
Journal of Intelligent Information Systems, 1, 123-157 (1992)
�9 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Overview of Cooperative Answering

TERRY GAASTERLAND
Department of Computer Science, University of Maryland, College Park, Maryland 20742

PARKE GODFREY
Department of Computer Science, University of Maryland, College Park, Maryland 20742

JACK MINKER
Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742

Abstract. Databases and information systems are often hard to use because they do not explicitly
attempt to cooperate with their users. Direct answers to database and knowledge base queries
may not always be the best answers. Instead, an answer with extra or alternative information
may be more useful and less misleading to a user. This paper surveys foundational work that has
been done toward endowing intelligent information systems with the ability to exhibit cooperative
behavior. Grice's maxims of cooperative conversation, which provided a starting point for the field of
cooperative answering, are presented along with relevant work in natural language dialogue systems,
database query answering systems, and logic programming and deductive databases. The paper
gives a detailed account of cooperative techniques that have been developed for considering users'
beliefs and expectations, presuppositions, and misconceptions. Also, work in intensional answering
and generalizing queries and answers is covered. Finally, the COOPERATIVE ANSWERING SYSTEM at
Maryland, which is intended to be a general, portable platform for supporting a wide spectrum of
cooperative answering techniques, is described.

Keywords: cooperative answering, query/answer systems, deductive databases, human/machine inter-

action

1. Introduction

Whenever we ask a question, we expect to receive a worthwhile answer in reply.
This is certainly true in conversation, and this expectation remains whenever we
interact with information systems. While people have always built databases and
knowledge bases with this intention in mind, they have not necessarily succeeded.

Databases and information systems are often hard to use because they do
not explicitly attempt to cooperate with their users. Unlike people, they answer
literally the queries posed to them. Answers will be correct, but can often be
misleading. Responses to queries may not contain the information the user
really wants. A user may need more information, or might even need different
information, than the query requests. The user may have misconceptions about
the database and what the database knows.

If we are to build information systems that meet users' expectations, it is
first necessary to determine what it means for an answer to be appropriate.

124 GAASTERLAND, GODFREY, AND MINKER

Grice (1975) proposes a number of maxims that characterize a cooperative
answer. According to his maxims, a cooperative answer should be a correct,
nonmisleading, and useful answer to a query. As we seek to endow information
systems with cooperative behavior, the maxims can be used to serve as a measure
of the cooperative performance of our information systems. A number of
researchers have used Grice's maxims as guidelines in their work. The maxims
describe fundamental properties of cooperative behavior. They describe what
people do in conversation.

The maxim of quality requires that each contribution to a conversation be valid.
One should only say things that one believes to be true, and one should not say
anything for which one has inadequate evidence. In other words, one should not
lie or overstate what one knows. Joshi (1982) extends this maxim to say that one
should never say anything which may imply to the listener something that oneself
believes to be ++false. Given this cooperative maxim, both Joshi and Kaplan
(1981, 1982) consider how to apply it to information systems and databases. In
particular, a system should never give an answer which might mislead the user.
If a literal answer to a query would lead the user to false assumptions, the system
must provide further information to prevent this.

The maxim of quantity states that a contribution to a conversation should be as
informative as required. However, it should not be more informative, or more
detailed, than necessary. As databases become more complex and very large,
an answer to a query can result in a huge table, much larger than is possible
to read. In deductive databases, research has been done in intensional answers,
which are succinct logical formulas that entail the answer. An intensional answer
will often be as informative to the user as the table would be, and often will be
much easier to understand. Intensional answers also can be more informative
than the table itself by informing the user of general facts about the table.

The maxim of relation says a contribution should be relevant. In particular,
an answer should be relevant to the user who asked the question. Much work
(Allen, 1987; Allen and Perrault, 1986; McCoy, 1984, 1988; Pollack, 1983) has
been done to model users and to determine a user's goals and intentions. Their
work provides a basis for determining whether an answer is relevant.

The maxim of manner states one must avoid obtuse expression and avoid
ambiguity. Also, one must be brief. When an information system provides an
answer, it ought to be presented in a form that is easy for the user to understand.
It should not be ambiguous, leaving the user with choices to make about its
meaning. Otherwise, the answer could be misleading. The answer should be as
succinct as possible without encroaching on any of the other criteria.

In part, Grice's intent in introducing a set of conversational maxims was to
show that first-order logic suffices to model cooperative dialogue. The maxims
describe what should happen in a natural conversation. They also serve to
explain when a conversation fails to be cooperative. One can evaluate whether
an answer is cooperative with respect to the maxims and generate cooperative
responses by adhering to them.

AN OVERVIEW OF COOPERATIVE ANSWERING 125

Others have held the view that more powerful logics, such as logics of inten-
tionality and modality, are needed to handle cooperative discourse. Many of the
philosophical considerations expressed in Smith (1987) reflect this concern. Of
course, whether or not first-order logic can serve as an adequate ontology for
cooperative answering is an open question. Much research is being conducted on
nonclassical and higher-order logics. These may play a role in future cooperative
answering work.

Once we have established the criteria for an answer to be cooperative, we must
determine how to build information systems that exhibit cooperative answering
behavior. Databases, and information systems in general, satisfy the standard
of providing correct answers, in so far as the system contains valid information.
However, for answers to be useful to users, they must ask the appropriate queries
in order to arrive at the desired information. To do so, the user must know
something about the database's schema, and just what it is that the database
knows. When a user's suppositions about the system are inaccurate, most
information systems do not do much in the way of correcting the user. Once
users do ask the queries that comply with the database organization, the answers
returned may still be misleading, less informative than desired, or ambiguous.

To address these problems, specific cooperative techniques have been developed
to identify and correct false presuppositions and misconceptions apparent in the
question. Other techniques ensure that answers are relevant with respect to the
user's intentions. When an answer consists of several parts, it is important to try
to make the answer cohesive across these parts, and coherent as a whole. Finally,
if the answer is presented in natural language, the response should exhibit an
appropriate conversational organization.

Our focus in this survey is on the nascent field of cooperative answering for
query/answer systems. Some of the key topics involved are

�9 Maxims and criteria for cooperative behavior (as seen above)

| Techniques to evoke cooperative behavior in query/answer systems
| Issues of computational cost of such methods and containing that cost
�9 Knowledge representation needs for constructing cooperative answers

In the next section, we review foundational efforts in cooperative answering.
In Section 3 we look at specific cooperative answering strategies and systems.
These strategies are universal in that any system ought to support them and
all users require them. In Section 4 we consider when an answer ought to
be tailored for a particular user or class of users. This is necessary to attend
properly to a user's particular needs and requirements. In Section 5 we review
the work in cooperative answering at the University of Maryland at College Park.
In finishing, we attempt to outline the directions in which the field of cooperative
answering is evolving, which direction we should go, and further problems to be
solved.

126 GAASTERLAND, GODFREY, AND MINKER

2. Query/answer systems

Research in cooperative answering has grown out of three areas in which question-
and-answer discourses arise:

1. Natural language interfaces and dialogue systems built for the purpose of
studying natural language exchanges between users and computers

2. Databases
3. Logic programming and deductive databases

In this section, we discuss each in turn.

2.1. Natural language interfaces

Much of the initial work in cooperative answering focused on natural language
dialogue systems (Joshi, 1982; Joshi et al., 1982; Lehnert, 1981; Pollack, 1982).
Researchers sought to endow their information systems with the same normative
cooperative behavior as described by Grice as occurring in human conversation.
Many of the systems we discuss in this survey employ natural language interfaces
or are tightly integrated with natural language facilities. The focus on natural
language within the nascent field of cooperative answering can be considered
both distracting and beneficial in different ways.

Some researchers are interested in modeling human conversation. Others
hope to use human discourse as a normative standard for information systems'
behavior. Many believe natural language dialogue systems ought to be subject to
the same cooperative conversational maxims as human discourse. Such systems
are ideal settings for evaluating a systems' behavior against the conversational
maxims.

Natural language interfaces along with more fully integrated natural language
query/answer systems are important in another way too: for information systems
to be accessible by lay users requires an easily understood interface language.
Many hope that natural language, or a subset thereof, will fulfill this need. As
information systems become ever larger and more complex, we all become lay
users, and the need for natural interfaces becomes even more vital. One cannot
expect all users to understand a complex database's schema. Natural language
conversation techniques are also for answering queries in an interactive fashion
when answers become long and complex. One cannot expect users to understand
overly complex answers expressed in arcane formalisms or expressed all at once.

While the research in natural language systems is important in its own right,
it risks confounding the issues faced in cooperative answering. The tenets of
cooperative answering ought to be universal to queries themselves, regardless of
whether the queries are cast in natural language, in logic, or in SQL. (Of course,
there are many other issues particular to natural language.) The same maxims

AN OVERVIEW OF COOPERATIVE ANSWERING 127

for cooperation discussed above ought to apply to all information systems.
This paper covers specific topics in natural language research when they relate

directly to cooperative answering systems. There are many more topics indirectly
related to cooperative answering with extensive literatures that we do not cover.
We look at a number of natural language systems of importance to the cooperative
answering field in Section 3.1. However, our focus is on the cooperative issues
they tackle. We attempt to clarify the relation between natural language and
cooperation in such systems as best we can throughout the survey. We do
not consider the particulars of the natural language components in cooperative
systems.

2.2. Databases

A number of researchers in the area of databases (Chu, et al., 1990, 1992,
Kaplan, 1982; Motro, 1986) have recognized the practical need for cooperative
answering behavior in standard, widely available information systems. This need
has led people to consider how to adapt and develop cooperative techniques
specifically for databases.

Kaplan (1982) built a cooperative system on top of CODASYL (a network-
model database) (CODASYL, 1971; Ullman, 1988). He pays special attention to
making his system portable: the cooperative answering behavior is independent
of the information system's knowledge and domain. His system was portable not
only between databases using the network model, but also between other types of
information systems too, such as relational databases and expert systems. Mays
(1980) builds on Kaplan's work and considers how to use a relational database's
schema to correct false presuppositions in a user's query.

