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Abstract. The basic structure of an intelligent inquiring system is described. We discuss the process 
of generalization of requirements based on the use of fuzzy subsets. The concept of importance 
modification is introduced. A description of the construction of the envelope of potentially relevant 
items is presented. The process of criteria aggregation based on MOM and MAM operators is 
investigated. We discuss the use of a MAM operator to provide a ranking of the relevant items in 
the information base. 
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1. Introduction 

An intelligent inquiring system is a kind of information retrieval (IR) system 
used to retrieve relevant information objects from an information base. The 
information base stores a collection of objects some of which are of interest to 
the current user. Each object in the information base can be seen to be made up 
of two components. The first component is the index and the second component 
is the body. The index usually consists of highly organized pieces of information 
that can be used to help identify and select the objects that may be relevant to 
a user. The body consists of information which may not be organized, but it 
contains the material that is of interest to the user. The fundamental problem 
in information retrieval is to find the subset of objects in the information base 
that is relevant to a given user. In a fuzzy information retrieval system, one can 
supply the list of relevant items with an ordering as to their potential interest 
to the user. Figure 1 shows a top-level view of the information retrieval system 
processes. 

In the first step the user enters a request in terms of features of interest 
employing the keywords in the indexing system used to describe the objects. 
The information in this query is then used by the information retrieval system 
to select items that may be potentially relevant to the user. The final step is a 
process where the user looks at the items suggested by the system and decides the 
ultimate relevance of the items. This final step greatly reduces the burden of the 
information retrieval process, for it allows the user to look at the items selected 
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Figure 1. Information retrieval process. 

and decide the ultimate relevance. This means that not all the knowledge about 
the decision has to be formalized in a manner that can be manipulated by the 
computer. The user must only supply the information that is used to search 
through the index. 

As an example, we will consider the problem of selecting a house for purchase 
and assume that the user has access to an information base consisting of a 
collection of houses for sale. Here the user would express properties about the 
kind of house desired (price, size, location, etc.) in the query. The system would 
then search the information base and produce a listing of houses which closely 
match the user's request. This information contained in this listing could include 
text, more detailed information about the house as well as perhaps a picture 
of the house. The user then looks at this information and then decides which 
houses he wants to visit. In making this decision the user may use all kinds of 
subjective criteria which may be hard to quantify and not necessarily specified in 
his original query. 

In this paper we shall describe an information retrieval system which uses 
fuzzy sets to help in the selection process, this kind of system can be viewed as 
an intelligent inquiry system. Figure 2, which is an expansion of the retrieval 
(filtering) process of Figure 1, illustrates the steps involved in the information 
retrieval process. 
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In the first step the crisp information provided by the user is generalized with 
the aid of fuzzy sets. Using the index and a modified version of the requirements 
("crisp envelope", step 2), we search through the information base (step 3), to find 
a subset of objects in the information base that can be considered as potentially 
relevant to the user. Step 3 can be based on an ordinary crisp querying language. 
The set of objects found in this step is called the "crisp envelope" answer. The 
final step in the process is a ranking of the elements in this crisp envelope which 
is then presented to the user. 

2. Fuzziflcation of requirements 

An important characteristic of many of the criteria supplied in a user query 
is that the needs they intend to represent are not crisp. If a person looking 
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for a house indicates their desire to spend between $100,000 and $140,000 for 
the house, it is not the case that they will be totally uninterested in a house 
costing $145,000. They may be less satisfied but not completely unsatisfied. The 
central observation here is that the boundary between a criteria being completely 
satisfied and not being satisfied is fuzzy rather than crisp. In building intelligent 
information retrieval systems we must take advantage of this fuzziness in the 
criteria. As we shall subsequently see, we use this fuzziness in two ways. First, 
we use it to help to extend the search space used for looking for potentially 
relevant items, in the example case, houses. In particular, we shall use it to help 
provide a query envelope which will crisply extend our search space. The second 
way we shall use this fuzzy characteristic is to provide an ordering (ranking) of 
the items in the information base indicating the degree to which the user query 
is satisfied. 

