .A1 
and A2 above. This is the simplistic case in which each/A derives directly from 
a rule. Rules and ICs may interact to result in new /As. The /As may not 
be obvious, but they still offer correct, and often insightful, characterizations of 
answers to the query. 

It is necessary to find a small finite set of interesting/As from among the 
potentials for a given query. One criterion Cholvy and Demolombe use is to 
find only/As that are not logically subsumed (a syntactic check) by any others. 
This will result in a finite set. They introduce other criteria as well. Their /As 
are limited to a vocabulary of interest (predicates and constants) defined for a 
user. Spurious/As that are not meaningful to the user will not be produced. 

Motro (1989), Pirotte and Roelants (1989), and Pirotte, Roelants, and Zi- 
manyi (1990) also consider intensional answers based on the residues as seen in 
Chakravarthy (1985) and Chakravarthy, Grant, and Minker's work (1986a,b) and 
Gal (1988) and Gal and Minker (1985, 1988). They use the residues to identify 
necessary conditions of answers (criterion III) and report these conditions along 
with the answers as a cooperative style. Like Gal, Pirotte, Roelants, and Zimanyi 
note that the residues from semantic compilation are knowledge in Motro's sense 
and are a type of intensional answer. Their work is subsumed by (Chakravarthy, 
1985; Chakravarthy, et al., 1986a, b, 1990, Gal, 1988; Gal and Minker, 1985). 

Another approach is taken by Shum and Muntz (1987) who consider/As under 
the necessity criterion (III). Answers to queries which consist of exhaustive lists 
of values may be represented more succinctly by class descriptions. For example, 
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the query "Who works from 9 to 5?" might have {tom, sue, ann, mary} as its 
answer set. If these people constitute all the employees except for Carol and Jos6, 
then employee(X)/X X ~ carol/X X ~ jos~ is an/A.  A simpler, alternative answer 
would be {4/6 employees} since the set constitutes four out of six employees in 
total in the database. Schum and Muntz's technique requires an explicit type 
taxonomy over the database domain. This considers the notion of intensional 
answers as necessary conditions on answers as well as sufficient conditions. 

Say that Tom and Sue constitute all the secretaries and that Ann and Mary 
constitute all the technicians in the database above. Then the answer may be 
represented as {secretaries, technicians}. Corella (1984, 1989) describes how to 
obtain expressions that are equivalent to the extension of the query (criterion I) 
by finding a set of types (unary predicates in the first-order predicate calculus) 
that when unioned together cover all the answers and only the answers. 

3.5. Generalizations 

Another type of cooperative strategy is to rewrite a query to a generalized form. 
The scope of the query is extended so that more information can be gathered 
in the answers. One might seek and include information on related topics, 
using heuristics and past queries to induce which topics are of interest to a user. 
Alternatively, one might look for answers that are related to the original answers, 
but are not necessarily literal answers of the original query. 

Cuppens and Demolombe (1988) give methods to rewrite the query so that 
variables are added to the query vector which carry relevant information for the 
user. For example, the query 

~-- travel(washington, toulouse). 

might be modified so that its answer reports cost. They define a meta-level 
definition of a query that specifies the query in three parts: entity, condition, and 
retrieved attributes. Answers to queries provide values to the variables designated 
by the retrieved attributes. Methods are defined to extend the retrieved attributes 
according to heuristics about topics of interest to the user. All attributes from 
the original query along with any new added attributes appear in the rewritten 
query. 

Cuppens and Demolombe (1988) also introduced the notion of loosening some 
of the "constraints" in a query to find answers close to those asked for. For 
instance, someone might ask 

e-flight(No, 'Orly"Dulles', Time), Time >_ 17:00, Time < 21:00. 

An answer could be returned flight(delta714, 'Orly, 'Dulles', 21:05) even though 
it does not strictly match the query. It is assumed the user might be interested 
in this "close" answer. 
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Wahlster, et al. (1983) allow for over-answering of yes/no questions when 
further questions are anticipated from the user on the same topic. Just as Janas' 
answers (1981), which identify the part of the query that fails, may save the 
system processing time by eliminating futile follow-up questions, these responses 
can eliminate the need for many queries to be asked. Their method provides the 
user with the information he or she probably needs without necessitating that 
the user engage in an exhaustive question/answer session. Their system employs 
domain knowledge to ascertain which types of follow-up questions are likely. 

Q: "Has a yellow car gone by?" 

The system adds that the user will want to know where it went by. 