Motro (1986) considers modifications to the relational model which would
be easy to incorporate into a relational database system to allow for certain
cooperative behaviors. In Motro (1990) he considers a user interface for relational
database systems that would allow users to interact with the database in more
cooperative ways. The database can correct queries that have apparent mistakes
or that return no answers, and yield to the user corrected queries with which to
proceed. He also explores the notion of returning to a user related queries that
may closer match the user's intended question.

Chu, Chen, and Lee (1990, 1992) explore methods to generalize and refine
queries to generate new queries related in direct ways to the user's original.
Such related queries can find answers outside of the scope of the original query
which may be of interest to the user.

128 GAASTERLAND, GODFREY, AND MINKER

2.3. Deductive databases

A large portion of the work in cooperative answering has been done within deduc-
tive databases. The logic model both subsumes and extends the relational model
(Ullman 1988) for databases. The logic model offers a uniform representation
for data, knowledge, 1 and queries. Logic also offers a suitable representation for
expressing cooperative answers, whereas SQL and other database languages must
be extended to do this. Finally, the rules and integrity constraints of deductive
databases allow for a rich semantics, which plays a vital role in generating coop-
erative response. In the remainder of this section, we provide basic definitions
about deductive databases that will be used throughout this paper.

A deductive database (Gallaire, and Minker, 1978; Gallaire et al., 1984; Minker,
1988) employs the logic model instead of the relational model as its data model
(Ullman, 1988). A deductive database consists of three parts: facts, rules and
integrity constraints. We denote this by the tuple (EDB,1DB, IC). A rule is of the
form

A0 ~ Ai, . . . , An. (Ci)

A rule is a clause, and C1 is equivalent logically to V. A0 v -~ A1 v An.
The A~'s, 0 < i < n, are atoms. For this paper, a clause contains a single
positive atom, A0, and some negative atoms, A1, . . . , An, n > 0. An atom is a
predicate instantiated across variables and constants. (Logic programs are more
general in that they also permit functional terms.) For instance, student(chris)
and student(X) are atoms of the unary predicate student~1. The former is over
the constant chris, the latter over the variable X. 2 Each variable appearing in a
clause is considered to be universally quantified across the clause.

The Atom A0 in C1 is called the head, and A~, . . . , An the body. The atom
A0 is necessarily a logical consequence of the database if each Ai, 1 < i < n, is
a logical consequence of the database. A ground atom is one that contains no
variables. A fact is a ground clause with an empty body, n = 0.

The set of all facts constitute the extensional database (EDB), the set of
rules the intensional database (IDB). It is assumed that a given predicate either
appears only in facts or in the heads of rules. The EDB predicates are equivalent
to relations from the schema in a relational database, and individual facts to
individual tuples. The rules for the IDB predicates are analogous to views, but
are more powerful than views as they admit recursion. Clauses and facts as we
have defined them constitute DATALOG, and a finite set of such clauses and
facts is a DATALOG database (Ullman, 1988).

A relational database is conceptualized as two parts: its schema and its state.
The schema is its relations and views. The state is the database's collection of
tuples, the data. Databases are designed with the assumption that the schema
seldom changes and remains fairly constant through time, but the state will
change rapidly as new data are added and old data are revised. Likewise, in

AN OVERVIEW OF COOPERATIVE ANSWERING 129

a deductive database, it is assumed the IDB and the ZC are mostly static. The
EDB will change often as new facts are added and old ones revised.

The type of question permitted in a deductive database is an existentially
quantified conjunction of atoms. For instance, if one wanted to know whether
there is a student who has passed CMSC 420, the logical formula would be

3X. student(X) A passed(X, 'CMSC-4 20') ?

It is standard to take the negation of the question, which is then called the
query, to resolve against the database. A query then is a clause, and has the
same form as a rule but without a head. For instance, our questions above is
represented as

student(X), passed(X, 'CMSC-420'). (QI)

An answer to a query is a substitution of the query's variables such that (the
negation of) the substituted query is a logical consequence of the database. For in-
stance, X = chris is an answer to QI if student(chris) andpassed(chris, 'CMSC-420')
follow from the database.

The third component of a deductive database is an associated set of integrity
constraints, ZC. An integrity constraint (IC) is a logical formula that must be true
of the database. 3 We often limit our concern to denial constraints, ICs which
state facts that cannot be simultaneously true in the database. For example, the
following IC states that no one can be both a student and a professor:

c professor(X), student(X). (ZC1)

One may note that (denial) integrity constraints have the same syntactic form
as queries, 4 but a different meaning with respect to the database. We may write
other ICs in the same form as denials, but allowing for negation in the body.
For instance,

C student(X), not enrolled(X). (ZC2)

states that all students must be enrolled. In other words, if someone is a
student, then it is not possible that he or she is not enrolled. This not is not
classical negation, 5 but negation as failure (Shepherdson, 1984; Lloyd, 1987).
Thus, not enrolled(chris), say, is true if enrolled(chris) cannot be proven. Such
constraints are more expressive and we use such ICs in some of our examples.

We now turn to a detailed overview of cooperative techniques that have been
developed and explored in each of these three areas over the past two decades.

3. Foundational work in cooperative answering

The cooperative answering techniques that have grown out of research in each

130 GAASTERLAND, GODFREY, AND MINKER

of the areas that were reviewed in the previous section can be separated into five
categories. The techniques in each category are differentiated by the following
capabilities.

1. Consideration of specific information about a user's state of mind
2. Evaluation of presuppositions in a query
3. Detection and correction of misconceptions in a query (other than false

presuppositions)
4. Formulation of intensional answers
5. Generalization of queries and of responses

This section describes each in turn.

3.1. Beliefs and expectations

The genesis of the field of cooperative answering can, for the most part, be traced
to work by Joshi and Webber at the University of Pennsylvania. In May of 1978
a workshop entitled "Computational Aspects of Linguistic Structure and Discourse
Setting" was held, sponsored by the Sloan Foundation at the University of Penn-
sylvania. Several topics were discussed: question-answering-intensional verses
extensional responses, direct and indirect answers; meaning representations-
logical representations and their role in natural language processing; and in-
ferences in context. A book ensued, Elements of Discourse Understanding, in
1981, edited by Joshi, Webber, and Sag, based upon the articles presented at the
workshop (Joshi et al., 1981).

Most of the articles in the book fall under the following topics:

1. Utterance meaning
2. Discourse models
3. Models of participants' beliefs

(understanding the questions and answers)
(following the query~answer discourse)
(mutual ground between user and system)

For query/answer systems, topic 1 concerns whether the system can understand
and properly interpret the query. This covers a number of important issues. For
instance, natural language queries can be ambiguous and must be disambiguated
to be answered. Lehnert (1981) has noticed that a given query might be asked
with different intentions in mind. Thus a user's intentions and goals must be
taken into account. (See Section 4.) Even with logical queries (not asked in
natural language), proper interpretation of the query is necessary. Cuppens and
Demolombe (1988) consider rewriting queries to include more information in
the answers than would be gathered with the original query in order to match
a user's intentions and to provide generally more informative answers. (See
Section 3.5.)

AN OVERVIEW OF COOPERATIVE ANSWERING 131

Topic 2 concerns whether a system is able to model its dialogue with a
user. A system should account for a user's goals changing over time and what
the user has learned through previous dialogue with the system (a building of
mutual knowledge). Also, the system should gain a better understanding of
a user's intentions as the dialogue progresses. Webber is interested in how
aspects of discourse might shape the mental model that a listener has. Webber
(1981) considers how people understand (definite) anaphora. McKeown (1982)
and Gaasterland (1992a,b) have both considered such issues as involved in the
presentation of answers which are crucial to the user's understanding of the
answers.
In general, Webber's work considers user beliefs in order to anticipate user
expectations (topic 3). She explores how to provide extra information to prevent
misconceptions. For example:

Q: "Is Sam an associate professor?"

User believes most associate professors have tenure.

Sam is not tenured. Sam is an associate professor.

A: "Yes, but he doesn't have tenure."

Pollack, Hirschberg, and Webber (1982) consider the effects a user's interaction
should have in the reasoning of expert systems. Joshi, Webber, and Weischedel
(1984) consider how to generate expert responses that match the user's expecta-
tions. Webber and Mays (1983) focus on detecting and correcting misconceptions
(Section 3.3).

Joshi (1982) considers some of the abstract problems of establishing mutual
knowledge in question/answer systems. The paper appears in the 1982 collection
Mutual Knowledge, edited by N.V. Smith (1982). 6 The book is a philosophical
treatise on mutual knowledge: what mutual knowledge is, its ramifications in
dialogue, and how it is established. Joshi, in his article, considers the ramifications
for cooperation in dialogue.

Lehnert (1981) devised a system to analyze questions within an ongoing dis-
course between a user and a computer in order to determine the user's intent
behind the questions. Her system strives to answer questions in a cooperative
manner. Her system, called QUALM, parses its English questions into a concep-
tual dependency representation (Schank, 1975) which represents the question's
meaning. It analyzes the question and surrounding context in the conversation
to decide the question's intent. The analysis helps determine the type of answer
the system should provide.

One might respond to the question below with any given one of the following
answers, depending on what intent is behind the question.

132 GAASTERLAND, GODFREY, AND MINKER

Q: "How did John take the exam?" (intent?)

-h,l: "He crammed the night before." (enablement)

A2: "He took it with a pen." (instrumental/procedural)

A3: "He took it badly." (emotional) 7

Lehnert points out that her system is more than a natural language front-end.
The conceptual dependency representation also serves as the core knowledge
representation, and for her system there is necessarily no clear distinction between
translating the query and answering it.

