
Journal of Intelligent Information Systems, 2, 265-278 (1993)
�9 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On the Complexity of the Instance
Checking Problem in Concept Languages
with Existential Quantification

ANDREA SCHAERF aschaerf@ assi.ing.uniromal.it
Dipartimento di Informatica e Sistemistica Universitft di Roma "la Sapienza" Via Salaria 113, 00198
Roma, Italia

Abstract. Most of the work regarding complexity results for concept languages consider subsumption
as the prototypical inference. However, when concept languages are used for building knowledge
bases including assertions on individuals, the basic deductive service of the knowledge base is the
so-called instance checking, which is the problem of checking if an individual is an instance of a given
concept. We consider a particular concept language, called AE$ and we address the question of
whether instance checking can be really solved by means of subsumpfion algorithms in this language.
Therefore, we indirectly ask whether considering subsumption as the prototypical inference is justified.
Our analysis, carried out considering two different measure of complexity, shows that in AZ~s instance
checking is strictly harder than subsumption. This result singles out a new source of complexity in
concept languages, which does not show up when checking subsumption between concepts.

Keywords: concept languages, terminological languages, description logics, computational complexity,
query answering

1. Introduction

Concept description languages (also called terminological languages or con-
cept languages have been introduced with the aim of providing a simple and
well-established first order semantics to capture the meaning of the most pop-
ular features of the structured representations of knowledge (see for example
(Levesque and Brachman, 1987; Nebel, 1990a)).

In concept languages, concepts are used to represent classes as sets of individ-
uals, and roles are binary relations used to specify their properties or attributes.

It is a common opinion that subsumption checking (i.e., checking whether
a concept represent necessarily a subset of the other) is the central reasoning
task in concept languages. This has motivated a large body of research on the
problem of subsumption checking in different concept languages (e.g., (Brachman
and Levesque, 1984; Donini et al., 1991: Nebel, 1988; Schmidt-Schaug, 1989;

This work has been supported by the ESPRIT Basic Research Action N.6810-COMPULOG 2
and by the Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo of the CNR (Italian Research
Council).

266 SCHAERF

Schmidt-Schaul3 and Smolka, 1991)). However, if concept languages are to be
used for building knowledge bases including assertions on individuals, the basic
deductive service of the knowledge base is the so-called instance checking, which
is the problem of checking whether a set of assertions implies that a given
individual is an instance of a given concept.

In this paper we address the question of whether instance checking can be easily
solved by means of subsumption algorithms and whether considering subsumption
as the prototypical inference is justified.

The outcome of the analysis is that the answer to the question in the general
case is no and that there are cases where instance checking is strictly harder than
subsumption. In fact, the instance checking problem for the considered language
(AZ:C) turns out to be of higher complexity than the subsumption problem. This
result is all the more interesting since Jts is not some artificial language (just
defined for the purpose of showing that the complexity of subsumption may differ
from the one of instance checking) but a rather natural language which has been
investigated before.

This result singles out a new source of complexity in concept languages, which
does not show up when checking subsumption between concepts, and is due to
the presence of individuals in the knowledge base. A practical implication of this
fact is that any actual deduction procedure for reasoning on structured knowledge
representation systems cannot be based solely on subsumption checking, but has to
embed some reasoning mechanisms that are not easily reducible to subsumption.
This fact must be considered when designing the deductive services of a system
for the development of applications based on concept languages. In particular,
this may have an impact on the design of the so-called hybrid architectures whose
purpose is to provide complex deduction capabilities as a result of the interaction
between a terminological and an assertional component. In fact, it may happen
that this kind of organization leads to implementations that are computationally
more demanding.

In our analysis we have assumed we are dealing with complete reasoners.
On the contrary, most of the existing systems (e.g., LOOM (MacGregor, 1991),
CLASSIC (Patel-Schneider et al, 1991). BACK (Peltason, 1991)), use incomplete
reasoners 1 (except for ET~ZS (Baader and Hollunder, 1991)) and in these systems
a careful analysis of the relationship between subsumption and instance checking
is lacking. Anyway, in our opinion (supported also by other researchers, e.g., see
(Schmidt-Schaul3 and Smolka, 1991)), the study of complete methods gives more
insight on the structure of the problem and it is useful also for the development
of better incomplete reasoners.