The first step in the process of taking advantage of the lack of crispness 
in the user's requirements is to provide an appropriate representation of the 
requirement taking into account the noncrisp boundaries of the requirement. 
The most appropriate tool for representing this imprecise information is the 
fuzzy subset structure introduced by Zadeh (1965). As originally discussed by 
Zadeh, one application of the fuzzy subset is to represent concepts which have 
noncrisp boundaries. We recall that if X is a set, then a fuzzy subset A of X is 
characterized by a membership function A(x) ~ [0, 1] such that for any element x 
in X ,  A ( x )  indicates the degree to which the concept represented by A is satisfied 
by the element x. Considerable experience with fuzzy logic controllers (Lee, 
1990) has indicated that trapezoidal type functions are a very effective class of 
functions for the representation of fuzzy concepts which have typical values. 

Let [a, b] be the range of values specified as being acceptable by a user for 
some attribute, such as price of a house. One can then fuzzily the range [a, b] 
to be considered as "approximately [a, b]." Figure 3 shows the fuzzy subset A 
representing this generalization. 

Formally, we can represent the fuzzy subset A by the following membership 
function: 

A ( x )  = O, x < c, 

A ( x )  = ~-~ "ff':'~-c , c < x < a ,  

A ( x ) =  I, a < z < b ,  

A ( x )  - d-x b < x < d, 
- -  "d:'G-b~ 

A ( x )  = O, x > d. 

In some situations, the extension of the original interval does not necessarily 
imply a decrease in satisfaction. For example if [a, b] is the range for the price 
one is willing to pay for a house then paying anything less than a is completely 
satisfying. In this case, our fuzzy subset becomes as shown in figure 4. 
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In Figure 4 we see that in one direction, costs less then those in the range 
[a, b], the extension of the specifications provided by the user results in no loss 
of satisfaction while in the other direction there exists a decay of satisfaction, a 
fuzzy boundary manifested by a sloping line from b to d. 

While many of the requirements specified by a user can be generalized (fuzzi- 
fled) with the aid of fuzzy subsets some requirements are not amenable to 
generalization. For example, the desire to have a fireplace or two bathrooms 
are not easily fuzzified. 

The above technique is most useful for variables which have numeric domains, 
however it can be extended to nonnumeric domains by introducing a similarity 
relation (Zadeh, 1971). 

In addition to providing information about the values of the variables describing 
the objects, users can provide information about the importance of the various 
characteristics. Yager (1981; 1985; 1987) investigated the effect of importances of 
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Figure 5. Effect of different importance weights. 

criteria (concepts describing desired items) used in decision processes. In Yager 
(1978) it is suggested that if o~ e [0, 1] is a measure of importance associated 
with a criterion represented by a fuzzy subset A on X then we can transform 
this into another fuzzy subset B such that 

B(x) = (A(x))'L 

Yager (1977) describes the effect of the inclusion of importance as being closely 
related to modification of the original concept by a linguistic hedge, such as "sort 
of." Figure 5 illustrates, for an exponential type fuzzy subset, the effect of the 
modification of a concept by importance. The principle effect of this operation 
is to cause, in the transformed fuzzy subset B, an increase in membership grade, 
a widening of bandwidth, as we decrease the importance of the original set A. 
Thus, if al > a2 then for all z 

Bl(x) <_ B2(x). 

Recently Yager (1993a) has provided a general formal characterization of the 
association of importance with criteria. Assume A is a fuzzy subset and c~ E [0, 
1] is a measure of importance; then we can transform A into a fuzzy subset B 
such that 

B(x) = g(a, A(x)) 

where g(a, A(z)) is a function having the following properties: 

1. If Al(x) > A2(x) then g(o~,Al(x)) >_ g(c~,A2(x)). 
2. If c~1 > ol2 then g(al, A(x)) <_ g(a2, A(x)). 
3. g(1,A(x)) = A(x). 
4. g(O, A(x)) = 1. 
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Figure 6. Including importance weights with trapezoidal membership function. 

We see from condition two in the above that the effect of decreasing importance 
is to increase the width of the transformed fuzzy subset B, it does this by increasing 
the membership grade. We see that the less important a characteristic, the less 
restrictive the effective requirement expressed by the criterion. At the extreme, 
see condition 4, if something has zero importance, any object in the information 
base satisfies it. 

Because of their inherent piecewise linearity we earlier suggested the use 
of trapezoidal type membership functions, as shown in Figure 3, to generalize 
(fuzzily) the crisp ranges, [a, b], given by a user. Figure 6 illustrates a new 
proposed method for including importances associated with trapezoidal type 
membership functions. 