Many of Webber's and Joshi's students have worked in this area, and established
many cooperative answering techniques. Mays (1980) considers how to employ
the database's schema to detect user misconceptions (as discussed in Section 2.2).
Kaplan (1981, 1982) detects presuppositions in queries, and Hirschberg (1983)
accounts for implicatures in answers. (See next section.) McKeown (1982)
considers natural language response to database queries. Pollack (1983) studies
how users' questions fit with their plans. (See Section 4.)

3.2. Presuppositions

A student asks an appropriate university database

"Who passed CMSC 420 in the fall semester of 19917"

The database returns with the answer "No one," leaving the student to think,
possibly, that CMSC 420 is a very hard course. The student then asks

"Who failed CMSC 420 in the fall semester of 19917"

Again, the database returns with the answer "No one." Finally, the student is
suspicious and asks

"Who taught CMSC 420 in the falls semester of 1991 ?"

The database answers again "No one" (Kaplan, 1982).
Kaplan calls this behavior stonewalling. If the initial question had been asked

to a person instead, he or she would have probably answered immediately, with
a reply such as "Oh, there was no such course taught last semester." Databases
stonewall. They will answer a yes~no question with a yes or a no regardless of
whether the answer is misleading. As Grice said though, correct answers are
not enough. Clearly a cooperative answer would be an explanation of why the
query fails (why the answer is no), exposing any false presuppositions. Kaplan
states that one should consider the presuppositions in a query to be statements
that must be true for the query to have an answer (Kaplan, 1981, 1982). If any
presuppositions are false, the query is nonsensical.

AN OVERVIEW OF COOPERATIVE ANSWERING 133

every (V)
. ~ - " ~ I

X student

1
x Y car owns

Y X Y

"Every s tudent owns a car."

VX.[student(X) ---~ 3Y.[ear(Y) A ow,, ,(X, Y)]]

Fig. t. Quantifier tree representation.

Kaplan built a system called CO-OP (A Cooperative Query System), a natural
language query system that operates with a CODASYL database management
system (Codasyl, 1971; Ullman, 1988) CO-OP provides cooperative responses
to simple natural language questions, requesting the relevant data from the
database. The system runs as two processes: a FORTRAN process of the SEED
database system (CODASYL) with a query processor and a LISP process of the
natural language front-end with a report writer. The system has been tested
over a real database from the National Center for Atmospheric Research over a
domain on users and programmers.

Kaplan devises and employs an intermediate representation for queries he calls
the Meta Query Language (MQL). A query is represented as a graph structure
in MQL, consisting of sets at the nodes and binary relations between sets (the
arcs). The graph is a semantic network, and the query is re-expressed in a binary
notation. The query answering system checks that each connected subgraph is
non-empty. If any is empty, this is a failed presupposition that ought to be
reported.

Presumptions are distinguished from presuppositions. All presuppositions of a
query must hold for the query to make sense. However, the query may contain
presumptions too. If a presumption does not hold, then the query will have only
one answer (usually no). For example,

"What day does Mary have her lesson?"

presupposes that Mary has a (weekly) lesson. If she does not, the query cannot
be answered adequately. In other words, no day of the week can be given
in reply. The reply "Mary has her lesson on no day." would not be a correct
response since it, too, seems to presuppose that Mary has a lesson. (But when?)
The query

"Did Mahter complete an 11 th symphony?"

134 GAASTERLAND, GODFREY, AND MINKER

presumes that he began one, but it does not presuppose that he began one (Kaplan,
1982). We can answer meaningfully and correctly "No" even if he never began
his 11 th symphony, albeit "No, Mahler never began an 1U h symphony." would be
a more informative answer.

Presumptions are a wider class than presuppositions. They are also much harder
to handle. For instance, the query "Did it rain yesterday?" could be answered
"No, there were no clouds yesterday." This entails a fair amount of reasoning and
domain knowledge, and can be considered a type of explanation. A system must
be able to conduct such reasoning, and an appropriate explanation for the user
must be chosen from many potential explanations. We explore these issues next
in Section 3.3. when we discuss the closely related topic of misconceptions.

A query containing a false presupposition can be considered to have no answer,
positive or negative, even though the database may be able to deliver a "literal"
answer. Colmerauer and Pique noticed this dilemma in their work to translate
natural language queries into a logical formalism (Colmerauer and Pigue, 1981).
They employed a three-valued logic that allows a sentence to be marked undefined
when such false presuppositions occurred. (But in their work they do not develop
a means to identify false presuppositions to the user.)

In particular, in a natural language sentence, a speaker assumes the existence
of the subject and objects (the noun phrases) of the sentence. If any of these
do not exist, then the sentence does not have any clear meaning. Colmerauer
and Pique translate natural language sentences (and queries) into a logical tree
representation called three branch quantifier trees (3BQs). The first branch is
a variable introduced in the sentence, the second a translation of the subject
(this could be recursive), and the third a translation of the rest of the sentence
(also can be recursive). In Figure 1 the statement "Every student owns a car."
is represented as a 3BQ tree. Once a sentence is translated, they check that
none of the typing relations (for instance, student~1 and car~l, unary predicates)
representing the noun phrases are empty. If there are no students, then the
sentence from Figure 1 is deemed to be nonsensical.

Usually when one asks a query, one not only presupposes the existence of
all the components of the query, but one also presupposes an answer to the
query itself. For instance, suppose one asks "Which employees own red cars?"
(query Q2, see Figure 2). Colmerauer and Pique are concerned that there be
cars and employees known to the database. Otherwise, there would be a false
presupposition in Q2, and so no valid answers.

On asking a query, one assumes there are answers to the query too. If there
are no answers, this deserves an explanation. For instance, if there are no
employees who own red cars, the database can answer literally "No one" to query
Q2. To be more informative, if there is some reason why there are no answers,
the database should say so. (We discuss this in Section 3.3.) In the" least, the
part of the query responsible for failure ought to be identified. There may be
no employees owning red cars because no employee owns a car at all. Thus, the
subquery (*--employee(X),owns(X,Y),car(Y).) would fail too. s Reporting this

AN OVERVIEW OF COOPERATIVE ANSWERING 135

red (g) I ~mp (x), ow.s (X, Y), ca~(~, :] (Q~)

[_ l L 1 I] I - cor(, , I

Fig. 2. A lattice of subqueries.

failure is more informative than just reporting the failure of Q2.
Janas (1981) studies the feasibility of yielding such informative answers. His

idea is to report the smallest subqueries that fail. If we consider a conjunctive
query as a set of atoms to be satisfied, then the subqueries are the elements
of the power set. In all, there are 2 ~- 2 subqueries for a conjunctive query
with n atoms, disregarding the query itself (which has already been seen to fail)
and 9, the empty query. Query Q2 has 4 atoms, so there are 14 subqueries to
consider. The naive approach is to test all of them. This incurs exponential
cost over the length of the query. More clever algorithms would cut this cost,
especially for average case, but cannot reduce the worst case behavior to better
than exponential.

Janas shows that for most queries, many of the potential subqueries may be
discounted. He defines that two atoms in a query are joined if they share a
variable. The relation connected is then the transitive closure of joined. Janas
defines a query to be connected if every two atoms in the query are connected. 9
It is reasonable to insist that queries be connected. (A user can always ask any
disconnected parts as separate queries.) In searching for failed subqueries, it
is only necessary to consider connected subqueries. For instance, consider the
subquery (~ employee(X),car(Y),red(Y).). This query is not connected. It can
only fail if (+-- employee(X)) or (~- car(Y), red(Y)) fails. These latter subqueries
are connected and will be considered anyway. It is not necessary to properly
compute answers for each subquery considered; it is only necessary to compute
if it has an answer.

Even if the cost of this processing remains high, it may be offset by the
benefits that these answers offer. When informed of the part of the query
that fails, the user will not waste time asking many follow up questions that

136 GAASTERLAND, GODFREY, AND MINKER

also will necessarily fail while looking for the information that he or she is still
trying to find. The overall reduction in cumulative query-answering cost could
be significant, especially if the user would have asked many spurious queries (as
in Kaplan's stonewalling) to get the desired information. The user can quickly
become frustrated and dissuaded from his or her goal.

Kaplan (1982) also considers the necessity of finding the smallest failing sub-
queries and devises an algorithm very similar to Janas ~ that operates over a query
translated into his MQL, but he does not consider the computational issues in-
volved. He points out that his (as does Janas') algorithm to find presumptions
(failed subqueries) is independent of domain specific knowledge. These are
techniques that are applicable over any domain. Kaplan also introduces the
notion of generalizing a query: if a query fails due to a failing subquery, the
failing part can be removed, resulting in a new query that will have answers.
This can serve as a tool in correcting possible errors in users' queries, and to
give the user information related to the query asked. (We elaborate on this last
idea in Section 3.5.)

The statement "No employees own red cars." implies that employees do own
cars. Otherwise, a stronger assertion should have been made according to the
maxim of quantity. A response should be as informative as necessary, but
no more so. In particular, Janas' queries and subqueries tie on a scale: if a
subquery has no answers, then the query cannot have any answers either since
the subquery logically subsumes the query. Such a tacit implication is called a
scalar implicature.

Hirschberg (1983) considers how scalar implicatures are involved in obeying
the maxim of quantity. Many such implicative scales exist and are employed
in conversation. Consider the following piece of dialogue, which takes place
between, say, an engineer and an assistant across a remote radio link:

Engineer: "Did you loosen the hose?"

Assistant: "1 have detached it."

If the assistant were to have (truthfully) answered "Yes" (he or she did loosen
the hose in the process of detaching it), this would mislead the engineer, who
assumes the whole story has been told, as in "Yes, I have loosened it (but no
more)." Going from loosen to detached is a scale, the latter implying the former.
It is assumed in conversation that one always give the response highest on such
a scale that is true, that it implies the most possible and all implied is true.

Q: Engineer: '~tre mushrooms poisonous?"

A: Assistant: "Some are."

