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1. Introduct ion 

Knowledge-based systems with large structures of  concepts and rules are now in routine 
use in a number of  applications. However, the problems of  developing and maintaining 
large rule-based systems is a major impediment to knowledge-based system application (Li, 
1991). Knowledge acquisition for these systems as new circumstances arise is an ongoing 
requirement that increases in difficulty as the system grows due to interaction between rules. 

One approach to this problem has been to design knowledge-base structures which min- 
imize interactions between rules. For example, Compton & Jansen have developed a struc- 
ture of  rules with two forms of  exception for diagnostic applications that is very simple to 
maintain (Compton and Jansen, 1990a). Their 'ripple-down' rules are such that a case can 
fall under only one rule, and an error may be corrected by adding one exception rule taking 
into account only cases that previously fell under the rule to be corrected. This techniques 
has been successfully applied to restructuring the Garvan ES-1 thyroid diagnosis system 
that has been in routine use since 1984 producing some six thousand interpretations a year 
(Horn et al., 1985). The diagnosis system was developed in use, and the current version 
uses some six hundred and fifty rules covering sixty diagnoses, but has become difficult to 
maintain. When reconstructed with ripple-down rules, the complex rule set was reduced 
to some five hundred and fifty simpler rules, and the effective rate at which rules can be 
developed has been increased from about two rules a day to ten rules an hour (Compton and 
Jansen, 1990b). A successful application to the development of  a new expert system for 
chemical pathology at St Vincent's hospital has also been reported (Compton et al., 1991). 

Another approach to the development and maintenance of  large rule-based systems has 
been the use of  inductive modeling techniques to analyze large databases and develop 
knowledge-based systems (Piatetsky-Shapiro and Frawley, 1991). With the increasing 
power of  modern workstations and improvements in inductive techniques it is possible to 
develop inductive models of databases with tens of  thousands of cases in a few minutes. 
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It is possible to combine both approaches by developing an algorithm for the induction 
of ripple-down rules. This allows expertise transfer and machine learning approaches to 
knowledge base development to be combined in a variety of ways. At one extreme, where 
the relevant attributes of a database are well-defined, automatic induction may be applied 
to both development and maintenance with little human interaction. At the other extreme, 
expert editing may be primarily used to the develop the knowledge base with automatic 
induction used to suggest rules. In practice, a changing strategy is attractive from exploratory 
manual development in the initial stages when the relevant attributes are not clear and data 
is scarce, to automatic induction in the later stages of system maintenance when relevant 
attributes are well-defined and a large database is available. 

This paper describes an algorithm for the induction of ripple-down rules based on a very 
fast and effective statistical approach to empirical induction already described (Gaines, 
1989). It reports comparative studies of manual and automatic development for the Garvan 
ES- 1 data, and a reconstructive analysis of the performance of automatic induction had it 
been used over ten years of data. The paper commences with a description of ripple-down 
rule structures, their manual development, their automatic induction, and results on standard 
datasets in the literature. 

2. Ripple-down rules 

Compton and Jansen introduced the ripple-down rule technique as a methodology for the 
acquisition and maintenance of large rule-based systems (Compton and Jansen, 1990a; 
Compton and Jansen, 1990b). The underlying concept is that people cope with the acqui- 
sition and maintenance of complex knowledge structures by making incremental changes 
to them within a well-defined contex t  such that the effect of changes is locally contained 
in a well-defined manner. Standard production rule systems do not have this property. The 
modularity of the rules themselves is not reflected in a modularity of the consequences of 
changes to those rules. Small changes can lead, through complex interactions, to major 
effects, making the development and maintenance of rule-based systems far more difficult 
than it appears at first sight. 

The ripple-down rule technique creates a two-way dependency relation between rules 
such that rule activation is investigated only in the context of other rule activation. If  the 
premise of a parent rule is true for a particular individual then, if has no dependents, its 
conclusion will be asserted for that individual. If, however, it has an 'if-true' dependent 
then that rule, and its dependents, will be tested, and the original conclusion will only be 
asserted if the premises of none of them are true for the entity. Conversely, if the premise 
of a parent rule is false for a particular individual, then not only will its conclusion not be 
asserted but also, if it has an 'if-false' dependent then it, and its dependents, will be tested. 