In Figure 6, it is assumed that al  > a2, a2 is less important. We see that if 
we denote Si = [c;, d~.] as the support of the fuzzy subset, the less important 
a criterion, the wider the support. Using this approach for the inclusion of 
importance we may obtain an alternative representation of the fuzzy subset 
membership grade. 

We recall that for the left fuzzy part ci < z < a, we get 

_,,aicxa - - c ,  

a - - C /  

Let 

tZ --  C i 

G 

Thus ui is the proportion of a the user is willing to give up, consider as 
dispensable, if the importance is c~i. u~ can be reviewed as a measure of the 
flexibility, how much it can be relaxed, as a function of the importance. We 
see that 
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Cl = a -  u i a  

and thus for x e [a - u ia ,  a] 

- = 1 - - -  1 -  . 
u i a  u i  

Since a -  ci decreases as the importance increases we see that the larger the 
importance the smaller the ui. In particular, we need some function f ,  

f(oz) = u 

such that as ~ increases, u decreases to help us get u directly from the importance 
value. Subsequently we shall say more about the construction of f .  

In an analogous manner we get for the right fuzzy part b < x <dl ,  that 

_ -  

vi 

We note that the two fuzzy parts do not have to be symmetric. Again, we must 
obtain some function h which transforms importance values o~i into corresponding 
values of vi. Both functions, g and h, must depend on the context. 

While we have implicitly assumed the importances to be provided in terms of 
numeric values in the unit interval, this is neither necessary nor desirable. A 
preferred means of getting importance information from the user is in terms of 
a linguistic scale. A typical example of such a scale is the following: 

/1: very high 
/2: high 
/3: moderate 
/4: low 
/5: very low 

Using such a scale, we again need functions to transform the importance value 
into a u,:, vl pair. This transformation, while dependent on the domain, must be 
such that as the importance decreases the width of the support should increase. 

An issue that must be considered in the construction of the approximate fuzzy 
ranges from the crisp ranges is how we get the c4 and di that are used for the 
extensions. A number of observations must be made regarding this issue. 

Experience with man-machine systems tells us that we do not want too over- 
burden the user with requests for to much information. A second observation 
that bears on the process of selection of the extended ranges results from the 
way in which the fuzzy information retrieval system is used. In using such a 
system, the user inputs his requirements and importances. This information then 
is transformed to a fuzzy subset which is used to ex tend  the boundaries of the 
request by providing a crisp enve lope  for possible objects that satisfy the user 
(see Figure 7). This step allows us to use an ordinary (crisp) database system 
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to do the searching. We call this the extended crisp condition (see Figure 7). 
The objects in the database falling in the crisp envelope are ranked, where the 
ranking is done with the aid of the fuzzy subset. A given number of the highest 
ranked objects are presented to the user for their taking the appropriate action. 

From this discussion we see that all that the fuzzification process does is help 
in providing the crisp extension of the search space and the final ranking of the 
objects. The issue of determining the values of ci and d~ then becomes one of 
appropriately relaxing the original requirements and to obtain an appropriate 
ordering for the objects presented to the user. 

Based upon the above observations, we feel that the values of c~ and di 
can be obtained via default values. A default value of course depends on the 
application domain and attribute range. These default values are obtained from 
the importance values through the function f(a) previously introduced. 

We should emphasize a very important distinction between the problem of 
multicriteria based information retrieval (MCIR) and multicriteria decision mak- 
ing (MCDM). The important thing to highlight is that in multicriteria based 
information retrieval it is the user that makes the final decision as to what action 
to take (which houses to visit or buy) whereas in multicriteria decision making it 
is the computer that makes the final decision. The implication of this distinction 
is that the representational requirements in MCIR are less demanding then in 
MCDM. Since the final decision in MCIR is made by the user, this final decision 
can based upon additional knowledge and criteria which the user has but which 
he need not represent in the query presented to the system (see Figure 1). This 
characteristic type of man-machine interaction inherent in information retrieval 
systems greatly simplifies the burden on the system and the requirements that 
the user must formally express. Thus, once having the highest ranked objects he 
can bring to bear some very sophisticated reasoning and preference information 
in actually making the final decision. On the other hand, in MCDM systems the 
user must present to the computer all the criteria he desires to be considered 
which may be beyond the representational ability of the system. 
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3. Computation of Envelopes 

A fuzzy query to an information/data base may be seen as a multicriteria, 
or multidimensional, characterization of the user needs with respect to the 
information base domain, the objects in the information base. From this point 
of view the response to a query is the set of objects in the search space that are 
the best instances of the concept. From another point of view, fuzzy querying 
is a decision problem. In this view, the query describes a multicriteria decision 
problem and the answer to the query is the set of objects in the information 
base that provides the best overall satisfaction of the decision problem. 