Degree of existence is also a scale. To the question above, one can not answer
correctly yes or no. Some mushrooms are edible, others are poisonous. The
answer to the universal question ')Ire all mushrooms poisonous?" could be "No,"

AN OVERVIEW OF COOPERATIVE ANSWERING 137

but this would be misleading. The cooperative response would be "No, but some
are."

3.3. Misconceptions

A query may be flee of any false presuppositions, but still harbor misconceptions.
False presuppositions concern the schema of the knowledge base. In contrast,
misconceptions concern the domain of the knowledge base, and what is and is
not possible within the domain. Misconceptions can mean a query will not have
any answers, or that some subquery will not lead to any answers. Misconcep-
tions can lead to logical redundancy in a query, so the query overspecifies the
solutions, indicating the possibility that the user is unaware of certain properties
of the domain. While false presuppositions usually occur with respect to the
database's state and schema, misconceptions usually occur with respect to the
database's semantics. Misconceptions arise when the user has a false or unclear
understanding of what is necessarily true or false in the database.

Mays (1980) employs schema information of a relation database to correct false
presuppositions. By employing schema information, he introduces aspects of the
database's semantics into answers and can detect and correct misconceptions of
the user with respect to the database schema. For instance, say that only students
take courses, whereas professors teach courses. Even though the following query
is destined to fail having no answers, it is more informative to correct the user's
misconceptions of the database by explaining why there are no answers.

Q: "Which professors take CMSC 620?"

A: "None."

"Professors teach courses."

"Students take courses."

McCoy (1984) uses world (or general) knowledge to correct object related
misconceptions that a user might have, misconceptions about the properties of
a given object or class. For instance, a user might ask:

Q: "Where are the gills on a whale?"

The system knows the user probably thinks whales are fish

because fish use gills to breathe.

A: "Whales do not have gills. They breathe through lungs."

Whenever the user asks a query that cannot have an answer, the system infers
the probable mismatches between the user's view of the world and the knowledge
in the knowledge base. The system then answers with a correction to rectify the
mismatch.

138 GAASTERLAND, GODFREY, AND MINKER

Again, Janas (1981) considers the use of ICs to eliminate subqueries from
consideration. He shows how ICs that apply to a query can be used to rule out
presuppositions that are certain to be true. An IC might reduce a query to a
subquery. For instance, a constraint

C car(X), not red(X).

stating that all cars are red would reduce Q2 to (~ emp(x),owns(X, Y), car(Y).}
If something is a car, it is certain to be red. An IC can logically subsume a
query, meaning the query cannot have answers. For instance, say

C emp(X), owns(X, Y), car(Y).

were a constraint itself, meaning that employees do not own cars. This is a
necessarily failing subquery of Q2, thus Q2 itself must fail. The SEAVE system of
Motro (1986) also uses integrity constraints together with false presuppositions
in order to provide additional information about failed queries. Consider the
query

+- professor(X), enrolled_in('CMSC-420'). (Qa)

in a database with the following integrity constraints

C professor(X), student(X). (ZC1)
C enrolled_in(X, Y), not student(X). (ZC3)

The 77CI states that professors cannot be students (and the contrary as well)
and/?Ca states that all students are enrolled. The query Q3 violates these ICs.
Semantic query optimization techniques (Chakravarthy, 1985; Chakravarthy, et
al., 1986a,b) apply a set of constraints to a query. If any constraint, or set of
constraints, are violated, the query is known to fail before any database search
takes place. Not only do the constraints identify failed queries, but they also
provide information about why the queries fail. Furthermore, they notify the
user that if the same query is asked again in the future, the query will still fail,
even if the state of the database has changed.

The realization that failure assured by ICs is more meaningful than just
exhaustive failure motivated the work in cooperative answering by Gal (1988)
and by Gal and Minker (1985, 1988). They used the semantic optimization
techniques (Chakravarthy, 1985; Chakravarthy, et al, 1986a,b) to determine when
ICs applied to a query. The system developed by Gal (1988) identifies the ICs
that guarantee failure. It then includes the constraints in an answer to the user.
For the example above with query Qa, a cooperative response could say

"No one is both a professor and a student.

Anyone who is enrolled in a class is a student.

So on one is a professor and enrolled in a class."

AN OVERVIEW OF COOPERATIVE ANSWERING 139

Gal's work also addresses some of the difficulties encountered with ICs are
used for explanation. Sometimes several sets of ICs can independently explain
the failure. In this case, Gal's system uses heuristics to select the best explanation
to provide the user. Sometimes explanations can be quite complex and involved,
to the point they would tax a user's attention and interest. The user is allowed
to impose a limit on the content of an explanation prior to asking a query.

1Cs can be used to do more than explain failed queries. Gal and Minker
use them to summarize very large answers. When an IC indicates that a query
must be true, the 1C can be returned as a summary. For example, the query
"Which professors teach classes?" would be answered by an 1C that states ':/Ill

professors teach classes." This is a type of intensional answer, as will be seen in
the next section. In addition, 1Cs can identify logical redundancies in a query
or subquery. For example, consider the query

student(susan), enrolled(susan). (Q4)

to a database that has the associated IC

c student(X), not enrolled(X). (ZC2)

which states that all students are necessarily enrolled. This means the query is
overspecified. Simply asking

+-- student(susan). (Qs)

would be equivalent. If Susan is indeed a student, a cooperative response would
say

"Yes, Susan is a student.

By the way, all students are enrolled."

3.4. Intensional answers

Instead of always responding to a query with a substitution for the variables
in the query, it is sometimes more appropriate to provide the user with an
intensional answer. An intensional answer denotes the complete set of answers,
or some subset thereof, to a given query. Query Q4 which stated "Which students
are enrolled?" was overspecified since all students were necessarily enrolled.
Enumerat ing the answers, say, chris, terry, josd, carol, . . . is misleading, unless it
is believed that the user would know that this enumerat ion constitutes the set of
all students. Thus, the answer VX.student(X) is better. Such an answer is called
a universal answer as it is a u,fiversally quantified formula.

Motro (1991) draws a distir ',lion between data and knowledge. In deductive
databases, the data are represented in the EBD, and knowledge in the IDB and
IC. Knowledge is the semantics of the databases, that which must be true of

140 GAASTERLAND, GODFREY, AND MINKER

the database's state, and the logical conclusions that must follow from given
data. Usually, answers to a query are only in terms of data. Cooperative
answers incorporate knowledge in the response. In particular, IAs are in terms
of knowledge, not data.

Intensional answers (/As) can be more informative than enumerated answers.
They can teach users about the structure of the database and of the domain
and help to clear up misconceptions. Intensional answers can be more succint
than concrete answers; this is an important cooperative behavior when databases
contain huge stores of data. Users are often overwhelmed by the size of the
responses of their queries. In logic programs, it is possible for a query to
have an infinite answer set. /As can be used to characterize answer sets of
infinite cardinality (Chomicki and Imielinski, 1989). i~ Intensional answers can be
provided in lieu of concrete answers when the database system is under time
and computational constraints (Imielinski, 1988).

Let us formalize the notion of /As. Let the query be an existential query
(Section 2.3), 3g.Q. (Q here is not the negated formula for refutation.) Let ~7
be the vector of all the variables of Q. Let ~" be a formula over ~7 and g where

are the variables that occur in ~" but not in Q. The vector z7 can be empty.
There are three definitions considered: V~73~7.~ is an intensional answer of the
query Q iff I, II, or III alternatively:

I. V~73 g..~" .: ? Q
II. V ~ 3 g..~" = : * Q

(equivalence)
(sufficiency)
(necessity)

First, we must consider how/As can be computed. The number of potential
/As for a query is infinite since an/A is a formula over the (nonempty) theory of
the database, and there are an infinite number of tautologies. We want to find
only the interesting ones. One notion of /As is that they are partial evaluations
of the query. In a resolution based refutation proof procedure such as SLD.
resolution (Lloyd, 1982), the query is rewritten at each step (in a deductive, sound
manner) by a clause from the database until the empty clause remains. (A goal
atom is removed from the goal list when it unifies with a fact.) The resulting
substitution is an answer.

Rules: B ~- Ci, C~.

Go: ~-- A1, A2 Am.

G1 : ~ (C1, C2, A2 ,Am)Ol.

G,~: ~ [] Answer = 01... On-1

A101 -- B 01

AN OVERVIEW OF COOPERATIVE ANSWERING 141

The query is Go above. The substitution 01 . . . On-1 at step Gn is an answer to
the query. Once the definition for answer is revised to be any formula (meeting
criterion II above) rather than simply being a substitution, any of the partial
solutions above, G1 G,-1, may be considered as/As. These are intermediate
answers in between the concrete answers found at the leaves of the solution tree
and the query at the root. These/As are dependent on the search (proof) tree.
Another notion of intensional answer is that it characterizes a set of answers
(substitutions) in some natural way, independent of the search tree.

Imielinski (1988) started the work in intensional answers. He defined an
intensional answer to be a rewrite of the query that preserves its semantics.
This satisfies the strict equivalence definition (I) for /As. In the degenerate
case, a query is an intensional answer to itself. The rewritten formula, t he /A ,
denotes the same answers as the query. For an/A to be an adequate answer, it
must satisfy the user as being a sufficient, understandable characterization of the
ground answers to the query. Obviously, the query itself is an /A by Imielinski's
definition; however, it is not an adequate answer, since otherwise the user would
not have asked the query.

EDB: prerequisite('MATH-300', 'MATH-350')
prerequisite ('MA TH- 3 50', 'MA TH-400 ')
teaches (smith, 'MA TH-400")

IDB: teaches(X, Y) ,-- teaches(X, Z), prerequisite(Y, Z).
Q: Q(A) .-- teaches(smith, A). (Q6)

IA: Q(A) ~ prerequsite(A, B). (C2)
Q('MATH-400'). (C3)

The/A in response to the query Q6 is composed of the clause C2 and the fact
C3. If C2 and C3 were added to the database and the query (~ Q(A).) asked,
the same answers would result as do with query Q6.