Q': "Has a yellow car gone by? I f  so, where?" 

A: "Yes, one went by on Hartungstreet." 

In the relational database community, Chu, Chen, and Lee (1990, 1992) have 
explored an abstraction~refinement method of providing related answers to the 
original query, pursuing this notion of close answers. A query is abstracted into a 
more general query that is then refined into a set of new queries to be evaluated 
against the database. The abstraction and refinement rely on the database having 
explicit hierarchies of the relations and of the terms in the domain. Chu, et al. 
(1990, 1992) define such a structure called the type abstraction hierarchy. A query 
rewrite is accomplished by replacing relations and terms from the query with 
corresponding relations and terms from higher in the hierarchy. The resulting 
query is considered more general than the original. 

Along similar lines, we have introduced a cooperative method called relaxation 
for expanding deductive database and logic programming queries (Gaasterland, 
et al., 1991). The relaxation method expands the scope of a query by relaxing the 
logical constraints implicit in the query. Thus, the database may return answers 
related to the original query as well as the literal answers themselves. 

travel(From, To) +--serves_area(A, From), 

serves_area(B, To), flight(A, B)*. (C6) 

~ flight ('Dulles " 'JF K'). ( Qs ) 

*--serves.area('Dullus', From), 

serves.area('JKF', To), travel(From, To). (Qg) 

Query Qs seeks a flight from Washington's Dulles airport to New York City's 
JFK. If no adequate flights can be found, 11 then the query can be relaxed to 
query Q9 to look for other means of travel. The clause C6 is market as a 
reciprocal clause (marked with an asterisk in the body), meaning it can be used 
in an abductive direction to relax a query to a more general query, for instance 
Qs to Qg. (The market atom, flight(A, B) in C6, unifies an atom in the query 
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and is replaced with the head of the clause and the other atoms in the body. 
See Gaasterland, et al., 1991.) 

Our relaxation method is a general approach to seek additional answers to a 
query that may or may not be of direct interest to the user. We plan to extend 
this work to consider user models and user preferences to help determine when 
a query relaxation might be relevant. In the system FLEX, Motro proposes 
allowing the user to select directions of relaxation, and thus to indicate which 
relaxed answers may be of interest (Motro 1990). We also have considered meta- 
interpreter methods to provide users with choices of relaxed queries, allowing 
the user to navigate the database (Gaasterland, et al., 1991). 

4. User goals and models 

In query/answer systems, user interfaces, and human-machine interactions, much 
attention has been paid to classifying and characterizing users. Knowing more 
about a given user, a system can better attend to a person's questions. We do 
not attempt to survey fully the area user modeling. This is a large and rich field, 
with much outside the limited scope of this survey. In this section, we review 
the work that is relevant within cooperative answering. 

In the previous section, the focus was on cooperative answering styles that are 
universal: they pertain to all users and questions in the same way. For instance, 
Grice's maxims should be adhered to in all cooperative dialogue. But, beyond 
these basics of cooperative response, different users have different interests, 
needs, and intentions. The better the system can detect these, the better the 
response and service it can provide the user. This requires the system to know 
of particular users and to have models of users. It requires the system to be 
able to detect interests, needs, and intentions in the dialogue with the user. The 
system must be capable of employing this information to tailor answers to best 
satisfy these criteria. 

Three types of knowledge about a user are relevant to cooperative answering: 

1. Interests and preferences 
2. Needs 
3. Goals and intent 

Interests and preferences (1) direct the content of and type of answers that 
should be provided. Cuppens and Demolombe (1988) rewrite queries to include 
more information than would the original query that is of interest to the user. 
(Refer back to Section 3.5.) They claim extensibility of their work to incorporate 
user models. The models would identify topics of interest for different users and 
classes of users. The query rewrite mechanism would be directed to rewrite 
queries in order to include the relevant information of interest to a particular 
user, but directed to avoid explicitly including information not of interest. 
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Preferences (soft constraints) are met if possible, but are abandoned when 
they are at odds with the hard constraints of the query. If answers are provided 
sequentially (in a top-down manner as in PROLOG), then preferences can dictate 
the order in which answers are found and presented. Answers that meet the 
preferences best are presented first, while those meeting the preferences most 
poorly are saved for last. 

Needs (2) may vary from user to user as well. A user may be well-versed or 
may be naive in the system's domain. The type and level of detail of answers 
will depend on the user's experience. The appropriateness of different potential 
responses can be evaluated with respect to the user's needs. Paris (1987, 1988) 
addresses the user's level of expertise in the content of the answer. 