In general, a query criterion induces a linear ordering of the objects in the 
information base. Thus, a multicriteria query determines a partial ordering of 
the objects. The global (linear) ordering needed for the answer is obtained 
by an aggregation of the satisfactions of the criteria. In this aggregation, each 
criterion is weighted with the importance of satisfying the criterion in recognizing 
the concept or in the decision problem. Thus, to answer a query, we must, in 
principle, compute the aggregated value for each object in the database. To do 
this in an efficient way, we should provide fuzzy indexes organized as inverted 
files. However, in fuzzy querying in existing database systems, only access through 
the crisp querying language of the systems is possible. There are two de facto 
standards to consider in crisp querying languages, namely SQL (structured query 
language) (Date, 1986) for the relational database model, and CCL (common 
command language) (Saiton, 1989) for document bases ("text bases"). Both 
languages support a crisp Boolean formulation of query criteria. We will address 
the problem of fuzzy querying through such a crisp language as SQL. 

The basic idea of our approach is to compute a so-called envelope for the 
fuzzy query. An envelope is a crisp query such that the answer to the fuzzy query 
is a subset of the answer to the envelope; the envelope defines the query used 
for accessing the database. 

Assume our information base consists of a set of objects X. Let AI , . . . ,Ap  
be a set of criteria, fuzzy subsets, required by the user. Our procedure is to 
transform these fuzzy criteria into crisp criteria, D1,.. . ,  Dp and then use a SQL 
language to search the information base to find the subset of objects Y of X that 
satisfy this crisp query, we call the subset Y the envelope answer. Once having 
the subset Y we can use the original fuzzy criteria to rank the objects. The 
advantage of using this envelope is to reduce the search burden as well as allow 
the use of available SOL search techniques. In this section we shall concentrate 
on the issue of formulating the envelope. 

Consider a fuzzy criteria A represented by a trapezoidal fuzzy subset of the 
type shown in Figure 8. 

We shall obtain from the fuzzy criteria A a related crisp criteria D as shown 
in Figure 9. 
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The membership grade of this crisp criteria is 

D(z) = 1 for e < z < f ,  

D(x) = 0 otherwise. 

We obtain the bounds, e and f ,  of the criteria D from A in the following 
manner.  Let  6, called the threshold for satisfaction of a query, be a number  
in the unit interval, for example we can select 6 --- .5. From the membership 
function of A we obtain e and f as the 6 level points, thus, D is the 6-level set 
of A. In particular, in Figure 8 

e-- t3  
A(e) = 6 - 

a - - c "  

Therefore  

e = ~ ( a  - c )  + 

and 
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Figure 10. Construction of the envelope. 

d - f  
A ( f )  = 6 - 

d - b  

hence 

f = d - 6 ( d - b )  

In a similar manner we transform all the fuzzy criteria, Ai,  into crisp criteria D~. 
We then calculate the envelope Y of X as the subset of objects y such that 

Di(y)  = 1 

for all i. That is, the envelope is the subset of elements that satisfy all the 
transformed criteria. 

Figure 10 illustrates the construction of the envelope for a simple two- 
dimensional query. The area contained within the thick black lines constitutes 
our database of objects. The black rectangle is meant to indicate the subset of 
elements in the database that satisfy the original crisp query specified the user. 
The black rectangle plus the gray area indicates the envelope obtained by the 
fuzzification of the original query followed by the crispization to D. It is on 
the elements in this envelope that we shall subsequently provide a ranking as 
to their potential usefulness to the user. Thus, via the process of fuzzification 
followed by crispization we have essentially extended the domain of objects we 
shall consider. 

It should be pointed out that using our approach, the importances of the 
criteria have been factored into the process of obtaining the envelope. 