Furthermore, we measure the complexity of instance checking by the measures
suggested in (Vardi, 1982): Data complexity (i.e., the complexity with respect to
the size of the knowledge base) and combined complexity (i.e., with respect to
both the size of the knowledge base and the size of the concept representing
the query). 2 Another result of our analysis is that there are cases where the
complexity obtained using the two measures differs substantially. This result

PROBLEM IN CONCEPT LANGUAGES WITH EXISTENTIAL QUANTIFICATION 267

proves that the distinction is necessary and must be taken into account in order
to understand the behavior of the system in practical cases.

The paper is organized as follows. In Section 2 we provide some preliminaries
on concept languages, in particular on the language .As In Section 3, we deal
with the problem of instance checking in .As Discussion and conclusions are
drawn in Section 4.

2. Preliminaries

In this section we present the basic notions regarding the concept language ALE,
knowledge bases built up using AZ;C, the instance checking problem and the
complexity measures used in the paper.

2.1. The Language As

We consider the language As (Donini et al, 1992a; Schmidt-Schaug and Smolka,
1991) which is an extension of the basic concept language 5rs - introduced
in (Brachman and Levesque, 1984). Besides the constructors of Y's As
includes qualified existential quantification on roles and complementation of
primitive concepts.

Given an alphabet of primitive concept symbols .A and an alphabet of role
symbols ~ and two special concept symbols -l- and Z, As (denoted by
the letters C and D) are built up by means of the following syntax rule (where A
denotes a primitive concept and R denotes a role, that in .4s is always primitive)

C, D ---* A (primitive concept)

T (top)

A_ (bottom)

-,A (primitive complement)

C [q D (intersection)

VR.C (universal quantification)

3R.C (qualified existential quantification)

We have chosen the language As for several reasons. On one hand, it is rich
enough to express a significant class of assertions, as we will see in the examples.
In addition, it is suitable to express concepts representing meaningful queries. In
particular, due to the qualified existential quantification it is possible to express
queries requiring some form of navigation in the knowledge base through the
assertions on roles. For example, the query: "find the individuals who have a

268 SCHAERF

friend whose child is a doctor" can be expressed as 3FRIEND.3CHILD.Doctor.
On the other hand, A s avoids other expressive constructors (such as dis-

junction of concepts) which introduce other sources of complexity and whose
treatment is out of the scope of this paper. In addition, As is a sublanguage
of all the cited existing systems (except of CLASSIC). In fact, all its constructors
can be expressed in such languages.

A n interpretation 27 = (A z, .z) consists of the set A z (the domain of 2-) and a
function .z (the interpretation function of 2-) that maps every concept to a subset
of Az and every role to a subset of A z x A z such that the following equations
are satisfied:

T z = A z

i z = r

(. A) z = A Z \ A z

(C • D) z = C z N D z

(VR.C) z = {all I Vd2 :(dx, d2) e R z --* d2 e C z}

(3R.C) z = {dl I 3d2 :(dl , d2) 6 R z A d2 6 C z}

An interpretation 2- is a model for a concept C if C z is nonempty. A concept
is satisfiable if it has a model and unsatisfiable otherwise.

We say C is subsumed by D, written as C _E D, if C z c_ D z for every
interpretation 2-, and C is equivalent to D, written C - D, if C z = D z for every
interpretation 2-.

Example 2.1. Consider the following two AEg-concepts

3CHILD.(Female [-I Graduate)
(3CHILD.Female) I-I (VCHILD.Graduate).

The first one denotes the individuals having at least one graduate daughter. The
second one denotes the individuals having at least one daughter and having only
graduate children. It is easy to see that they are both satisfiable. Moreover
the first one subsumes the second, in fact the second requires more conditions
to be satisfied than the first, in particular, besides the existence of a graduate
daughter, it requires all the other possible children to be graduates.

The following concept is instead not satisfiable and it is therefore trivially
subsumed by both the others.

(3CHILD.~Female) R (VCHILD.Female)

2.2. Knowledge bases

The construction of knowledge bases using concept languages is realized by
permitting concept and role expressions to be used in assertions on individuals.