Q: "What is a telephone?" 

System knows user is an engineer. Then 

AI: (technical description of parts and how they work) 

System knows user is an eight-year old. Then 

A2: (visual description of object and what it does) 

The two answers use different vocabulary and describe different properties of 
the telephone. 

User constraints are introduced in (Gaasterland, Minker, and Rajasekar, 1990) 
and formalized in (Gaasterland, 1992). The notion of user constraints (UCs) is 
analogous to that of integrity constraints in deductive databases. A UC is of the 
same syntactic form as an IC, but does not have the same meaning; an IC must 
be logically consistent with the database, whereas a UC does not. A UC dictates 
what answers are acceptable to the user and filters out unacceptable answers. To 
a certain extent, the same mechanisms for finding residues from ICs in semantic 
query optimization can be used for UCs. Unlike residues from 1Cs, these UC 
residues will block search space that does contain answers, but only answers that 
are not of interest to the user anyway. 

Goals and intent (3) do not vary inherently from user to user; rather, they 
vary from session to session and depend on what the user is attempting to 
accomplish at the time. Past dialogue, user models, and other factors can help 
a system to determine the probable goals and intents of the user. A number of 
researchers (Allen, 1987; Allen and Perrault, 1986; Joshi, et al., 1984; Pollack, 
1983; Wahlsten, et al., 1983; Webber and Mays, 1983) try to determine user goals 
in order to choose cooperative information. 

Of course, it is possible for the system to assume things incorrectly. Short of 
the ability to ask the user directly whey certain information has been requested 
(and the ability to comprehend the user's response), the system will be prone 
to mistakes. So, while accounting for users' goals and intent can be a powerful 
addition to a cooperative answering system, it can also be dangerous. The risk 
is when the system is wrong about what the user really wants, the answers it 
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gives can be more uncooperative than if the system did not consider the users' 
goals and intent at all. Special care must be taken to minimize the costs of such 
mistakes. 

Allen and Perrault (1987, 1986) seek to detect user goals to help identify 
potential obstacles to the user meeting the goal. Allen's interest is in temporal 
issues and knowledge about time and how assumptions about time should effect 
responses to a user. His work conceptually extends Cuppens and Demolombe's 
idea (1988) in which user models dictate what information to add to the answers 
(via rewriting the query) by accounting for the user's current goals. For instance, 

Q: "When does the Windsor train leave?" 

A: ')It 4:00 p.m. (five minutes from now), at gate 7." 

The answer offers two cooperative pieces of information beyond the literal answer. 
First, it warns the user that the train is leaving in 5 minutes, an obstacle if the 
user is trying to catch the train. Second, it tells the user about the gate number, 
potentially important if this is not the usual gate or if it is somewhat distant 
from the user's current location. 

Pollack (1983) detects how the questions users ask fit into their plans. Then 
answers that facilitate a user's plan will be given. The answer should, in essence, 
help to solve the user's problem. Suppose a user has typed a cntl-Z during a vi 
editing session and wants to undo the results. The user might ask: 

Q: "ln the vi editor, how can I delete cntl-Z?" 

A: "Cntl-Z has stopped your vi process. 

Type 'fg' to resume it." 

Once the system realizes the goal, it can reinterpret the query and give a response 
that helps in achieving the goal. 

Carberry (1988) emphasizes the dynamic construction of a model of the user's 
current task-related plan during the user/system dialogue. Such a model can 
be used to identify conflicts that arise between a user's questions and supposed 
plan. Misconceptions as considered in Section 3.3 arise from conflicts between 
the user's world view (as indicated by his or her queries) and the system's world 
knowledge. With a model of the user's task, possible further misconceptions can 
be identified when the user's queries and task at hand do not align. Care must 
be taken to try to determine when such an alignment is due to a misconception 
and when it is due to changes in the user's plan or to mistakes in the system's 
assumptions and modeling of the plan. 

These ideas have been incorporated in the IREPS system (Intelligent REsPonse 
System), part of a research effort at the University of Delaware to provide a 
robust natural language interface for information systems. A component called 
TRACK infers the user's task-related plan. The heuristics and processing strategies 
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employed are domain-independent; only the domain-dependent plans and goals 
must be provided for a given application domain. 

McCoy (1988) extends her work as discussed in Section 3.3 to consider user 
models and to respond to misconceptions that a given user may be known to 
hold. A model of what the user believes cues the system about misconceptions 
this user may have. The system has a set of basic, general strategies to resolve 
misconceptions of the user. Given a particular misconception, a suitable strategy 
is chosen to resolve it by adding appropriate statements to the response. 