Thus, ripple down rules form a binary decision tree that differs from standard decision 
trees (Breiman et al., 1984) in that compound clauses are used to determine branching, and 
these clauses need not exhaustively cover all cases so that it is possible for a decision to be 
reached at an interior node. This contrasts with standard trees where all decisions are made 
at root nodes. However, the feature of standard decision trees is retained that one, and only 
one, decision node is activated for each case. This makes maintenance simple because if 
the decision reach is erroneous then only node, and the past cases that have fallen under it, 
need be considered. 
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2. I. Manual development of ripple-down rules 

To illustrate the manual development of ripple-down rules as a knowledge acquisition 
methodology, Fig. 1 shows six of the top level rules in Compton's  reconstruction of the 
Garvan ES-1 diagnostic system as a set of ripple-down rules. There are 61 possible di- 
agnostic combinations, labeled 00 to 60. The top level rule, 0.00, is an overall default 
with no conditions stating that if no other rule is activated the diagnosis is 00, no thyroid 
disorder. This rule is always true so it has only an 'if-true' link to rule 1.46 which gives four 
conditions leading to diagnosis 46. I f  these conditions are not met, the ' if-false'  link to rule 
2.32 is followed. I f  the conditions are met then diagnosis 46 is not immediately indicated. 
The ' if-true' link to rule 497.48 is first tested and if its conditions are satisfied its diagnosis 
of 48 takes precedence over 46. 

Logically, ripple-down rules have exactly the same representational and deductive capa- 
bilities as standard production rules. Where they differ is in the strong context provided 
by the ' if-true'  and ' if-false'  links that guarantees that the effect of  adding a rule is strictly 
contained in that it can affect the conclusions applied to cases previously falling under at 
most one other rule. A new sibling rule joined to a parent by an 'if-true' link can only 
change the conclusion applied to its entities falling under its parent, and no others. A new 
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Figure 1. Some ripple-down rules. 
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sibling rule joined to a parent by an 'if-false' link can only change the conclusion applied 
to its entities falling under the rule with an 'if-true' link to the chain of which its parent 
is part, and no others. In general, a new rule can only affect cases falling under the rule 
responsible for the conclusion if the new rule were not present. This limits the comparisons 
and decisions required in knowledge acquisition and maintenance to the consideration of 
cases falling under only one rule. 

For example, consider a situation in which a rule network has been built as shown in 
Fig. 1, and a new case is under consideration for which rule 0.00 succeeds, 1.46 fails, 2.32 
succeeds, and 25.11 succeeds. The conclusion is diagnosis 11, but suppose the correct 
diagnosis is 15. Since 25.11 succeeds but its conclusion is wrong, it is necessary to add a 
new rule with an 'if-true' link to 25.11. How should its premise be specified? Figure 2 gives 

Case Number 2 25 41 79 
sex female female female female 

on_t4 false false false false 
query_t4 false false false false 

antithyroid false false false false 
sick true false true true 

pregnant false false false false 
i131 false false false false 

hypothyroid false false false true 
hyperthyroid false false false false 

lithium false false false false 
tumour false false false false 

goitre false false false false 
hypopit false false false false 

psych false false false false 
antibs false false false false 

surgery false false false false 
treated false false false false 

no_comment true true false false 
screening false false false false 
ovulatory false true false true 

TSH normal high high missing 
TSH_BORD missing missing high missing 

T3 /ow low /ow /ow 
T3_BORD low missing missing missing 

TT4 missing missing m i s s i n g  missing 
TT4_BORD missing m i s s i n g  missing missing 

T4U missing m i s s i n g  missing missing 
T4U_BORD missing m i s s i n g  m i s s i n g  missing 

FTi low low low low 
FTI_BORD missing m i s s i n g  missing low 

TBG missing missing missing missing 
TBG_BORD missing missing missing missing 

diagnosis 32 11 15 14 
RULE 2.32 25.11 41.15 79.14 

Figure 2. Some cases relevant  to the rules o f  Fig. 1. 
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the description of relevant cases available to the expert. Case 25 is the one case that has so 
far been diagnosed using rule 25.11, and case 41 is the new case. In this table, the values of  
attributes satisfying the premises of the relevant rules are italicized, and the values in which 
two comparative cases differ are in bold. In considering the premises for a new rule, one is 
aiming to create a rule such that case 41 is included so that it can be diagnosed as 15, but 
case 25 is excluded so that it remains diagnosed as 11. 

Hence, the relevant differences are that sick is true for 41 and false for 25, ovulatory is 
false for 41 and true for 25, TSH_BORD is high for 41 and missing for 25. One could 
generate a very specific rule requiring all three differences to be present, or a more general 
rule requiring just  one or two to be present. In this case the sick attribute was chosen as the 
differentiation resulting in the ' if-true'  addition of rule 41.15 shown in Fig. 3. 