PROBLEM IN CONCEPT LANGUAGES WITH EXISTENTIAL QUANTIFICATION 269

Let (.9 be an alphabet of symbols denoting individuals, an As
assertion (or simply assertion) is a statement of one of the forms:

C(a) or R(a, b)

where C is an As R is a role, and a, b are individuals in (9.
In order to assign a meaning to the assertions, the interpretation function .z

is extended to individuals in such a way that a z E A z for each individual a E (9
and a z ~ b z if a W b (Unique Name Assumption). The meaning of the above
assertions is now straightforward: if 27 = (A z, .z) is an interpretation, C(a) is
satisfied by 2" if a z E C z, and R(a, b) is satisfied by 2- if (a z, b z) E R z.

A set S of As is called an As163 base. An interpretation
2- is said to be a model of Z" if every assertion of 27 is satisfied by 2". Z' is said
to be satisfiable if it admits a model. We say that 27 logically implies an assertion
c~ (written Z' I= c~) if a is satisfied by every model of S.

In the so-called terminological systems, the knowledge base also includes
an intentional part, called terminology, expressed in terms of concept definitions.
However, almost all implemented systems assume that such definitions are acyclic,
i.e., in the definition of concept C no reference (direct or indirect) to C itself
may occur (see Nebel, 1991,) for a discussion on the semantics of terminological
cycles). It is well known that any reasoning process over knowledge bases
comprising an acyclic terminology can be reduced to a reasoning process over
a knowledge base with an empty terminology, in particular by substituting in
the assertions every concept name with the corresponding definition. In Nebel
(1990b) the complexity of that reduction is analyzed. The result obtained is
that, even though the reduction is not polynomial in the worst case, it can be
done in polynomial time under reasonable assumptions. For this reason, in our
analysis we do not take into account terminologies and, therefore, we conceive
a knowledge base as just a set of As

DEFINITION 2.1. We call instance checking in As the following problem: given
an As base S, an As D, and an individual a in (9, check
if S ~= D(a) holds.

Notice that instance checking is a basic tool for more complex services. For
example, using instance checking it is possible to solve the so-called retrieval
problem: given a knowledge base S and a concept D, find all the individuals
that are instances of D, i.e., find the set {a E (gIS I = D(a)}. Retrieval can be
performed simply by iterating the instance checking problem for all the individuals
in 27.

Example 2.2. Let $1 be the following As base:

Z' 1 = {CHILD(john, mary),
(VCHILD.~Graduate) (john),
(FemaleR3CHILD. Graduate) (mary) }

270 SCHAERF

$1 states that Mary is a child of John, John has only nongraduate children and
Mary is a female and she has a graduate child. It is easy to verify that Z'l
is satisfiable. Notice also that the addition of the assertion Graduate (mary) to
S~ would make the knowledge base unsatisfiable; in fact, due to the first two
assertions, 271 [= -~Graduate(mary).

2.3. Complexity measures

In next section we will provide some complexity result for instance checking in
AEs For this reason we introduce here the complexity measures we are going
to use in next section.

DEFINITION 2.2. Given an As base S, an As D, an
individual a in O, and denoting with ISI the size of S and with IDI the size of
D, we call:

�9 data complexity of instance checking in .As the complexity of checking if
S l= D(a) with respect to ISI

�9 expression complexity of instance checking in As the complexity of checking
if 2? I= D(a) with respect to IDI

�9 combined complexity of instance checking in As the complexity of checking
if S 1= D(a) with respect to 1271 and IDI

The combined complexity is the one usually considered in the literature in
concept languages. It is a good measure of the actual cost of instance checking
in the cases in which the knowledge base and the query are comparable in size.

On the other hand, the data complexity is important whether the size of the
query is neglectable with respect to the size of the knowledge base. It is the
measure widely accepted in the database community. However, in our case the
assumption that the size of the query is neglectable is not always reasonable. In
fact, there are cases in which the size of the concepts, after the elimination of
the terminology, can reach the size of several lines of code.

Finally, the expression complexity should be taken into account whether the
size of the knowledge base is neglectable with respect to the size of the query.
Since this assumption generally does not reflect the reality, expression complexity
is less important than the other two measures and it will be not considered in
this paper.

It is worthwhile to notice that the combined complexity is always higher or
equal than both the other two (in the worst-case analysis). In fact, the complexity
with respect to ISt and IDI obviously includes as particular cases the possibilities
that either IS] or IDI is small with respect to the other.