Figure 11 illustrates the effect of importance inclusion on the construction of 
the envelope. Retrieved set II shows that if we decrease the importance of the 
criteria representated along the abscissa coordinate we effectively increase the 
size of the envelope in that direction. This effect results because in decreasing 
the importance we have increased the values of the membership grade (see 
figure 6) and essentially relaxed the criterion and thus allowed more objects in 
the information base to pass through our filter. 



FUZZIFICATION OF QUERIES 433 

I II 

l l  
Figure II. Effect of change of importance. 

As a result of this step we have a collection of objects, the envelope answer, 
which contains the subset of potentially relevant objects to the user. The next 
step is to rank these objects, to do this we use an aggregation type process 
and use the original fuzzy criteria, the A~, to provide the scores used in this 
aggregation process. 

4. On the aggregation of criteria using MOM and MAM operators 

In fuzzy logic systems, the basic aggregation operations are performed by the 
logical connectives and and or which provide pointwise implementations of the 
intersection and union operations. It has been well-established in the literature 
(Dubois and Prade 1985) that the appropriate characterization of these operators 
in the muitivalued logic environment are the triangular norm operators. The t- 
norm operator  provides the characterization of the and operator. It is a mapping 
T : [0, 1] x [0, 1] ~ [0, 1] having the following properties: 

T 1 : T(a, b) = T(b, a) (commutativity) 
T 2 : T(a, b) > T(c, d) for a > c and b > d (monotonicity) 
T 3 : T(a, T(b, c)) = T(T(a, b), c) (associativity) 
T 4 : T(a, 1) = (Andness boundary condition) 

Its dual, the t-conorm, characterizes, the or operator. It is a mapping S: [0, 1] • 
[0, 1] ~ [0, 1] having properties 

S 1 : S(a.b) = S(b, a) (commutativity) 
S 2 : S(a, b) > S(c, d) for a > c and b > d (monotonicity) 
S 3 : S(a, S(b, c)) = S(S(a, b), c) (associativity) 
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S 4 : S(a,  O) = a (Orness boundary condition) 

Examples of  t-norm are 

T(a, b) = Min(a, b), 

T(a, b) = 1 - Min + [1, ((1 - a)P + (1 - b)P))l/~], p > 0, 

T(a, b) = ab. 

The corresponding t-conorms are 

S(a, b) = Min(a, b), 

S(a, b) = 1 - Min + [1, (1P - bP)~/~'], p > O, 

S(a, b) = a + b - ab. 

A fundamental property associated with t-norms is that 

T(al, . . .  an) >_ T(al, . . .  an, an+l). 

Yager (1993b, c, d) called this property the anti-monotonicity in eardina/ity prop- 
erty. This property says that as more conditions are required to be satisfied by 
an and aggregation, the overall satisfaction can't increase. The related property 
associated with the t-conorms is 

S ( a l , a 2  . . . .  _< S(.1,  . . . .  a . , a . + l ) .  

Yager (1993b) called this the monotonicity in cardinality property. As more  
conditions are allowed to contribute to an or aggregation the overall satisfaction 
cannot decrease. 

It can be shown that 1 acts as an identity element in the t-norm aggregation 
while 0 acts as an identity element in the t-conorm aggregation. 

We shall now introduce a more generalized class of operators which provide 
for generalized formulations of the and and or aggregations. A bag (or multiset) 
drawn from a set X is any collection of elements, each of which is contained 
in X. A bag allows multiple copies of the same element. In the following, we 
shall restrict ourselves by constraining X to be the unit interval, I. We shall let 
U ~ be the subset of all bags drawn from I. Assume B --< b~,.. . ,b, > is a bag 
cardinality n. We say that B is in fundamental form if the elements are indexed 
such that bi > bj if i > j .  If A and B are two bags of the same cardinality and 
when expressed in fundamental form we have the property that a~ _> b~ for all i, 
then we shall denote this as A > B. If A and B are two bags we shall denote 
the sum of the bags by D = A ~ B where D is the bag consisting of the members  
of both A and B. 

Example. Assume A = (.2, .4, .8, 1,1) abd B = (0, .4, .6,1). Then 

D = A @ B = (0, .2, .4, .4, .6, .8, 1, 1, 1) 
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DEFINITION. A bag mapping H: U I --, I is called a MAM (monotonic anti- 
monotonic) (Yager, 1993 b) operator if it has the following properties: 

MA.1 If A > B then H(A) > H(B) (monotonicity in values). 
MA.2 If D = A + (1) then H(A) = H(D) (one identity element). 