Now consider case 79 for which rule 0.00 succeeds, 1.46 fails, 2.32 succeeds, and 25.11 
fails. The conclusion is diagnosis 32 from the last successful rule, but suppose the correct 
diagnosis is 01. Since 2.32 succeeds but its conclusion is wrong, it is necessary to add a new 
rule with an ' i f-false '  link to 25.11. How should its premise be specified? In Fig. 2, Case 2 
is the one case that has so far been diagnosed using rule 2.32, and case 79 is the new case. 
One is aiming to create one such that case 79 is included so that it can be diagnosed as 01, 
but case 2 is excluded so that it remains diagnosed as 32. Hence, the relevant differences 
are that hypothyroid is true for 79 and false for 2, ovulatory is true for 79 and false for 2,TSH 
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Figure 3. Ripple-down rules after incremental acquisition. 
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is missing for 79 and normal for 2, T3_BORD is missing for 79 and low for 2, FTI_BORD 
is low for 79 and missing for 2. In this case the TSH, hypothyroid attributes were chosen as 
the differentiation, and the sick attribute was also included resulting in the 'if-false' addition 
of rule 79.14 shown in Fig. 3. 

This constrained but indeterminate choice of conditions for the premise of a new rule is 
the main feature of ripple down rule acquisition and maintenance. The expert has only to 
consider a well-defined set of cases for which conclusions have been drawn. The possible 
clauses for the premise of a new rule are constrained to cover the new case but not the previ- 
ous cases. Within these constraints, the expert has the discretion to use other knowledge to 
design as specific or as general a rule as is deemed appropriate. Thus, the ripple down rule 
structure allows the computer to support the management of large rule bases while leaving 
the human designer the capability to use his or her knowledge effectively in a well-defined 
decision framework. 

There are three extensions to the situation illustrated that require further discussion. First, 
the new cases may be identical in features to an old case but have a different diagnosis. The 
cases cannot be differentiated and the expert has to cope with the indeterminacy, perhaps 
by gathering more data if there are missing values in the new case, perhaps by accepting the 
indeterminacy and giving alternative diagnoses, possibly with probability estimates. The 
expert may also introduce new attributes that enable the cases to be differentiated. This 
incremental acquisition of relevant attrubutes is an important feature of manual ripple-down 
rule development that cannot be duplicated by automatic induction from a database with a 
fixed set of attributes. 

Second, there are multiple cases falling under the existing rule, not just the single case so 
far exemplified. This causes no fundamental problems since, if the first situation does not 
apply, there will be at least one attribute differentiating the new case from any given previous 
case, and a combination of such differentiating attributes provides a rule differentiating it 
from all the previous cases. Hopefully, the situation simplifies, in that one attribute is 
sufficient to differentiate several previous cases, but even if it does not there is always a 
solution available. 

Third, the expert may chose not to differentiate all previous cases in the multiple case 
situation. In this event an additional 'if-true' rule is required as a sibling of the new rule to 
cover the old cases that have been allowed to fall under the new rule. This would be done 
because the pair of rules generated in this way were perceived to be simpler than a single 
differentiating rule. 

It is also possible in concept for the expert to edit the actual rule giving rise to the incorrect 
diagnosis rather than add a supplementary rule to it as an exception. This is what would 
be done with conventional production rule development. However, amending a rule would 
involve considering not only the cases that have fallen under that rule, but also those have 
fallen under the rule which leads to it as an exception. As more rules and cases have to be 
considered the task of the expert, and the scope for errors, increases. The essence of the 
simple procedure explained above is that only one rule and the cases falling under it has to 
be considered. 

2.2. Automatic induction of ripple-down rules 

The automatic induction of ripple-down rules is very simple using the statistical methodol- 
ogy for empirical induction of rules from entity-attribute-value data previously described 
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for the Induct algorithm (Gaines, 1989). Induct is a system with performance similar to 
that of C4.5 (Quinlan, 1993) but deriving rules directly using an extension of Cendrowska's 
(1987) Prism algorithm to operate with noisy data. The system already derives rules with 
exceptions (Gaines, 199 lb), and the extension to ripple-down rules was not only simple but 
also very natural in that the algorithm involves one very simple statistical decision proce- 
dure to generate a rule which is called recursively on residual data sets to generate 'if-true' 
and 'if-false' rules. 

Figure 4 shows the error analysis that provides statistical control of the algorithm used 
in Induct. The space of cases in the part of the database under consideration is shown 
as a rectangle broken down into sub rectangles by diagnosis. The center rectangle with 
diagnosis DO is that for which Induct is attempting to determine a rule. The cases covered 
by the premise of the currently proposed rule are indicated by the outer ellipse. The inner 
ellipse indicates the reduced set of cases covered when an additional clause is added to 
the premise. The topology of Fig. 4 is arbitrary but otherwise the information shown is 
precisely that available to the algorithm. 