PROBLEM IN CONCEPT LANGUAGES WITH EXISTENTIAL QUANTIFICATION 271

3. Instance checking in ALg

In (Donini et al., 1992a) it is shown that checking the subsumption relation
between two ALg-concepts is an NP-complete problem and that checking the
satisfiability of an .As is coNP-complete. With regard to instance
checking, we know that it is at least as hard as subsumption. In fact, subsumption
can be reduced to instance checking in the following way: given two concepts
6' .and D, the subsumption test C _E D is performed by checking whether the
knowledge base composed by the single assertion C(a) (where a is any individual)
logically implies D(a), i.e., checking if {C(a)} ~= D(a) holds.

The above result holds for instance checking with respect to the combined
complexity. In fact, the complexity of subsumption is measured with respect
to the size of both the candidate subsumee and the candidate subsumer, which
becomes respectively part of the knowledge base and part of the query.

With regard to the data complexity, we know that a concept 6' is unsatisfiable
if and only if the knowledge base {C'(a)} implies every assertion, i.e., if {C(a)} 1=
B(a) (where B is any concept). It follows that concept unsatisfiability can be
reduced to instance checking with respect to data complexity (the size of B
can be obviously fixed). Since concept satisfiability is coNP-complete, concept
unsatisfiability is NP-comptete. We can therefore conclude that instance checking
is NP-hard even with respect to the data complexity. Notice that this result implies
the previous one. In fact, as we pointed out at the end of Section 2, the combined
complexity is always higher or equal to the data complexity.

In the two sequent subsections we give a more precise characterization of
the complexity of instance checking. In Section 3.1 with respect to the data
complexity and in Section 3.2 with respect to combined complexity.

3.1. Data complexity of instance checking in ALE

In this section we give a lower and an upper bound for the data complexity
of instance checking in ALC. As shown above, instance checking in at/2g is
NP-hard. We now prove that it is coNP-hard too. Since subsumption in ALS
is NP-complete, a consequence of this result is that (assuming NP ~ coNP)
instance checking for AEC is strictly harder than subsumption.

This unexpected result shows that the instance checking problem in ALE
suffers from a new source of complexity, which does not show up when checking
subsumption between AEg-concepts. This new source of complexity is related
to the use of qualified existential quantification in the concept representing the
query that makes the behavior of the individuals heavily dependent on the other
individuals in the knowledge base. The following example enlights this point.

Example 3.t. Let Sz be the following AEg-knowledge base:

272 SCHAERF

E2 = {FRIEND(john, susan), FRIEND(john, peter),
L0VES(susan, peter), LOVES(peter, mary),
Graduate(susan),-~Graduate (mary) }

Consider now the following assertion

fl = 3FRIgND.(Graduate n 3LOVES.~Graduate)(j ohn).

Asking whether ~2 [= /3 means asking whether John has a graduate friend
who loves a not graduate person. At the first glance, since Susan and Peter
are the only known friends of John, it seems that the answer the query is to be
found by checking whether either 2"2 [=Graduaten3L0gES.--~Graduate(susan) or
$2 [=GraduaZen3L0gES.-~Graduate(peter) is true.
Since E 2 ~&Graduate(peter) it follows that E2 ~/=Graduate[-]3LOVES.~Graduate

(peter), and since E2 ~ 3LOVES.~Graduate (susan) it follows that Z2 ~=Graduate
D3L0VES. ~Graduat e (sue an).

Reasoning in this way would lead to the answer NO. On the contrary, the
correct answer to the query is YES, and in order to find it, one needs to
reason by case analysis. In fact, the query asks if in every model M of $2
there is an individual, say a, such that FRIEND(john, a), Graduate(a) and
3L0VES.-~Graduate(a) are true in M. Obviously, in every model M of Z'2, either
Graduate(peter) or ~Graduate(peter) is true. In the first case, it is easy to
see that a is simply pe t e r (and the not graduate person he loves is mary), while
in the second case a is susan (and the not graduate person she loves is just
peter) . Therefore, such an individual a exists in every model of 2"2, and the
query gets the answer YES.

Therefore, even if none of the individuals related to the individual john
through the role FRIEND is in the condition requested by the query, it happens
that the combination of the assertions on the individuals (susan and pe te r) in the
knowledge base is such that in every model one or the other is in that condition.