Quilici, Dyer, and Flowers (1988) also seek to recognize and respond to 
plan-oriented misconceptions. They consider advice-seeking dialogues between 
an advisor (an automated system) and a novice (the user). A cooperative 
response consists of explaining the beliefs of the system that conflict with the 
user's supposed beliefs in order to resolve the user's misconception. Similar 
to McCoy's explanation strategies (McCoy, 1988), they provide a taxonomy of 
domain-independent explanations as strategies for resolving different kinds of 
potential misconceptions. 

Quilici, Dyer, and Flowers (1988) present a UNIX advisor based on their 
system for answering UNIX users' questions when they do not understand the 
results of their actions. This is based on a system called AQUA developed at 
the University California Los Angeles. The AQUA system infers users' beliefs, 
determines which are incorrect, and attempts to trace the cause of the beliefs. 
The system has an extended representation schema in order to store information 
about users' plans. 

5. Cooperative answering at the University of Maryland 

At the University of Maryland at College Park, we are engaged in building a 
cooperative answering facility for deductive databases. The system adds many 
of the cooperative behaviors and methods discussed previously to the deductive 
database query interface. Goals are that it 

1. be a uniform system 
�9 defined in, and implemented through, logic 
�9 a uniform representation and support for all the cooperative methods 

2. be portable and 
�9 a general approach for relational and deductive databases and for logic 

programs 
�9 domain-independent-applies to any relational or deductive database 

schema and state, and to any logic program 
3. have a natural language interface 

�9 accept natural language queries 
�9 provide cohesive and coherent responses in natural language 
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Most of the cooperative methods we have considered in this paper have been 
implemented independently and employ different computational strategies. The 
need remains to integrate these methods and behaviors into a uniform system. All 
should rely on the same representations and the same computational strategies. 

Our platform is deductive databases. Data is stored as the EDB, knowledge via 
the IDB and 2"C. The semantic query optimization technology of Chakravarthy, 
Grant, and Minker (1985, 1986a, b) provides a general strategy for finding conflicts 
and interactions between queries and 1Cs. This yields a uniform approach to 
handling misconceptions. Logic programming (we are using PROLOG for our 
implementation) offers us not just a uniform knowledge representation, but also 
a viable programming platform for handling the different cooperative methods 
in a general, uniform manner. 

Deductive database and knowledge base systems often use an interpreter to read 
queries and to apply a proof procedure to find answers. For knowledge bases in 
PROLOG, this is usually just PROLOG's interpreter. A rneta-interpreter in such 
systems is used to supercede the PROLOG interpreter and can effect specialized 
behavior over the interpreter. A meta-interpreter reads clauses, queries, and ICs 
as data and can manipulate them to effect different control and query answering 
strategies. A recta-interpreter is often called a shell after the user-interactive 
shells of operating systems and interpreted environments. The following shell, 
relax.solve~I, is a simple PROLOG shell that enacts query relaxations as discussed 
in Section 3.5. 

relax_solve(As) 

relaxing([AIAs], [AIBs]) 
relaxing([AIAs], Bs) ~-- 

+-- relaxing(As, Bs), 
solve(Bs). 

+-- relaxing(As, Bs). 
clause(relax(A), Cs), 
relaxing(Cs, Ds), 
relaxing(As, Es), 
append(Ds, Es, Bs). 

relaxing([], [ ] ) .  

This shell is simplistic, but it illustrates how cooperative behavior can be achieved 
for logic programs. In reality, we would want relaxation to occur breadth-first. 
Also, this shell relaxes the query automatically once the original query's solutions 
have been exhausted. It would be better to provide the user with a menu 
of relaxation choices (Gaasterland, et al., 1991). Of course, relaxation is just 
one of the cooperative behaviors we want in our shell. We combine such 
recta-interpreters for the different cooperative behaviors into a single system. 

Our cooperative answering system (Figure 3) is a comprehensive meta-inter- 
preter for PROLOG deductive databases that effects many of the cooperative 
behaviors discussed. The meta-interpreter employs the ICs and rules of the 
database to produce cooperative answers. The system builds on the earlier 
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Fig. 3. Flowcha r t  of  COOPERATIVE ANSWERING SYSTEM at  MARYLAND. 

system of Gal (1988), Gal and Minker (1988), and Lobo and Minker (1988). 
The cooperative answering system is portable. The methods and strategies 

employed for producing cooperative answers are domain-independent and no 
special tailoring is needed for a given database domain. The system is easily 
used with a relational database system since a simple deductive database interface 
can be implemented on top of any relational system. The shell can also provide 
cooperative response in more complex knowledge bases represented by logic 
programs. 