There are three steps in the generation of the premise. First, the most frequently occurring 
diagnosis in the part of the database under consideration is selected as the target conclusion. 
Second, a premise is initialized with no clauses. Third, iteratively, each available attribute- 
value combination is tested as a possible clause and the best selected according to a statistical 
test detailed below. Fourth, a decision is made using a similar test as to whether adding 
the selected clause improves the rule or not. If there is improvement the process iterates 
back to the third stage, and otherwise it terminates with the output of a rule if one has been 
generated. 
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Figure 5. Error analysis for statistical control of empirical induction. 

Figure 5 shows the basis of the statistical test used in Induct. The problem of empirical 
induction is, given a universe of entities, E, a target predicate, Q, and a set of possible 
test predicates of the form, S, on entities in E, to use them to construct a set of rules from 
which the target predicate may be inferred given the values of the test predicates. For the 
purposes of the statistical analysis the forms of S and Q do not matter. One may regard 
S as a selector choosing those e out of some subset of E for which to assert Q(e), and 
compare the selection process of the rule with that of random selection, asking "what is the 
probability that random selection of the same degree of generality would achieve the same 
accuracy or greater." 

This probability is easily calculated. Let Q be the relevant entities in E for which Q (e) 
holds, S be the selected entities in E for which S(e) holds, C be the correct entities in E 
for which both S(e) and Q(e) hold: 

Q ~ {e:e 6 E/~ Q(e)} 

S ~ { e : e ~  E/xS(e)}  

C ~ {e:e ~ E/x  S(e)/x Q(e)} 

(1) 
(2) 
(3) 

Let the cardinalities of E, Q, S and C be e, q, s and c respectively. The probability of 
selecting an entity from E for which Q holds at random is: 

p = q/e  (4) 

The probability of selecting s and getting c or more correct at random is determined 
by summing the standard binomial distribution to get the incomplete beta function (Press, 
Flannery, Tekolsky and Vetterling, 1988, p. 182): 

(5) 

The advantage of using r as a measure of the correctness of a rule is that is easily 
understood, as the probability that the rule could be this good at random, and that it involves 
no assumptions about the problem such as sampling distributions. It is interesting to 



INDUCTION OF RIPPLE-DOWN RULES 219 

note that if c = s (all correct) then log(r) = s log(q /e )  which seems to be the basis of 
'information-theoretic' measures. 

Missing values are taken into account by assuming that they might have any value. When 
the selection of an entity is tested a missing value is assumed to have the required value for 
selection. In the statistics a selection based on missing values is allowed to contribute to 
false positives but not to correct positives. This has important consequence in knowledge 
acquisition since it allows the expert to enter conjunctive rules as if they were entities 
with missing values. Induct then generates the same or an equivalent smaller rule set. It 
is reasonable to test the consistency of an inductive procedure by requiring the rule-set 
produced by it to be 'fixed-point' if re-entered as data. That is, if we treat a set of rules as 
if they were a set of cases with the unspecified attributes having the value "any", then any 
induction algorithm modeling this set of data should reproduce exactly the same rules that 
have been given it as data. If such a fixed-point is not achieved then what is the source of 
the additional information? 

In terms of Fig. 4, a universe of entities, E, is the part of the database under consideiation 
as shown, the target predicate, Q, is DO, and the selected entities, S, are those within 
the outer ellipse. The choice of the best clause at each stage is based on minimizing the 
probability that the results achieved by a premise could be achieved by random selection, 
the measure r in (5) as used in the original Induct. For ripple-down rules the interesting 
decision is whether to keep the more general rule corresponding to the outer ellipse, or add 
the additional clause corresponding to the inner ellipse. The outer ellipse covers more target 
cases having DO as diagnosis, but also covers more D7, D8, D9, and so on, cases which 
will have to be treated as exceptions in the ripple-down rule structure. The decision is an 
interesting one because, given the capability to deal with exceptions, it does not necessarily 
affect the accuracy of the final knowledge base. Rather, it affects its structure in terms 
of preference for general rules with many exceptions rather than specific rules with few 
exceptions. It will affect quantitative measures of the knowledge base such as the numbers 
of rules and clauses involved, but it also affects its structure in a way that corresponds to 
cognitive style in the way a human expert might present the knowledge. 