Cholvy and Demolombe (1990, 1987) consider IAs under the sufficiency criterion
(II). An /Ac represents sufficient conditions for a query to be true if all ground
substitutions of the /A are correct (ground) answers to the query. They focus on
/As that are invariant. An /A is invariant if it implies the query by the sufficiency
criteria under any state of the database (Motro 1991). If a n / A is based only
on the IDB and ZC (does not include any facts from the EDB) and would still
remain an answer to the query regardless of any changes to the EDB, then the/A
is an invariant answer to the query. The intensional answer to query Q6 above
is not invariant because it includes extensional information, Q('MATH- 4003,
derived from a fact in the EDB, namely teaches(smith, 'MATH-400'). Consider
the following database and the query about who receives bonuses:

142 GAASTERLAND, GODFREY, AND MINKER

EDB: started(michael, 1979). commended(carol).
started(jos& 1985). commended(chris).
started(susan, 1987).

IDB: bonus(P) ~- started(P, D), today(N),

elapsed(N, 1), Y), Y >_ 10. (C4)

bonus(P) ~- commended(P). (C5)
Q: ~- bonus(P). (QT)

A's: "Everyone who has worked here for 10 years or more." (AI)

"Everyone who has been commended." (A2)

The ground answers to query QT are {michael, carol, chris}. However, these
three do not receive bonuses for the same reason. Carol and Chris get bonuses
because they were commended, A2, while Michael gets a bonus because he has
been employed for more than ten years, A1. Answer A1 is a paraphrase of rule
C4, answer A2 of rule C5. These are invariant answers that will always be true
with respect to query Q7 (until the IDB changes). These answers may be better
in the sense that they explain the semantics behind who gets a bonus rather than
just listing the people.

The /As that Cholvy and Demolombe can find may be less direct than .A1
and A2 above. This is the simplistic case in which each/A derives directly from
a rule. Rules and ICs may interact to result in new /As. The /As may not
be obvious, but they still offer correct, and often insightful, characterizations of
answers to the query.

It is necessary to find a small finite set of interesting/As from among the
potentials for a given query. One criterion Cholvy and Demolombe use is to
find only/As that are not logically subsumed (a syntactic check) by any others.
This will result in a finite set. They introduce other criteria as well. Their /As
are limited to a vocabulary of interest (predicates and constants) defined for a
user. Spurious/As that are not meaningful to the user will not be produced.

Motro (1989), Pirotte and Roelants (1989), and Pirotte, Roelants, and Zi-
manyi (1990) also consider intensional answers based on the residues as seen in
Chakravarthy (1985) and Chakravarthy, Grant, and Minker's work (1986a,b) and
Gal (1988) and Gal and Minker (1985, 1988). They use the residues to identify
necessary conditions of answers (criterion III) and report these conditions along
with the answers as a cooperative style. Like Gal, Pirotte, Roelants, and Zimanyi
note that the residues from semantic compilation are knowledge in Motro's sense
and are a type of intensional answer. Their work is subsumed by (Chakravarthy,
1985; Chakravarthy, et al., 1986a, b, 1990, Gal, 1988; Gal and Minker, 1985).

Another approach is taken by Shum and Muntz (1987) who consider/As under
the necessity criterion (III). Answers to queries which consist of exhaustive lists
of values may be represented more succinctly by class descriptions. For example,

AN OVERVIEW OF COOPERATIVE ANSWERING 143

the query "Who works from 9 to 5?" might have {tom, sue, ann, mary} as its
answer set. If these people constitute all the employees except for Carol and Jos6,
then employee(X)/X X ~ carol/X X ~ jos~ is an/A. A simpler, alternative answer
would be {4/6 employees} since the set constitutes four out of six employees in
total in the database. Schum and Muntz's technique requires an explicit type
taxonomy over the database domain. This considers the notion of intensional
answers as necessary conditions on answers as well as sufficient conditions.

Say that Tom and Sue constitute all the secretaries and that Ann and Mary
constitute all the technicians in the database above. Then the answer may be
represented as {secretaries, technicians}. Corella (1984, 1989) describes how to
obtain expressions that are equivalent to the extension of the query (criterion I)
by finding a set of types (unary predicates in the first-order predicate calculus)
that when unioned together cover all the answers and only the answers.

3.5. Generalizations

Another type of cooperative strategy is to rewrite a query to a generalized form.
The scope of the query is extended so that more information can be gathered
in the answers. One might seek and include information on related topics,
using heuristics and past queries to induce which topics are of interest to a user.
Alternatively, one might look for answers that are related to the original answers,
but are not necessarily literal answers of the original query.

Cuppens and Demolombe (1988) give methods to rewrite the query so that
variables are added to the query vector which carry relevant information for the
user. For example, the query

~-- travel(washington, toulouse).

might be modified so that its answer reports cost. They define a meta-level
definition of a query that specifies the query in three parts: entity, condition, and
retrieved attributes. Answers to queries provide values to the variables designated
by the retrieved attributes. Methods are defined to extend the retrieved attributes
according to heuristics about topics of interest to the user. All attributes from
the original query along with any new added attributes appear in the rewritten
query.

Cuppens and Demolombe (1988) also introduced the notion of loosening some
of the "constraints" in a query to find answers close to those asked for. For
instance, someone might ask

e-flight(No, 'Orly"Dulles', Time), Time >_ 17:00, Time < 21:00.

An answer could be returned flight(delta714, 'Orly, 'Dulles', 21:05) even though
it does not strictly match the query. It is assumed the user might be interested
in this "close" answer.

144 GAASTERLAND, GODFREY, AND MINKER

Wahlster, et al. (1983) allow for over-answering of yes/no questions when
further questions are anticipated from the user on the same topic. Just as Janas'
answers (1981), which identify the part of the query that fails, may save the
system processing time by eliminating futile follow-up questions, these responses
can eliminate the need for many queries to be asked. Their method provides the
user with the information he or she probably needs without necessitating that
the user engage in an exhaustive question/answer session. Their system employs
domain knowledge to ascertain which types of follow-up questions are likely.

Q: "Has a yellow car gone by?"

The system adds that the user will want to know where it went by.

Q': "Has a yellow car gone by? I f so, where?"

A: "Yes, one went by on Hartungstreet."

In the relational database community, Chu, Chen, and Lee (1990, 1992) have
explored an abstraction~refinement method of providing related answers to the
original query, pursuing this notion of close answers. A query is abstracted into a
more general query that is then refined into a set of new queries to be evaluated
against the database. The abstraction and refinement rely on the database having
explicit hierarchies of the relations and of the terms in the domain. Chu, et al.
(1990, 1992) define such a structure called the type abstraction hierarchy. A query
rewrite is accomplished by replacing relations and terms from the query with
corresponding relations and terms from higher in the hierarchy. The resulting
query is considered more general than the original.

Along similar lines, we have introduced a cooperative method called relaxation
for expanding deductive database and logic programming queries (Gaasterland,
et al., 1991). The relaxation method expands the scope of a query by relaxing the
logical constraints implicit in the query. Thus, the database may return answers
related to the original query as well as the literal answers themselves.

travel(From, To) +--serves_area(A, From),

serves_area(B, To), flight(A, B)*. (C6)

~ flight ('Dulles " 'JF K'). (Qs)

*--serves.area('Dullus', From),

serves.area('JKF', To), travel(From, To). (Qg)

Query Qs seeks a flight from Washington's Dulles airport to New York City's
JFK. If no adequate flights can be found, 11 then the query can be relaxed to
query Q9 to look for other means of travel. The clause C6 is market as a
reciprocal clause (marked with an asterisk in the body), meaning it can be used
in an abductive direction to relax a query to a more general query, for instance
Qs to Qg. (The market atom, flight(A, B) in C6, unifies an atom in the query

AN OVERVIEW OF COOPERATIVE ANSWERING 145

and is replaced with the head of the clause and the other atoms in the body.
See Gaasterland, et al., 1991.)

Our relaxation method is a general approach to seek additional answers to a
query that may or may not be of direct interest to the user. We plan to extend
this work to consider user models and user preferences to help determine when
a query relaxation might be relevant. In the system FLEX, Motro proposes
allowing the user to select directions of relaxation, and thus to indicate which
relaxed answers may be of interest (Motro 1990). We also have considered meta-
interpreter methods to provide users with choices of relaxed queries, allowing
the user to navigate the database (Gaasterland, et al., 1991).

4. User goals and models

In query/answer systems, user interfaces, and human-machine interactions, much
attention has been paid to classifying and characterizing users. Knowing more
about a given user, a system can better attend to a person's questions. We do
not attempt to survey fully the area user modeling. This is a large and rich field,
with much outside the limited scope of this survey. In this section, we review
the work that is relevant within cooperative answering.

In the previous section, the focus was on cooperative answering styles that are
universal: they pertain to all users and questions in the same way. For instance,
Grice's maxims should be adhered to in all cooperative dialogue. But, beyond
these basics of cooperative response, different users have different interests,
needs, and intentions. The better the system can detect these, the better the
response and service it can provide the user. This requires the system to know
of particular users and to have models of users. It requires the system to be
able to detect interests, needs, and intentions in the dialogue with the user. The
system must be capable of employing this information to tailor answers to best
satisfy these criteria.

Three types of knowledge about a user are relevant to cooperative answering:

1. Interests and preferences
2. Needs
3. Goals and intent

Interests and preferences (1) direct the content of and type of answers that
should be provided. Cuppens and Demolombe (1988) rewrite queries to include
more information than would the original query that is of interest to the user.
(Refer back to Section 3.5.) They claim extensibility of their work to incorporate
user models. The models would identify topics of interest for different users and
classes of users. The query rewrite mechanism would be directed to rewrite
queries in order to include the relevant information of interest to a particular
user, but directed to avoid explicitly including information not of interest.