The previous example shows that, in order to answer to a query involving
qualified existential quantification, a sort of case analysis is required. We now
show that this kind of reasoning makes instance checking in A L g coNP-hard
with respect to the data complexity.

The proof is based on a reduction from a suitable variation of the propositional
satisfiability problem (SAT) to instance checking in As We define 2+2-CNF
formula on an alphabet P, a CNF formula F such that each clause of F has
exactly four literals: two positive and two negative ones, where the propositional
letters are elements of P t3 {true, false}. Furthermore, we call 2+2-SAT the
problem of checking whether a 2+2-CNF formula is satisfiable.

THEOREM 3.1. 2+2-SAT is NP-complete.

Proof. The proof is obtained by a reduction from 3-SAT. Given a 3-CNF formula
F we obtain a 2+2-CNF formula F ' transforming each clause C of F according

P R O B L E M IN C O N C E P T L A N G U A G E S W I T H E X I S T E N T I A L Q U A N T I F I C A T I O N 273

to the following rules:

a V b V c ~ (a V b V -~d V -~true) A (c V d V -~true V -~true)

aV bV ~c ~ aV bV ~cV-~true

a V -~b V -~c ~ a V false V -~b V -~c

-~a V "~b V -~c ;. (false V d V -~a V -~b) A (false V false V -~c V -~c 0

where for each clause C of F, d is a new letter in P not appearing in F. It is
easy to see that F is satisfiable iff F ~ is satisfiable.

Given a 2+2-CNF formula F = C1/~ C2 h . . . A C,~, where Ci = L~+ V L~+ v
--1 i -~L~_ V L2_, we associate with it an As base EF and a concept Q

as follows, r F has one individual 1 for each letter L in F, one individual e~ for
each clause C~, one individual f for the whole formula F, plus two individuals
true and false for the corresponding propositional constants. The roles of SF
are Cl, Pa, P2, N1, N2, and the only primitive concept is A.

Z F = { A(true), -~ A(false) ,
el(f , cz(f, . . . , cz(f,
Pl(Cl,/~+), P2(cb /~+), Nl(Cl, /I-), N2(cl, l~_),
, . ,

Pl(c,~, l~+), Pz(c,, l~+), N~(en, l~_), Nz(cn, l~_)},
Q = 3CZ.(3P .-A n 3Pz.- A n 3Na.A n 31Vz.A).

Intuitively, the membership to the extension of A or -~A corresponds to the
truth values true and.false respectively and checking if ZF [= Q (f) corresponds to
checking if in every truth assignment for F there exists a clause whose positive
literals are interpreted as false, and whose negative literals are interpreted as
true, i.e. a clause that is not satisfied.

LEMMA 3.1. A 2+2-CNF formula F is unsatisfiable if and only if s]= Q(f) .

Proof. " 3 " Suppose F is unsatisfiable. Notice first that EF is always satisfiable
independently of F. Consider a model 2- of SF (which always exists), and let 6z
be the truth assignment for F such that 6z(1) = true if and only if l z q~ A z, for
every letter I. Since F is unsatisfiable, there exists a clause Ci that is not satisfied
by 6z. It follows that the individuals related to ci through the roles P1, P2 are in
the extension of (-~A) z and the individuals related to c/through the roles N1, ?72
are in the extension of A z. Thus ~ E (3PI .~A ~ 3Pz.-~A n 3N1.A ~q 3Nz.A) z, and
consequently f z E QZ. Therefore, since this argument holds for every model 2-
of ,UF, we can conclude that S r l= Q(f) .

"r Suppose F is satisfiable, and let 6 be a truth assignment satisfying F. Let
2-~ be the interpretation for SF defined as follows:

�9 A z, = <V, I (0 = true} .

274 SCHAERF

�9 pZ, = {(aZe, bee) [p(a, b) G EF} for p = Cl, Pa, P2, Na, N2.

By definition of pZ~ (for p = Cl, P1, P2, N1, N2) we see that Z~ is a model of
SF. On the other hand, since F is satisfiable, for every clause in F there exists
either a positive literal interpreted as true or a negative one interpreted as false.
It follows that, for every individual ci, there exists either a role (P1 or P2) such
that the object related to ci by means of that role is in the extension of A or
there exists a role (N1 or N2) such that the object related to ci by means of that
role is in the extension of -~A; hence fze q[QZ,. Therefore, we can conclude that

Z~ ~= Q(f).