The algorithm currently used in Induct attempts to minimize the number of parameters 
involved in controlling induction by applying the same test and criterion to the relative im- 
provement of a premise by adding an additional clause as it does to the absolute significance 
of that premise. That is, it determines the probability that the improvement to the rule by 
adding a clause might arise through chance, and does not add the clause if this is greater 
than the same significance level prescribed to determine whether the rule as a whole should 
be accepted. The empirical studies reported in the following sections show that this strategy 
is effective in generating minimal rule sets that are also reasonable knowledge structures. 
However, there is much scope for future research in determining what strategies best match 
human behavior in representing phenomena in the world through rules with exceptions. 

The discussion so fax has focused on generating a single rule from part of the database. 
The algorithm presented extends very simply to the generation of a complete ripple-down 
rule structure. Assume, in Fig. 4 that the premise corresponding to the outer ellipse has 
been selected to generate a rule. The algorithm then calls itself recursively twice: first, 
to generate 'if-true' exceptions on the part of the database within the ellipse that does 
not have the diagnosis DO; and, second, to generate 'if-false' exceptions on the part of 
the database outside the ellipse. For the 'if-true' case the diagnosis, DO, is passed on as 
the existing default diagnosis so that the next most frequently occurring diagnosis will be 
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chosen for rule generation. For the 'if-false' case the existing default diagnosis is similarly 
passed on. 

The algorithm as described is sufficient to generate a complete ripple-down rule knowl- 
edge base from a database. There are some minor internal refinements to cope with known 
problems of empirical induction as described by Quinlan (1987) and Cendrowska (1987). 
For example, the lack of performance gain by 'exclusive-or' conditions is dealt with by 
proceeding with clause addition on a provisional basis even if there is no improvement, 
and rules generated are checked for pruning clause by clause in case the order of clause 
generation has led to redundant clauses. Overall, it is an extremely simple and efficient 
algorithm that is readily optimized for very high speed modeling of large datasets. The 
implementation used on the examples in the following sections is part of the knowledge 
acquisition system, KSSn (Gaines, 1991a), written as a class library in C++ (Gaines, 1994). 

3. Results  with some standard datasets 

In presenting a new algorithm for empirical induction it is appropriate first to illustrate 
its performance on test datasets published by others. Three examples are presented here: 
Cendrowska's (1987) contact lens example; one of Quinlan's (1979) chess end-game exam- 
ples also used by Cendrowska (1987); and Quinlan's (1987) prob-disj example. The first 
two cases allow the ripple-down-rule solutions to be compared with conventional decision 
trees and production rules for simple deterministic data, and the last case allows the com- 
parison to be made for noisy data with irrelevant attributes. The results with the Garvan 
datasets in the next section illustrate the performance with large real-world datasets. 

Cendrowska's (1987) contact lens data provides a simple example involving 24 cases 
with three 2-valued attributes, one 3-valued attribute, and a 3-valued conclusion. Figure 6 
is a screen dump of Induct running on this data. The rear window at the top is that for Induct 
itself with various parameter settings in the upper part, and the results of evaluation in the 
lower part. The front window at the bottom of Fig. 6 is a graph of the ripple-down rules 
produced automatically by Induct. The "if-true" links are represented by simple arrows, 
and the "if-false" links by arrows with a bar across. The system is fully interactive in that the 
expert is able to edit the rules in the graphic browser if they wish, and copy the results back 
to Induct for evaluation. This is particularly useful in exploring the role of specific rules 
and experimenting with alternatives, but such post-editing was not used in the examples 
given in this article. 

The ID3 tree representing the contact lens data has 15 nodes. The normal 9-rule solution 
for the contact lens data is shown at the top of Fig. 7, and may be compared with the 5-rule 
ripple-down rule solution at the bottom. The 25 clauses in the original solution have been 
reduced to 8 and the knowledge structure is simpler and easier to understand. 

The fact that the ripple-down rule solution results in identical decisions to the production 
rule solution may be checked from Fig. 7 by treating each production rule as if it were a 
case with missing, or 'don't  care', values. One can then trace the way in which a decision 
will be reached for each of the 9 such 'cases' corresponding to the production rules. For 
example, the rule "tear production reduced --+ lens = none" corresponds to a case that 
cannot proceed beyond the initial default ripple-down rule, "---~ lens = none", because the 
"if-true" branch and its attached "if-false" branches all require "tear production = normal". 