146 GAASTERLAND, GODFREY, AND MINKER

Preferences (soft constraints) are met if possible, but are abandoned when
they are at odds with the hard constraints of the query. If answers are provided
sequentially (in a top-down manner as in PROLOG), then preferences can dictate
the order in which answers are found and presented. Answers that meet the
preferences best are presented first, while those meeting the preferences most
poorly are saved for last.

Needs (2) may vary from user to user as well. A user may be well-versed or
may be naive in the system's domain. The type and level of detail of answers
will depend on the user's experience. The appropriateness of different potential
responses can be evaluated with respect to the user's needs. Paris (1987, 1988)
addresses the user's level of expertise in the content of the answer.

Q: "What is a telephone?"

System knows user is an engineer. Then

AI: (technical description of parts and how they work)

System knows user is an eight-year old. Then

A2: (visual description of object and what it does)

The two answers use different vocabulary and describe different properties of
the telephone.

User constraints are introduced in (Gaasterland, Minker, and Rajasekar, 1990)
and formalized in (Gaasterland, 1992). The notion of user constraints (UCs) is
analogous to that of integrity constraints in deductive databases. A UC is of the
same syntactic form as an IC, but does not have the same meaning; an IC must
be logically consistent with the database, whereas a UC does not. A UC dictates
what answers are acceptable to the user and filters out unacceptable answers. To
a certain extent, the same mechanisms for finding residues from ICs in semantic
query optimization can be used for UCs. Unlike residues from 1Cs, these UC
residues will block search space that does contain answers, but only answers that
are not of interest to the user anyway.

Goals and intent (3) do not vary inherently from user to user; rather, they
vary from session to session and depend on what the user is attempting to
accomplish at the time. Past dialogue, user models, and other factors can help
a system to determine the probable goals and intents of the user. A number of
researchers (Allen, 1987; Allen and Perrault, 1986; Joshi, et al., 1984; Pollack,
1983; Wahlsten, et al., 1983; Webber and Mays, 1983) try to determine user goals
in order to choose cooperative information.

Of course, it is possible for the system to assume things incorrectly. Short of
the ability to ask the user directly whey certain information has been requested
(and the ability to comprehend the user's response), the system will be prone
to mistakes. So, while accounting for users' goals and intent can be a powerful
addition to a cooperative answering system, it can also be dangerous. The risk
is when the system is wrong about what the user really wants, the answers it

AN OVERVIEW OF COOPERATIVE ANSWERING 147

gives can be more uncooperative than if the system did not consider the users'
goals and intent at all. Special care must be taken to minimize the costs of such
mistakes.

Allen and Perrault (1987, 1986) seek to detect user goals to help identify
potential obstacles to the user meeting the goal. Allen's interest is in temporal
issues and knowledge about time and how assumptions about time should effect
responses to a user. His work conceptually extends Cuppens and Demolombe's
idea (1988) in which user models dictate what information to add to the answers
(via rewriting the query) by accounting for the user's current goals. For instance,

Q: "When does the Windsor train leave?"

A: ')It 4:00 p.m. (five minutes from now), at gate 7."

The answer offers two cooperative pieces of information beyond the literal answer.
First, it warns the user that the train is leaving in 5 minutes, an obstacle if the
user is trying to catch the train. Second, it tells the user about the gate number,
potentially important if this is not the usual gate or if it is somewhat distant
from the user's current location.

Pollack (1983) detects how the questions users ask fit into their plans. Then
answers that facilitate a user's plan will be given. The answer should, in essence,
help to solve the user's problem. Suppose a user has typed a cntl-Z during a vi
editing session and wants to undo the results. The user might ask:

Q: "ln the vi editor, how can I delete cntl-Z?"

A: "Cntl-Z has stopped your vi process.

Type 'fg' to resume it."

Once the system realizes the goal, it can reinterpret the query and give a response
that helps in achieving the goal.

Carberry (1988) emphasizes the dynamic construction of a model of the user's
current task-related plan during the user/system dialogue. Such a model can
be used to identify conflicts that arise between a user's questions and supposed
plan. Misconceptions as considered in Section 3.3 arise from conflicts between
the user's world view (as indicated by his or her queries) and the system's world
knowledge. With a model of the user's task, possible further misconceptions can
be identified when the user's queries and task at hand do not align. Care must
be taken to try to determine when such an alignment is due to a misconception
and when it is due to changes in the user's plan or to mistakes in the system's
assumptions and modeling of the plan.

These ideas have been incorporated in the IREPS system (Intelligent REsPonse
System), part of a research effort at the University of Delaware to provide a
robust natural language interface for information systems. A component called
TRACK infers the user's task-related plan. The heuristics and processing strategies

148 GAASTERLAND, GODFREY, AND MINKER

employed are domain-independent; only the domain-dependent plans and goals
must be provided for a given application domain.

McCoy (1988) extends her work as discussed in Section 3.3 to consider user
models and to respond to misconceptions that a given user may be known to
hold. A model of what the user believes cues the system about misconceptions
this user may have. The system has a set of basic, general strategies to resolve
misconceptions of the user. Given a particular misconception, a suitable strategy
is chosen to resolve it by adding appropriate statements to the response.

Quilici, Dyer, and Flowers (1988) also seek to recognize and respond to
plan-oriented misconceptions. They consider advice-seeking dialogues between
an advisor (an automated system) and a novice (the user). A cooperative
response consists of explaining the beliefs of the system that conflict with the
user's supposed beliefs in order to resolve the user's misconception. Similar
to McCoy's explanation strategies (McCoy, 1988), they provide a taxonomy of
domain-independent explanations as strategies for resolving different kinds of
potential misconceptions.

Quilici, Dyer, and Flowers (1988) present a UNIX advisor based on their
system for answering UNIX users' questions when they do not understand the
results of their actions. This is based on a system called AQUA developed at
the University California Los Angeles. The AQUA system infers users' beliefs,
determines which are incorrect, and attempts to trace the cause of the beliefs.
The system has an extended representation schema in order to store information
about users' plans.

5. Cooperative answering at the University of Maryland

At the University of Maryland at College Park, we are engaged in building a
cooperative answering facility for deductive databases. The system adds many
of the cooperative behaviors and methods discussed previously to the deductive
database query interface. Goals are that it

1. be a uniform system
�9 defined in, and implemented through, logic
�9 a uniform representation and support for all the cooperative methods

2. be portable and
�9 a general approach for relational and deductive databases and for logic

programs
�9 domain-independent-applies to any relational or deductive database

schema and state, and to any logic program
3. have a natural language interface

�9 accept natural language queries
�9 provide cohesive and coherent responses in natural language

AN OVERVIEW OF COOPERATIVE ANSWERING 149

Most of the cooperative methods we have considered in this paper have been
implemented independently and employ different computational strategies. The
need remains to integrate these methods and behaviors into a uniform system. All
should rely on the same representations and the same computational strategies.

Our platform is deductive databases. Data is stored as the EDB, knowledge via
the IDB and 2"C. The semantic query optimization technology of Chakravarthy,
Grant, and Minker (1985, 1986a, b) provides a general strategy for finding conflicts
and interactions between queries and 1Cs. This yields a uniform approach to
handling misconceptions. Logic programming (we are using PROLOG for our
implementation) offers us not just a uniform knowledge representation, but also
a viable programming platform for handling the different cooperative methods
in a general, uniform manner.

Deductive database and knowledge base systems often use an interpreter to read
queries and to apply a proof procedure to find answers. For knowledge bases in
PROLOG, this is usually just PROLOG's interpreter. A rneta-interpreter in such
systems is used to supercede the PROLOG interpreter and can effect specialized
behavior over the interpreter. A meta-interpreter reads clauses, queries, and ICs
as data and can manipulate them to effect different control and query answering
strategies. A recta-interpreter is often called a shell after the user-interactive
shells of operating systems and interpreted environments. The following shell,
relax.solve~I, is a simple PROLOG shell that enacts query relaxations as discussed
in Section 3.5.

relax_solve(As)

relaxing([AIAs], [AIBs])
relaxing([AIAs], Bs) ~--

+-- relaxing(As, Bs),
solve(Bs).

+-- relaxing(As, Bs).
clause(relax(A), Cs),
relaxing(Cs, Ds),
relaxing(As, Es),
append(Ds, Es, Bs).

relaxing([], []) .

This shell is simplistic, but it illustrates how cooperative behavior can be achieved
for logic programs. In reality, we would want relaxation to occur breadth-first.
Also, this shell relaxes the query automatically once the original query's solutions
have been exhausted. It would be better to provide the user with a menu
of relaxation choices (Gaasterland, et al., 1991). Of course, relaxation is just
one of the cooperative behaviors we want in our shell. We combine such
recta-interpreters for the different cooperative behaviors into a single system.

Our cooperative answering system (Figure 3) is a comprehensive meta-inter-
preter for PROLOG deductive databases that effects many of the cooperative
behaviors discussed. The meta-interpreter employs the ICs and rules of the
database to produce cooperative answers. The system builds on the earlier

1 5 0 G A A S T E R L A N D , G O D F R E Y , A N D M I N K E R

ANALYSER

�9 Deduction �9 Relaxation
�9 IC selection �9 IDB-trees " ~

Sub ~ UC selection * Synonyms
sumption

Fig. 3. Flowcha r t of COOPERATIVE ANSWERING SYSTEM at MARYLAND.

system of Gal (1988), Gal and Minker (1988), and Lobo and Minker (1988).
The cooperative answering system is portable. The methods and strategies

employed for producing cooperative answers are domain-independent and no
special tailoring is needed for a given database domain. The system is easily
used with a relational database system since a simple deductive database interface
can be implemented on top of any relational system. The shell can also provide
cooperative response in more complex knowledge bases represented by logic
programs.

The system supports limited natural language input for some domains. Some
queries can be posed in natural language text. (Others must be posed in logic.)
As discussed in Section 2.1, this becomes important when databases are too big
or complex for a user to have a clear picture of the whole schema. The natural
language translator builds a logical query. The interface has a dictionary to map
natural language terms into the proper database predicates and constants.