THEOREM 3.2. Instance checking in ACE is coNP-hard in the size of the
knowledge base.

Proof. The claim follows from Theorem 3.1 and Lemma 3.1 and from the fact
that, given a 2+2-CNF formula F, Q is fixed independently of F and 27F can be
computed in polynomial time with respect to the size of F.

The above reduction shows that the coNP-hardness arises even if the knowledge
base is expressed using a simple language. This implies that, in order to obtain
intractability, it is sufficient to enrich only the query language with the qualified
existential quantification, keeping a simple and tractable assertional language.
This result is in contrast with the result reported in (Lenzerini and Schaerf,
1991a): In that paper, a polynomial instance checking algorithm is provided
for a knowledge base in the language AC (AC extends ~'C- with primitive
complements) using the query language Qs (which is an extension of At;C).
Unfortunately, as pointed out in (Lenzerini and Schaerf, 1991b), while that
algorithm is sound, it is in fact not complete. In particular, it answers NO the
query/3 to the knowledge base E2 of Example 3.1.

Since the language As involves primitive complements and the above reduc-
tion makes use of them it may seem that the coNP-hardness arises from the
interaction of qualified existential quant~cation, with the primitive complements.
On the contrary, we are able to show that the coNP-hardness is caused by the
qualified existential quantification alone. In fact, if we consider the language
0rCC - (SrZ: - + qualified existential quantification), we are able to prove that
instance checking in 5rs163 - is coNP-hard too. The intuition is that in 5rs -
it is possible to require a reasoning by case analysis too. In particular, this is
done by considering two 5rCC--concepts of the form 3R.T and VR.C (instead of
A and -~A in As and exploiting the fact that their interpretation covers the
entire domain, i.e., 3R.T U VR.C - -I-. More in detail, the same reduction used
to prove the coNP-hardness in .AZ:C, can be used for 0rCs - by replacing Q with
the avs Q' obtained substituting any occurence of A with 3R.q- and
each occurrence of --,A with VR.C. The proof that any 2+2-CNF formula F is
unsatisfiable if and only if EF 1= Q'(f) can be obtained following the same line

PROBLEM IN CONCEPT LANGUAGES WITH EXISTENTIAL QUANTIFICATION 275

of the proof of Lemma 3.1.

In the following we give an upper bound to the data complexity of instance
checking in .AZ2S. In particular, we prove that it is in the class Hr. The
class H~, also denoted by coNP NP, consists of the problems whose complement
can be solved by a nondeterministic polynomial time algorithm exploiting a
nondeterministic polynomial oracle. For a discussion on the classes S~, H~, and
zS~ see for example (Garey and Johnson, 1979).

LEMMA 3.2. Let 12 be a satisfiable As base, a be an individual,
and D be a ALE-concept. Then checking if ~' p D(a) can be done by a
nondeterministic algorithm, which runs in polynomial time with respect to ISI
and exploits a nondeterministic polynomial time oracle.

Proof We know that S]= D(a) if and only if the knowledge base S t.j {--,D(a)}
is unsatisfiable. In general, --,D is not an .As since it contains the
complement of a nonprimitive concept. Therefore, S u {-~D(a)} is not an As
knowledge base, but a knowledge base of a more expressive language called
~412C (see (Schmidt-Schaul3 and Smolka, 1991)), which extend As with general
complements. It (Baader and Hollunder, 1991) an algorithm is presented for
checking the satisfiability of an AZ;C-knowledge base. That algorithm consists
of a NPTIME procedure which exploits a PSPACE subprocedure. In particular,
the task of the subprocedure is to check the satisfiability of an As
C. However in our case only the assertion --,D(a) may contain complements of
non-primitive concepts and we are interested in the complexity with respect to
I2 and not with respect to D, i.e., the size of D can be considered fixed. For this
reason, any time we use the subprocedure it is called to check the satisfiability
of a concept such that its part containing nonprimitive concepts has fixed size.
It follows, according to the algorithm given in (Baader and Hollunder, 1991),
that it can be computed in polynomial time by an alternating Turing Machine
(TM) such that the alternation between A-nodes and v-nodes exists only down
to a fixed depth and belo~ that~t~vel ~ v-nodes are present. An alternating
TM respecting this llmltataoia--has a fi~6~number of A-nodes and therefore can
be simulated by a non-deterministic TM which works in polynomial time too.