A somewhat more complex deterministic example is one of Quinlan's (1979) chess 
datasets that Cendrowska (1987) also analyzed with Prism. The data consists of 647 cases 
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Figure 7. Normal and ripple-down rules induced for contact lens dataset. 

of a rook versus knight end game situation described in terms of four 3-valued and three 
2-valued attributes leading to one of  two conclusions. The ID3 tree for this data has 30 
nodes. Pr ism's  15-rule solution is shown at the top of  Fig. 8, and at the bottom is the 9-rule 
r ipple-down rule solution produced by Induct. The 48 clauses in the original solution have 
been reduced to 16 and the knowledge structure is again simpler and easier to understand. 

The contact lens and chess examples have noise-free complete datasets, and ID3, Prism 
and Induct all generate I00% correct solutions. Induct was designed to cope well with noisy 
data and missing and irrelevant attributes (Gaines, 1989) and it is reasonable to expect the 
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saf~ 

e = f - > x = s a f e  
f = f -> x = safe 
g = f -> x = safe 
b = l  & d  = 2 - > x =  safe 
b = l  & d =  3 - > x =  safe 
a =  1 & c =  2 - >  x =  safe 
a = 2 & c = 2 - > x = s a f e  
a =  1 & c  = 3 - > x = s a f e  
a = 2 & c = 3 - > x = s a f e  
a = 3 &  b =  2 & e = t  & f = t  & g = t - > x  =lost 
b = 3 & c = l  & e = t & f = t & g = t - > x = l o s t  
a =  3 &  b = 3 & e = t &  f = t &  g = t - > x = l o s t  
b = 2 & c =  1 & e  = t  & f = t  & g = t  - > x = l o s t  
a = 3 & b = l & d = l & e = t & f = t & g = t - > x = t o s t  
a = 2 & b = l  & c = l  & d = l  & e = t  &f  = t  & g = t - >  x~.lost 

C-> X = 

-> x los 

Q b = l  e ~ _ ~  a=21 ~ a= ~ ~ a= 1 ~ a=2 1 -> x saf -> C C C 3 c 
x safe -> x safe -> x safe -> x safe 

[ de = 3 ~ de = ~ st~ 
-> x lost -> x io 

Figure 8. Normal and ripple-down rules induced for chess end-game dataset. 

version that generates ripple down rules to continue to do so. A good test is Quinlan's 
(1987) prob-disj dataset which involves a 3-way disjunction of 3-attribute conjunctions 
over 9 binary attributes, with 1 additional irrelevant attribute and 10% errors in the data. 
This is a difficult problem for ID3 which generates an 187 node tree to capture the disjunction 
through replication of clauses. Figure 9 is a screen dump of Induct running on the original 
data and on the two test datasets provided. The significance level for r in Eq. (5) has been 
set to 1% so that the noise is filtered out by requiring a rule to have 1 chance in 100 of 
arising by chance. Induct achieves the best possible error rate of 10% on the test data, and 
generates the simple 4 rule solution shown which exactly captures the generating principle 
behind the data. 

Thus, as previously reported, the Induct direct rule generation strategy is effective in per- 
formance and generates knowledge structures that are at least as good as the best previously 
reported for the test data analyzed. The ripple-down rule results reported here show that 
the knowledge structures of rules with exceptions are substantially smaller in most cases 
than conventional trees or production rules. In addition they satisfy the criterion of minimal 
interaction for ease of maintenance discussed above. 

4. Results with some large medical datasets 

Data from the Garvan ES- 1 thyroid disorder diagnosis system have been used extensively in 
studies of empirical induction over the years (Horn et al., 1985). In the past few years a set 
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Figure 9. 
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Ripple-down rules induced for prob-disj noisy, triple exclusive-or dataset. 

of 9,514 cases has been used in a number of studies comparing manual ripple-down rules 
with the original rule set and with automatically induced rules. For example, Mansuri et al., 
(1991) split the dataset into 8,000 sample cases and 1,514 test cases, and report 550 rules, 
2.8% errors for hand generated ripple down rules; and 502 rules, 2.71% errors for ID3. 
When Induct is run on the first 8000 cases and tested on the complete dataset it generates 
195 ripple-down rules and has an error rate of 2.31% on the remaining test cases which is 
similar to the manual and ID3 results. 

When Induct is run on all 9,514 cases, it generates 174 rules in 154 seconds accounting 
perfectly for the dataset. This compares favorably with the 550 ripple down rules generated 
manually in the reconstruction of the Garvan ES-1 using the same data. For ripple-down 
rules, a better measure of the complexity of an induced rule set is the total clauses involved 
since, as noted above, the structure may be varied without affecting the accuracy. The total 
clause count was 731 for the manual rules and 478 for the induced rules. The reduction is 
less apparent because the manual rules had only 1.3 clauses per rule on average compared 
with 2.5 clauses per rule for the induced rules. This seems to indicate that the expert tended 
to make the minimum differentiation necessary when adding a new rule. 