The system can produce natural language responses. This is the more important
direction. Cooperative responses can be cumbersome since they may incorporate
knowledge as well as data from the database. When presented as logical formulas,
they can be difficult to understand even for seasoned logic programmers. Answers
can be large, full of notation, and connections between concepts may not be
clear.

Natural language can alleviate many of these problems (Gaasterland, 1992).
A linguistically motivated natural language back-end is developed to provide
cooperative natural language responses to queries. Anaphora helps remove
notational redundancies and makes the answer text much more readable and,
hence, understandable. Coordination collapses parallel structures into more
concise sentences. Cohesion is a global property that assures the answer sentences

AN OVERVIEW OF COOPERATIVE ANSWERING 151

form a cohesive response in which the components are related in clear, obvious
ways and each contributes towards the answer. We have a response generator
that uses these linguistic tools as well as others that produces good natural
language response.

The cooperative answering shell handles the following types of cooperative
response:

,, natural language interface (Gaasterland, 1992; Gal and Minker, 1988a, b, 1985)
�9 handles natural language queries
�9 generates natural language responses

�9 false presuppositions (see Section 3.2)
�9 finding minimal failed subquery
�9 maximal failed relaxation

�9 misconceptions (constraint violations) (see Section 3.3)
�9 EDB search
�9 violations with respect to previous answers

| explanations of derivation paths (proofs)
| positive cooperative information
| employs heuristics to select best cooperative information (Gal 1988)
�9 detect redundancy in the query
�9 use UCs to filter answers (Gaasterland, 1992; Gaasterland, et al., 1990)
| relaxation (menu-driven) (Gaasterland, et al., 1991)
| query decomposition

Any violation of an IC by a query indicates a possible misconception on the
user's behalf. The most general 1C necessitating that the query fails is found.
These IC violations are detected and reported to the user. Sometimes a query
may not conflict with any one 1C from the 2"C set in particular, but the query
having an answer would be in violation of the 1DB and 2C together. In this case,
the query will conflict with a derived constraint, an IC that can be deduced from
the IDB and 2-C and is thus true over the database. Then, the derived constraint
is presented, along with its derivation. Different subgoals of the query may fail
for different causes (each conflicts with a different 1C). This requires that the
failure of each subgoal be explained, and an explanation of the proof tree is also
required to explain how these subgoals arose.

Sometimes ICs may interact without indicating a cause for failure. Instead,
such ICs offer semantic information about the query, other conditions that must
be true for there to be an answer to the query. At times, certain of this
information may be pertinent to include in the answer.

A query may be overspecified. Some subquery may find all the answers that
the query would find. Such a case may also indicate a misconception. This
situation can also be detected by the shell when 1Cs show a query and a subquery
to be semantically equivalent. An example of this is seen in Section 3.3. Query
Q4 is equivalent to the subquery Q5 due to ZC2.

152 GAASTERLAND, GODFREY, AND MINKER

If there are no misconceptions but the query still fails, false presuppositions
are present in the query. The shell informs a user of false presuppositions. The
minimal failed subqueries are found as in Janas' method. (Refer to Section 3.2.)
Once a failed subquery is identified, this query is relaxed to find the most general
query that still fails. This failure is reported to the user.

There may at times be too much potential cooperative information to provide to
the user. To provide all of it would violate the maxim of quantity and overwhelm
the user. Choices must be made as to which information is to be included. For
instance, a query failure due to a misconception is more pertinent than failure
due to a false presupposition. A query that fails due to a misconception must
fail, whereas a query that fails due to a false presupposition happens to fail
given this state of the database, but it would not necessarily fail in some other
state. Gal (1988) presents a number of heuristics for deciding which cooperative
information to include, abiding the cooperative maxims as best as possible.

UCs provide a means for modeling the user in the system (Gaasterland, 1992;
Gaasterland, et al., 1990). They are used to eliminate answers for a query that
would violate the UCs of the particular user. Applicable UCs are attached to
the query in an analogous manner to semantic query optimization for IC s. This
effects a query rewrite, but unlike semantic query optimization it changes the
meaning of the query in such a way that the rewrite only find the answers that
do not violate the UCs.

The system provides relaxed queries to the user once the original query has
been exhausted. This way, if the user did not find the answers from the original
query to be adequate, he or she may continue to navigate the database by
selecting related (relaxed) queries to find related answers. The shell handles
relaxation in an efficient manner. Also, repeat answers to the relaxed query are
suppressed (avoided in the computation) since the user has already seen (and
rejected) them (Gaasterland et al., 1991).

A query is disjoint whenever it can be subdivided into two or more independent
subqueries. The shell detects this and decomposes the query in such cases. This,
and other such syntactic checks and optimizations, help catch users' mistakes and
help to reduce the cost and overhead of the other cooperative techniques.

In our continuing research, we plan to

�9 more fully integrate the mechanisms supporting the cooperative behaviors
�9 develop clear semantic support (in deductive databases) for cooperative

answering
�9 implement more efficient mechanisms for the different cooperative be-

haviors
�9 provide a better user interface and

�9 provide a sophisticated, integrated natural language response generator
�9 develop further the explanation facilities

�9 add more cooperative behaviors and facilities.
�9 allow for useful IAs

AN OVERVIEW OF COOPERATIVE ANSWERING 153

| incorporate Cuppens and Demolombe's style of query rewrites
, further develop the theory of UCs and user models

Work on the cooperative answering system at Maryland is an ongoing project.
We shall continue to extend its functionality, improve its performance, and to
research new cooperative techniques. We are also engaged in foundational
research to map out the requisite knowledge and semantics needed to support
cooperative behavior at large, the requisite representations, and the requisite
computational strategies for yielding cooperative response. Although the many
cooperative behaviors discussed in this paper may seem at first disparate, we
are seeking a general classification for cooperative response and the universal
representations and strategies that will be able to provide them.

6. Summary

In this paper we have given a brief overview of the field of cooperative answer-
ing. Cooperative response is crucial to the success of automated query/answer
systems. History has shown that providing correct answers to users is simply not
enough. Ambiguities, misconceptions, and irrelevances plague such systems. As
information systems play a more vital role in society, it is necessary that these
problems be addressed.

Fortunately, a good deal of research has already been directed toward these
ends, and exciting, promising work is underway. We have reviewed a number of
disparate cooperative behaviors. Most of these cooperative techniques have been
developed, but each in a different system, reliant on a different representation,
and effected by different computational means. While much work remains
to explore and develop new cooperative techniques, the current collection of
cooperative response work needs to be pulled onto common ground.

Deductive databases offer a suitable platform for the development of uniform
cooperative systems. Deductive databases provide a powerful, uniform repre-
sentation via logic, semantics, and a computational means for effecting efficient
cooperative response. Much high quality work has been done in cooperative
answering within the deductive database paradigm due to this natural fit. Both
the fields of cooperative answering and deductive databases has benefited as a
result. The cooperative answering system we have developed, based on logic, is
indicative that it is a unifying framework for such systems.

Acknowledgment

This work was supported by the Air Force Office of Scientific Research under
grant number AFSOSR-91-0350 and by the National Science Foundation under
NSF grant number IRI-89-16059.

154 GAASTERLAND, GODFREY, AND MINKER

Notes

*Invited Paper

1. Data and knowledge are distinguished. See Section 3.4 for a discussion.
2. We shall write constants beginning in lowercase or quoted, and write variables

beginning in uppercase.
3. This has the same meaning as static integrity constraints in relational databases,

a statement that must be true of the state of the database. We do not consider
dynamic integrity constraints, which must be preserved across a database
transaction.

4. We use the symbol "C" also commonly used for logical if, instead of ",---"
within integrity constraints to distinguish them typographically from queries.

5. We write classical negation with the symbol "-V'
6. This book is incorrectly referenced as Mutual Beliefs in many papers.
7. We have added this one to the example.
8. Each subquery in Figure 2 logically subsumes each query that it points to. A

formula 5 r logical subsumes G iff 1= 5 r ~ ~.
9. He does not define connected in (Janas, 1981) in quite this way, but to the

same effect.
10. This will not occur in the case of deductive databases, which contain no

function symbols, but can occur in the case of logic programs, which do allow
function symbols.

11. A real query would specify much more, such as time, date, and cost.

References

Allen, J. (1987). Natural Language Understanding. Benjamin/Cummings. Menlo Park, CA.
Allen, J.E and Perrault, C.R. (1986). Analyzing Intention in Utterances. In B.J. Grosz, K.S. Jones,
B.L. Weber (Eds.), Readings in Natural Language Processing (pp. 441-458). Morgan Kaufrnann. Los
Altos, CA.
Carberry, S. (1988). Modeling the User's Plans and Goals. In A. Kobsa and W. Wahlster (1988) (pp.
64-78). Special Issue on User Modeling.
Chakravarthy, U. (1985). Semantic Query Optimization in Deductive Databases. Ph.D. thesis, University
of Maryland, Department of Computer Science, College Park.
Chakravarthy, U, Grant, J., and Minker, J. (1986a). Semantic query optimization: Additional con-
straints and control strategies. In L. Kerschberg (Ed.) Proc. Expert Database Systems (pp. 25%269).
Charleston.
Chakravarthy, U., Grant, J., and Minker, J. (1986b). Foundations of semantic query optimization for
deductive databases. In J. Minker (Ed.), Proc. Workshop on Foundations of Deductive Databases and
Logic Programming (pp. 67-101). Washington, D.C.
Chakravarthy U., Grant, J., and Minker, J., (1990). Logic Based Approach to Semantic Query
Optimization. ACM Transactions on Database Systems, 15(2); 162-207.
Cholvy, L. (1990). Answering Queries Addressed to a Rule Base. Revue d'intetligence artificielle, 4(1),
79-98.