THEOREM 3.3. Instance checking in As is in //~ with respect to the data
complexity.

Proof Easily follows from Lemma 3.2.

Notice that the complexity of instance checking with respect to the data
complexity is not completely placed in the complexity hierarchy. We conjecture
that it is H~-complete.

276 SCHAERF

3.2. Combined complexity of instance checking in AEg

In this section we show that instance checking in As is PSPACE-complete with
respect to the combined complexity. This result is based on the following lemma
which states the PSPACE-hardness of the problem and which proof can be found
in (Donini et al., 1992c).

LEMMA 3.3. Instance checking in ALE is PSPACE-hard with respect to the
combined complexity.

THEOREM 3.4. Instance checking in .ALC is PSPACE-complete with respect to
the combined complexity.

Proof. Lemma 3.3 states the PSPACE-hardness. Since instance checking in ALg
is obviously easier than the PSPACE-complete problem of instance checking in
.As (see (Baader and Hollunder, 1991)), it follows that instance checking in
AZ2g is also in PSPACE. Hence instance checking in ALg is PSPACE-complete.

4. Discussion and conclusions

Table 1 summarizes the complexity of instance checking in ALE with respect
to both knowledge base complexity and combined complexity, together with the
previous known result regarding subsumption.

Table 1. Complexity of subsumption and instance checking in .4Z~g.

subsumption

NP-eomplete

(Donini et al., 1992a)

instance checking
data complexity

NP-hard

coNP-hard

in //~

instance checking
combined complexity

PSPACE-complete

These results single out several interesting properties:

1. Instance checking is not polynomially reducible to subsumption, in the gen-
eral case. As a consequence, an algorithm for instance checking based on
subsumption (and classification), should include some other complex reason-
ing mechanisms.

2. The data complexity and the combined complexity of instance checking in
AZ2C are in different classes: one in /-/~ and the other is PSPACE-complete.
This fact highlights that, in order to have an actual complexity measure of

PROBLEM IN CONCEPT LANGUAGES WITH EXISTENTIAL QUANTIFICATION 277

the performance of our systems, we must pay attention to which is the crucial
data of the application.

3. Reasoning in AZ;g suffers from an additional source of complexity which
does not show up when checking subsumption, even with respect to the data
complexity. This new source of complexity is related to the use of qualified
existential quantification in the concept representing the querry which requires
some sort of reasoning by case analysis. In particular, due to this source of
complexity the instance checking problem (unlike subsumption) cannot be
solved by means of one single level of nondeterministic choice.

4. With respect to the combined complexity, .4s is in the same class (PSPACE) as
more complex languages (e.g., AZC, see (Baader and Hollunder, 1991)). There-
fore, whenever the expressiveness of .As is required, other constructors can
be added without any increase of the (worst-case) computational complexity.

5. The source of complexity identified in this paper is not related to the possibility
of nesting an arbitrary number of existential and universal quantifiers, unlike
the one pointed out in (Donini et al., 1992a) for subsumption in AZ;g. In
fact, it leads to intractability even using only two nested existential quantifiers
and no universal ones. This is an important observation, since long chains of
nested quantifier seem to do not appear frequently in "real" examples.

With regard to point 3, one may object that if the reasoning process underlying
this source of complexity is not in the intuition of the user, as pointed out in
Example 3.1, it must be ruled out by the reasoner (and by the semantics). On
the contrary, there are cases in which this kind of reasoning seems to agree with
the intuition and therefore it must be taken into account. In (Donini et al.,
1992b) it is addressed the issue of the appropriate semantics for queries involving
existential quantifications. It is shown how, by means of an epistemic operator
in the query language, it is possible to achieve a more sophisticated control on
the semantics. In particular, the system provides a mechanism for choosing the
appropriate one for the particular query.

Acknowledgments

I would like to thank Francesco Donini, Maurizio Lenzerini, and Daniele Nardi for
discussion that contributed to the paper and Franz Baader, Enrico Franconi, and
Marco Schaerf for many helpful comments on earlier drafts. I also acknowledge
Yoav Shoham for his hospitality at the Computer Science Department of the
Stanford University, where part of this research has been developed.