It is also interesting to examine these results in the context of the usual approximation- 
complexity trade-off curve for an inductive process (Gaines, 1977). The lower plot in 
Fig. 10 was generated by varying the threshold used by Induct to determine whether the 
improvement achieved by adding a clause is due to chance from 5% to 100% in steps of 
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Figure 10. 
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2.5%. This generates sets of rules modeling the data that increase in complexity (number of 
clauses) and improve in approximation (error rate on data used in induction). The optimum 
trade-off was reached with a threshold of 37.5% corresponding to a 0.375 probability that 
improvements were due to chance. The upper plot shows the percentage errors for the same 
rule sets on the test data. It goes to a minimum close to that of the lower set indicating the 
sample for induction and the test data are drawn from the same population. The manual 
results plotted on the right can now be seen in the context of the complete trade-off curve. 

A dataset of 43,472 cases is also available spanning the period from late 1979 to early 
1990. This makes it possible to investigate the intrinsic predictability of the Garvan data, 
and to reconstruct what would have happened had Induct been available through the project. 
The 9,514 cases used previously as a test set are embedded in the new data but, due to an 
earlier conversion, they do not contain age information and hence are not a true subset. As 
already notes, the various models of the first 8,000 cases from the previous subset reported 
above when used on the residual 1,514 cases result in error rates of some 2.5%. This figure 
is important because it gives an estimate of the predictability of the Garvan data, that is not 
how well the model fits the data on which it was based, but how well the model predicts the 
following data on which it may be used as a diagnostic tool. Inductive modeling techniques 
are effective in so far as the database used is representative of future data, and this is 
dependent both on the size of the dataset available and the whether the data is stationary. 
Unfortunately, longitudinal studies in which these phenomena are investigated are very rare, 
and the availability of the large dataset over ten years provides an interesting opportunity 
to examine the predictability of  a significant real-world medical database. 

As a first experiment the database of 43,472 cases was split into eight successive datasets 
of 5,434 cases each, and Induct was run on the entire dataset and on the eight subsets. 
The result rules were then evaluated on every dataset to give the table shown in Fig. 11 
in which the rows represent the evaluation of one set of  rules on the full dataset and the 
eight successive subsets. The errors in the first row are exceptionally low because they are 
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43472 1:5434 2:5434 3:5434 4:5434 5:5434 6:5434 7:5434 8:5434 
43472 0.46 0.26 0.42 1.31 0.52 0.52 0.17 0.26 0.24 
1:5434 9.38 0.52 4.34 6.81 10.38 14.13 13.75 12.68 12.27 
2:5434 9.30 5.98 0,61 5.72 9.40 13,75 14.32 12.94 11.72 
3:5434 9.87 14.08 6.13 1.56 8.15 12.86 12.75 12.62 11.80 
4:5434 7.08 12.16 9.92 6.04 0,77 6.26 7.53 7.29 6.70 
5:5434 10.96 21.16 26.13 19.80 7.99 0.57 3.85 4.32 3.86 
6:5434 11.43 21.62 26.17 21.51 9.79 4.62 0.52 3.86 3.39 
7:5434 12.37 22.23 30.31 21.77 10.20 5.65 4.38 0.66 3.79 
8:5434 11.43 19.67 25.97 20.67 9.27 5.70 4.77 4.16 1.21 

Figure 11. Analysis of Garvan data over ten years in eight successive datasets, (Each row shows the percentage 
of errors on rules developed on the datasets indicated in the left column on the complete dataset and the eight 
subsets). 

14 

12 
E 
r 10 

r 
8 

0 

r 6 
s 

4 
% 

2 

I I I I I I I I I 

O 5000 10000 15000 20000 25000 30000 35000 40000 45000 

1 1 1 1 1 1 1 1 1 1 1 Cases 
9 9 9 9 9 9 9 9 9 9 9 Years 
8 8 8 8 8 8 8 8 8 8 9 
0 1 2 3 4 5 6 7 8 9 0 

Figure 12. Error rates on next cases form models of Garvan database up to a certain time, 

those of a model based on the complete data, and those along the diagonal are low because 
they are evaluated on the dataset on which the model is based. What is of primary interest 
is the performance of a model on the dataset to the immediate right of the diagonal since 
this indicates how well the model predicts the coming data. This error rate ranges through 

4.34%, 5.72%, 8.15%, 6.26%, 3.85%, 3.86% and 3.79%. It also appears as one follows the 

error rate to the right that it tends to deteriorate substantially indicating that the database 
is not stationary, and hence that maintenance of the rule base to track the changing data is 
important. 