AN OVERVIEW OF COOPERATIVE ANSWERING 155

Cholvy, L. and Demolombe, R. (1987). Querying a Rule Base. In L. Kershberg, (Ed.), Expert Database
Systems. Tysons Corner, VA.
Chomicki, J. and Imielifiski, T. (1989). Relational Specifications of Infinite Query Answers. Technical
Report CS-TR-2177, Department of Computer Science, University of Maryland, College Park, MD.
Chu, W.W., Chen, Q., and Lee, R. (1991). Cooperative Query Answering via Type Abstraction
Hierarchy. In S. M. Deen (Ed.) Cooperating Knowledge Based System 1990 (pp. 271-290). University
of Keele, U.K.: Springer-Verlag.
Chu, W.W., Chen, Q., and Lee, R. (1992). A structured approach for cooperative query answering.
IEEE Transactions on Knowledge and Data Engineering. To appear.
CODASYL (1971). CODASYL Data Base Task Group April 71 Report. ACM, New York.
Colmerauer, A. and Pique, J. (1981). About Natural Logic. In H. Gallaire, et al. (1981), (pp. 343-365).
Corella, E (1984). Semantic Retrieval and Levels of Abstraction. In L. Kerschberg (Ed.) Proceedings
of the First International Workshop on Expert Database Systems Vol. II (pp. 397-420).
Corella, E (1989). Mechanizing Set Theory. Ph.D. thesis, Corpus Christi College, and RC 14706, IBM
Research Division, T.J. Watson Research Center, Yorktown Heights, New York.
Cuppens, E and Demolombe, R. (1988). Cooperative Answering: A Methodology to Provide Intelligent
Access to Databases. In L. Kershberg (Ed.) Proceedings of the Second International Conference on
Expert Database Systems (pp. 333-353). George Mason University.
Gaasterland, T. (1992). Cooperative Answers for Database Queries. Ph.D. thesis, University of Maryland,
Department of Computer Science, College Park.
Gaasterland, T. (1992). Cooperative Explanation in Deductive Databases. In A. Quilici (Ed.) Working
Notes: Symposium on Producing Cooperative Explanations. AAAI Spring Symposium Series, Palo Alto,
CA: Stanford University.
Gaasterland, T., Godfrey, R, and Minker, J. (1991). Relaxation as a Platform of Cooperative Answering.
In T. Imielinski (Ed.) Proceedings of the First International Workshop on Nonstandard Queries and
Answers (pp. 101-120). Vol. 2, Toulouse, France.
Gaasterland, T., Minker, J., and Rajasekar, A. (1990). Deductive database systems and knowledge
base systems. Proc. VIA 90. Barcelona, Spain.
Gal, A. (1988). Cooperative Responses in Deductive Databases. Ph.D. thesis, Department of Computer
Science, University of Maryland, College Park.
Gal, A. and Minker, J. (1988). Informative and Cooperative Answers in Databases Using Integri-
ty Constraints. In V. Dahl and P. Saint-Dizier (Eds.) Natural Language Understanding and Logic
Programming (pp. 277-300). Amsterdam: North, Holland.
Gal, A. and Minker, J., (1985). A natural language database interface that provides cooperative
answers. Proc. Second Conf. Artif lntelL Appl.
Gallaire, H. and Minker, J. (1978). (Eds.) Logic and Databases. New York: Plenum Press.
Gallaire, H., Minker, J., and Nicolas, J.M. (1981). (Eds.) Advances in Database Theory, Vol.1. New
York: Plenum Press.
Gallaire, H., Minker, J., and Nicolas, J.M. (1984). Logic and Databases: A Deductive Approach.
ACM Computing surveys, 16(2), 153-185.
Grice, H. (1975). Logic and Conversation. In P. Cole and J. Morgan (Eds.) Syntax and Semantics.
New York: Academic Press.
Hirschberg, J. (1983). Scalar Quantity Implicature: A Strategy for Processing Scalar Utterances. Technical
Report MS-CIS-83-10, Department of Computer and Information Science, the Moore School, the
University of Pennsylvania, Philadelphia, PA.
Imielinski, T. (1988). Intelligent Query Answering in Rule Based Systems. In J. Minker (Ed.)
Foundations of Deductive Databases and Logic Programming. Washington, D.C.: Morgan Kaufman.
Janas, J.M. (1981). On the Feasibility of Informative Answers. In H. Gallaire, et. al (1981) (pp.
397--414).
Joshi, A. (1982). Mutual Beliefs in Question Answering Systems. In Smith (1982).
Joshi, A., Webber, B., and Sag, I. (1981) (Eds.) Elements of Discourse Understanding. Cambridge:
Cambridge University Press.

156 GAASTERLAND, GODFREY, AND MINKER

Joshi, A.K., Webber, B.L., and Weischedel, R.M. (1984). Living up to expectations: Computing expert
responses. Proc. Nat. Conf Artif. Intetl. (pp. 169-175). University of Texas at Austin: The American
Association for Artificial Intelligence.
Kaplan, S.J. (1981). Appropriate Responses to Inappropriate Questions. In A. Joshi, et al. (1981).
(pp. 127-144).
Kaplan, S.J. (1982). Cooperative Responses from a Portable Natural Language Query System. Artificial
Intelligence, 19(2), 165-187.
Kobsa, A. and Wahlster, W. (1988). (Eds.) Computational Linguistics, I4(3). MIT Press for the
Association of Computational Linguistics, Special Issue on User Modeling.
Lehnert, W. (1981). A Computational Theory of Human Question Answering. In A. Joshi, et al.
(1981). (pp. 145-176).
Lloyd, J. (1987). Foundations of Logic Programming, 2nd ed. New York: Springer-Verlag.
Lobo, J. and Minker, J. (1988). A Metaprogramming Approach to Semantically Optimize Queries
in Deductive Databases. In L. Kerschberg (Ed.) Proceedings of The Second International Conference
on Expert Database Systems (pp. 387-420). Tysons Corner, VA.
Mays, E. (1980). Correcting misconceptions about database structure. Proc. CSCSI '80.
McCoy, K. (1984). Correcting object-related misconceptions. Proc. COLINGIO, Stanfrod, CA: Stanford
University.
McCoy, K. (1988). Reasoning on a Highlighted User Model to Respond to Misconceptions. In A.
Kobsa and W. Wahlster (1988). (pp. 64-78). Special Issue on User Modeling.
McKeown, K. (1982). Generating Natural Language Text in Response to Questions about Database
Queries. Ph.D. thesis, University of Pennsylvania.
Minker J. (1988). Foundations of Deductive Databases and Logic Programming. Los Altos, CA: Morgan
Kaufmann.
Motro, A. (1986). Extending the relational model to support goal queries. Proc. First Int. Workshop
Expert Database Systems (pp. 129-150). Benjamin/Cummings.
Motro, A. (1989). Using constraints to provide intensional answers to relational queries. Proc. Fifteenth
Int. Conf. Very, Large Data Bases.
Motto, A. (1991), Responding with knowledge to database queries (tutorial and survey) Pr~ented
Proc. First Int. Workshop Nonstandard Queries and Answers. Toulouse, France.
Motro, A. (1990). FLEX: A Tolerant and Cooperative User Interface to Database. IEEE Transactions
on Knowledge and Data Engineering, 2(2), 231-245,
Motro, A. (1986). SEAVE: A Mechanism for Verifying User Presuppositions in Query Systems. ACM
Transactions on Office Information Systems, 4(4).
Paris, C. (1987). Combining discourse strategies to generate descriptions to users along a naive/expert
spectrum. Proc. tJCAI (pp. 626-632), Milan, Italy.
Paris, C.L. (1988). Tailoring Object Descriptions to a User's Level of Expertise. In A. Kobsa (1988).
(pp. 64-78). Special Issue on User Modeling.
Pirotte, A, and Roelants, D. (1989). Constraints for improving the generation of intensional answers
in deductive databases. Proe. 5th IEEE Int. Con]'. Data Engineering.
Pirotte, A., Roelants, D., and Zimanyi, E. (1990). Controlled Generation of Intensionat Answers,
IEEE Transactions on Knowledge and Data Engineering.
Pollack, M.E. (1983). Generating Expert Answers through Goal Inference. Technical Report, Stanford,
CA: SRI International.
Pollack, M.E., Hirschberg, J., and Webber, B. (1982). User participation in the reasoning processes
of expert systems. Proc. American Assoc. Artif lntell.
Quilici, A., Dyer, M., and Flowers, M. (1988). Recognizing and Responding to Plan-Oriented
Misconceptions. In A. Kobsa (1988) (pp. 38-51). Special Issue on User Modeling.
Sehank, R.C. (1975). Conceptual Information Processing. Amsterdam: North-Holland.
Shepherdson, J. (1984). Negation as Finite Failure: A Comparison of Clark's Completed Database
and Reiter's Closed World Assumption. J. Logic Programming, 1(15), 51-79.

AN OVERVIEW OF COOPERATIVE ANSWERING 157

Shum, C. and Muntz, R. (1987). Implicit Representation for Extensional Answers. In L. Kershberg
(Ed.) Expert Database System. Tysons Corner, VA.
Smith, N. (1982). (Ed.) Mutual Knowledge. New York: Academic Press.
Ullman, J.D. (1988). Principles of Database and Knowledge.Base Systems, Vol. 1. Rockville, MD:
Computer Science Press.
Wahlster, W., Marburger, H., Jameson, A., and Busemann, S. (1983). Over-answering yes-no questions:
Extended responses in a NL interface to a vision system. Proc. IJCAI 1983. Karlsruhe, West Germany.
Webber, B.L. (1981). Discourse Model synthesis: Preliminaries to Reference. In A. Joshi, et al. (1981)
(pp. 145-176).
Webber, B.L. and Mays, E. (1983). Varieties of user misconceptions: Detection and correction. Proc.
Eighth Int. Conf. Artif. Intetl. (pp. 650-652). Karlsruhe, Germany.