The system supports limited natural language input for some domains. Some 
queries can be posed in natural language text. (Others must be posed in logic.) 
As discussed in Section 2.1, this becomes important when databases are too big 
or complex for a user to have a clear picture of the whole schema. The natural 
language translator builds a logical query. The interface has a dictionary to map 
natural language terms into the proper database predicates and constants. 

The system can produce natural language responses. This is the more important 
direction. Cooperative responses can be cumbersome since they may incorporate 
knowledge as well as data from the database. When presented as logical formulas, 
they can be difficult to understand even for seasoned logic programmers. Answers 
can be large, full of notation, and connections between concepts may not be 
clear. 

Natural language can alleviate many of these problems (Gaasterland, 1992). 
A linguistically motivated natural language back-end is developed to provide 
cooperative natural language responses to queries. Anaphora helps remove 
notational redundancies and makes the answer text much more readable and, 
hence, understandable. Coordination collapses parallel structures into more 
concise sentences. Cohesion is a global property that assures the answer sentences 
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form a cohesive response in which the components are related in clear, obvious 
ways and each contributes towards the answer. We have a response generator 
that uses these linguistic tools as well as others that produces good natural 
language response. 

The cooperative answering shell handles the following types of cooperative 
response: 

,, natural language interface (Gaasterland, 1992; Gal and Minker, 1988a, b, 1985) 
�9 handles natural language queries 
�9 generates natural language responses 

�9 false presuppositions (see Section 3.2) 
�9 finding minimal failed subquery 
�9 maximal failed relaxation 

�9 misconceptions (constraint violations) (see Section 3.3) 
�9 EDB search 
�9 violations with respect to previous answers 

| explanations of derivation paths (proofs) 
| positive cooperative information 
| employs heuristics to select best cooperative information (Gal 1988) 
�9 detect redundancy in the query 
�9 use UCs to filter answers (Gaasterland, 1992; Gaasterland, et al., 1990) 
| relaxation (menu-driven) (Gaasterland, et al., 1991) 
| query decomposition 

Any violation of an IC by a query indicates a possible misconception on the 
user's behalf. The most general 1C necessitating that the query fails is found. 
These IC violations are detected and reported to the user. Sometimes a query 
may not conflict with any one 1C from the 2"C set in particular, but the query 
having an answer would be in violation of the 1DB and 2C together. In this case, 
the query will conflict with a derived constraint, an IC that can be deduced from 
the IDB and 2-C and is thus true over the database. Then, the derived constraint 
is presented, along with its derivation. Different subgoals of the query may fail 
for different causes (each conflicts with a different 1C). This requires that the 
failure of each subgoal be explained, and an explanation of the proof tree is also 
required to explain how these subgoals arose. 

Sometimes ICs may interact without indicating a cause for failure. Instead, 
such ICs offer semantic information about the query, other conditions that must 
be true for there to be an answer to the query. At times, certain of this 
information may be pertinent to include in the answer. 

A query may be overspecified. Some subquery may find all the answers that 
the query would find. Such a case may also indicate a misconception. This 
situation can also be detected by the shell when 1Cs show a query and a subquery 
to be semantically equivalent. An example of this is seen in Section 3.3. Query 
Q4 is equivalent to the subquery Q5 due to ZC2. 
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If there are no misconceptions but the query still fails, false presuppositions 
are present in the query. The shell informs a user of false presuppositions. The 
minimal failed subqueries are found as in Janas' method. (Refer to Section 3.2.) 
Once a failed subquery is identified, this query is relaxed to find the most general 
query that still fails. This failure is reported to the user. 

There may at times be too much potential cooperative information to provide to 
the user. To provide all of it would violate the maxim of quantity and overwhelm 
the user. Choices must be made as to which information is to be included. For 
instance, a query failure due to a misconception is more pertinent than failure 
due to a false presupposition. A query that fails due to a misconception must 
fail, whereas a query that fails due to a false presupposition happens to fail 
given this state of the database, but it would not necessarily fail in some other 
state. Gal (1988) presents a number of heuristics for deciding which cooperative 
information to include, abiding the cooperative maxims as best as possible. 