To attempt to gain some insight into the dynamics of the Garvan data, and the way that 
this would have been tracked if an inductive model had been developed on a continuous 
basis, another analysis was undertaken in which the complete dataset was modeled for the 
first 500 cases, the first 1,000 cases, the first 1,500 cases, and so on, up to 43,000 cases. 
Each model was then tested on the next 500 cases (472 for the last model) and the error 
rate plotted as shown in Fig. 12. It can be seen that the 1979-80 data did not predict for 
1981 very well. Then an improving model develops down a low error rate in late 1982 
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followed by a period of higher errors in 1983-84 with a major change in late 1984 followed 
by a steady improvement from 1985 through 1990. The major unpredictability in 1984 
corresponds to changes in procedures in the hospital introduced at the start of the expert 
system development. 

The table of Fig. 11 and the graph of Fig. 12 illustrate both the merits and the problems 
of the development of knowledge bases through the modeling of databases. A manually 
or mechanically derived model can be a valuable tool in supporting the diagnostic process. 
The recent history in Fig. 12 shows a period of error rates of less than 2% so that the system 
is providing a correct diagnosis automatically in 49 cases out of 50. However, there are 
much higher error rates at various times in the past history of the system, which are due 
to intrinsic unpredictability in the data, not to any defects of the modeling process. These 
indicate not only a need for continuous knowledge base maintenance, but also for effective 
system management in understanding and managing the impact of changes in procedures 
which, while they improve predictability in the long term, may greatly reduce it in the 
short term. 

5. Conclusions 

This paper has presented a knowledge representation schema based on rules with two forms 
of exceptions that is easy to understand and maintain manually. It has presented an empirical 
induction algorithm for modeling databases in terms of this schema that is simple, fast and 
effective, and has illustrated its application to standard datasets from the literature. It has 
used the schema and the algorithm to analyze a large clinical database, and shown how the 
model tracks non-stationarity in the database. 

One conclusion that may be drawn from this paper is that in the clinical domain analyzed 
the automated induction process is at least as effective as knowledge transfer from experts. 
However, this does not imply that the support of transfer from human experts is not still 
important in this domain. It is reasonable to expect induction of ripple down rules to be 
substantially better than hand generation if we compare the circumstances of the human 
expert and the Induct algorithm. The expert and the algorithm are doing exactly the same 
thing at each node of the ripple down rule tree--that is adding additional rules to improve the 
performance. However, the expert is doing this in response to one erroneous case whereas 
the algorithm has available to it a complete analysis of the statistics of all relevant cases. 

However, the decrease in the size of the rule set by no means detracts from the value 
of the manual acquisition of ripple down rules. At the start of a knowledge-based system 
development there may not be enough data available for induction, but there may be adequate 
human expertise available to build a working system. Later, when that system has been 
in use for some time, ripple down induction may be used to reduce the rule base without 
changing the basic procedures for use and maintenance to which those responsible for the 
system have become accustomed. 

There are also more subtle reasons why manual acquisition remains very important. 
These show up well in the recent St Vincent's studies (Compton et al., 1991). The expert in 
entering new ripple down rules also enters new attributes. That is, the conceptual framework 
being applied to the cases is elaborated as part of the ripple down rule knowledge acquisition 
process. The contextual constraints already described continue to apply so that the use of 
new concepts can be managed locally and does not involve the expert in reanalysis of other 
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parts of the rule tree. Some of the new concepts entered fall completely outside those 
already entered. Others are intervals on existing numeric data. The latter could be induced 

with sufficient data but the former could not. Manual ripple down rule elicitation is an 
effective acquisition technique for conceptual schema. 

In a practical system, the best features of the manual and inductive approaches can 

be combined. The evaluation of a new rule set has been designed to be fast enough for 
interactive use. It takes only a few seconds to evaluate a complete model on the Garvan cases. 

An expert can make arbitrary changes to the ripple down rule structure and have a complete 

account of the effects rapidly enough to maintain interactive development. In addition, 
the Induct algorithm may be used incrementally to advise the expert of an appropriate rule, 

which may then be accepted or manually amended. It takes less than one second to generate 
a new rule from the Garvan cases. Such a mixed initiative system allows the known trade- 
offs between knowledge acquisition techniques (Gaines, 1991b) to be optimized through a 

combination of expertise transfer, machine learning, visualization and rapid evaluation. 
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