Notes

1. ct~ss~r is actually complete, but with respect of a non standard semantics.
2. In (Vardi, 1982) it is also considered the so-called expression complexity (i.e., the complexity with

respect to the size of the concept representing the query).

278 SCHAERF

References

Baader, E & Hollunder, B. (1991). A Terminological Knowledge Representation System with Complete
Inference Algorithm. In Proc. Workshop on Processing Declarative Knowledge, PDK-I9. Lecture Notes
in Artificial Intelligence. Springer-Verlag: New York.
Brachman, R.J. & Levesque, H.J. (1984). The Tractability of Subsumption in Frame-Based Description
Languages. In Proc. 4th Nat. Conf. on Artificial Intelligence AAAI-84.
Donini, EM., Hollunder, B., Lenzerini, M., Marchetti Spaccamela, A., Nardi, D. & Nutt, W.. (1992a).
The Complexity of Existential Quantification in Concept Languages, Artificial Intelligence, 2-3, 309-
327.
Donini, EM., Lenzerini, M., Nardi, D. & Nutt, W. (1991). The Complexity of Concept Languages. In
James Alien, Richard Fikes, and Erik Sandewall (Eds.), Proc. 2nd Int. Conf. on Principles of Knowledge
Representation and Reasoning KR-91, pages 151-162, Morgan Kaufmann.
Donini, EM., Lenzerini, M., Nardi, D., Nutt, W. & Schaerf, A. (1992b). Adding Epistemic Operators
to Concept Languages. In Proc. 3rd Int. Conf. On Principles of Knowledge Representation and Reasoning
KR-92, pages 342-353.
Donini, EM., Lenzerini, M., Nardi, D. & Schaerf, A. (1992c). From Subsumption to Instance
Checking, Technical Report 15.92, Dipartimento di Informatica e Sistemistica, Universita di Roma
"La Sapienza."
Garey, M.R. & Johnson, D.S. (1979). Computers and lntractability-A guide to NP-completeness,
Freeman: San Francisco.
Lenzerini, M. & Schaerf, A. (1991a). Concept Languages as Query Languages. In Proc. 9th Nat.
Conf. on Artificial Intelligence AAAI-91.
Lenzerini, M. & Schaerf, A. (1991b). Querying Concept-Based Knowledge Bases. In Proc. Workshop
on Processing Declarative Knowledge, PDK-91, Lecture Notes in Artificial Intelligence. Springer-Verlag:
New York.
Levesque, H.J. & Brachman, R.J. (1987). Expressiveness and Tractability in Knowledge Representation
and Reasoning, Computational Intelligence, 3, 78-93.
MacGregor, R. (1991). Inside the LOOM Description Classifier, SIGART Bulletin, 2(3); 88-92.
Nebel, B. (1988). Computational Complexity of Terminological Reasoning in BACK, Artificial Intelli-
gence, 34(3), 371-383.
Nebel, B. (1990a) Reasoning and Revision in Hybrid Representation Systems, Lecture Notes in Artificial
Intelligence. Springer-Verlag: New York.
Nebel, B. (1990b). Terminological Reasoning is Inherently Intractable. Artificial Intelligence, 43, 235-
249.
Nebel, B. (1991). Terminological Cycles: Semantics and Computational Properties. In John E Sowa
(ed.), Principles of Semantic Networks, pages 331-361. Morgan Kaufmann.
Patel-Schneider, EE, McGuiness, D.L., Brachman, R.J., Alperin Resnick, L. & Borgida, A. (1991).
The CLASSIC Knowledge Representation System: Guiding Principles and Implementation Rationale.
SIGART Bulletin, 2(3); 108--113.
Peltason, C. (1991). The BACK System-An Overview, SIGART Bulletin, 2(3); 114-119.
Schmidt-SchauB, M. (1989). Subsumption in KL-ONE Is Undecidable. In Ron J. Brachman, Hector
J. Levesque, and Ray Reiter Ed, Proc. 1st Int. Conf. on Principles of Knowledge Representation and
Reasoning KR-89. Morgan Kaufmann.
Schmidt-Schaul3, M. & Smolka, G. (1991). Attributive Concept Descriptions with Complements,
Artificial Intelligence, 48(1), 1-26.
Vardi, M. (1982). The Complexity of Relational Query Languages.In 14th ACM Syrup. on Theory of
Computing, pages 137-146.