UCs provide a means for modeling the user in the system (Gaasterland, 1992; 
Gaasterland, et al., 1990). They are used to eliminate answers for a query that 
would violate the UCs of the particular user. Applicable UCs are attached to 
the query in an analogous manner to semantic query optimization for IC s. This 
effects a query rewrite, but unlike semantic query optimization it changes the 
meaning of the query in such a way that the rewrite only find the answers that 
do not violate the UCs. 

The system provides relaxed queries to the user once the original query has 
been exhausted. This way, if the user did not find the answers from the original 
query to be adequate, he or she may continue to navigate the database by 
selecting related (relaxed) queries to find related answers. The shell handles 
relaxation in an efficient manner. Also, repeat answers to the relaxed query are 
suppressed (avoided in the computation) since the user has already seen (and 
rejected) them (Gaasterland et al., 1991). 

A query is disjoint whenever it can be subdivided into two or more independent 
subqueries. The shell detects this and decomposes the query in such cases. This, 
and other such syntactic checks and optimizations, help catch users' mistakes and 
help to reduce the cost and overhead of the other cooperative techniques. 

In our continuing research, we plan to 

�9 more fully integrate the mechanisms supporting the cooperative behaviors 
�9 develop clear semantic support (in deductive databases) for cooperative 

answering 
�9 implement more efficient mechanisms for the different cooperative be- 

haviors 
�9 provide a better user interface and 

�9 provide a sophisticated, integrated natural language response generator 
�9 develop further the explanation facilities 

�9 add more cooperative behaviors and facilities. 
�9 allow for useful IAs 
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| incorporate Cuppens and Demolombe's style of query rewrites 
, further develop the theory of UCs and user models 

Work on the cooperative answering system at Maryland is an ongoing project. 
We shall continue to extend its functionality, improve its performance, and to 
research new cooperative techniques. We are also engaged in foundational 
research to map out the requisite knowledge and semantics needed to support 
cooperative behavior at large, the requisite representations, and the requisite 
computational strategies for yielding cooperative response. Although the many 
cooperative behaviors discussed in this paper may seem at first disparate, we 
are seeking a general classification for cooperative response and the universal 
representations and strategies that will be able to provide them. 

6. Summary 

In this paper we have given a brief overview of the field of cooperative answer- 
ing. Cooperative response is crucial to the success of automated query/answer 
systems. History has shown that providing correct answers to users is simply not 
enough. Ambiguities, misconceptions, and irrelevances plague such systems. As 
information systems play a more vital role in society, it is necessary that these 
problems be addressed. 

Fortunately, a good deal of research has already been directed toward these 
ends, and exciting, promising work is underway. We have reviewed a number of 
disparate cooperative behaviors. Most of these cooperative techniques have been 
developed, but each in a different system, reliant on a different representation, 
and effected by different computational means. While much work remains 
to explore and develop new cooperative techniques, the current collection of 
cooperative response work needs to be pulled onto common ground. 

Deductive databases offer a suitable platform for the development of uniform 
cooperative systems. Deductive databases provide a powerful, uniform repre- 
sentation via logic, semantics, and a computational means for effecting efficient 
cooperative response. Much high quality work has been done in cooperative 
answering within the deductive database paradigm due to this natural fit. Both 
the fields of cooperative answering and deductive databases has benefited as a 
result. The cooperative answering system we have developed, based on logic, is 
indicative that it is a unifying framework for such systems. 
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Notes 

*Invited Paper 

1. Data and knowledge are distinguished. See Section 3.4 for a discussion. 
2. We shall write constants beginning in lowercase or quoted, and write variables 

beginning in uppercase. 
3. This has the same meaning as static integrity constraints in relational databases, 

a statement that must be true of the state of the database. We do not consider 
dynamic integrity constraints, which must be preserved across a database 
transaction. 

4. We use the symbol "C" also commonly used for logical if, instead of ",---" 
within integrity constraints to distinguish them typographically from queries. 

5. We write classical negation with the symbol "-V' 
6. This book is incorrectly referenced as Mutual Beliefs in many papers. 
7. We have added this one to the example. 
8. Each subquery in Figure 2 logically subsumes each query that it points to. A 

formula 5 r logical subsumes G iff 1= 5 r ~  ~. 
9. He does not define connected in (Janas, 1981) in quite this way, but to the 

same effect. 
10. This will not occur in the case of deductive databases, which contain no 

function symbols, but can occur in the case of logic programs, which do allow 
function symbols. 

11. A real query would specify much more, such as time, date, and cost. 
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