As in the case of all bag mappings, the MAM operator is commutative with 
respect to its arguments. We call this a generalized symmetry condition. It can 
easily be seen that if the following condition is satisfied 

PA.1 If D = A �9 B then H(A) >_ H(D) (antimonotonicity in cardinality) 

We see that the MAM operator is a generalization of the t-norm operator 
and can be viewed as a generalized and aggregation. In particular, the boundary 
condition of the t-norm, T4, has been weakened and included as MA.2. The 
associativity property of the t-norm, T3, has been eliminated. The condition MA.1 
is essentially the monotonicity condition, T2, and the commutativity condition, 
T1, is implicitly satisfied by all bag mappings. 

Yager (1993 b) has shown that the t-norm operator is a special class of MAM 
operators. 

For any bag A, since A = �9 @ A (~ being the empty bag, 0 ), from condition 
PA.1 it follows that H(~) > H(A). Based upon this condition we shall say that 
H is normal if H(~) = 1. We shall say that the MAM operator is regular if 
H((0)) = 0. It can be seen that if H is regular, then for any bag E having zero as 
one of its arguments, it is the case that H(E) = 0. We can express E = (0) @ B 
where B is the bag E less the element 0. From PA.1 H(E) < H((0)) < 0; hence 
H(E) = O. 

Yager (1993 b) introduced a family of operators which generalized the t- 
conorm operator and thus induce generalized orlike aggregations. This class of 
bag mappings are called MOM (monotonic on monotonic) operators. 

DEFINITION. A bag mapping G: U x ---, I is called a MOM (monotonic on mono- 
tonic) operator (Yager [12]) if it has the following properties: 

MO.1 If A > B, then G(A) > G(B) (monotonicity in values). 
MO.2 ff D = A + (0) then G(A) = G(D) (zero identity element). 

It can be shown that the following property holds for MOM operators 

PO.1 If D = A @ B then G(D) > G(A) (monotonicity in cardinality) 

It can be shown that the MOM operator is a generalization of the t-conorm 
operators [13]. We say that a MOM operator G is normal if G(~) = 0. We shall 
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call G regular if G((1)) = 1. It can be shown that if G is regular and F is any 
bag containing 1 as an element, then G(E)  = 1. 

There exists a De Morgan-like duality between the MOM and MAM operators. 

DEFINITION. Assume F : U I ~ I is any bag mapping which takes bags from 
the unit interval into the unit interval. We define the dual o f  F,  P, as _P(A) -- 
1 - F(AC). In this definition A c is the complement of A defined to be the bag 
consisting of the elements b~, where bl = hi = 1 - ai. 

The following theorems proven in Yager [12] show that MAM and MOM 
operators are duals of each other. 

THEOREM. Assume G is a MOM operator. Then Q is a MAM operator. 

THEOREM. Assume H is a MOM operator. Then ~ is a MAM operator. 

As we have already indicated the t-norm and t-conorm are MAM and MOM 
operators. In the following we shall introduce another important class of MAM 
and MOM operators. Assume g is a mapping from the real line into the unit 
interval g: R ~ I, having the property 

g(x)  > g(y) if x > y (monotonic nondecreasing). 

Let A be a bag drawn from the unit interval and let us define 

n 

Sum(A) = ~ ai, 

where n is the cardinality of A. We shall call this the bag sum. It can be shown 
that the bag mapping 

G(A) = g(Sum(A)) 

is a MOM operator. 
Using our duality theorem we can show that 

H ( A )  = h(Sum(A~)) 

where h is a mapping h: R ~ I which is monotonically nonincreasing. If x > y 
then h(z)  < h(y) antimonotone) is a MAM operator. 

We shall now introduce the concept of weighted bags and the related ideas 
of weighted MOM and MAM operators. These operators will generalize the 
concept of weighted aggregations which can be used to associate importances 
with the aggregates. 
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DEFINITION. A weighted bag is a bag A whose elements are tuples (wi, ai) where 
both w~ and al are drawn from the unit interval. For each tuple in A we shall 
call a~ the value of the tuple and wt the weight of the tuple. 

Let A and B be two weighted bags of the same cardinality. Assume to each 
tuple (wi, al) in A there exists a corresponding tuple (wi, b~) in B where w~ = wt. 
If it is the case that at > b~ for all i we shall say that A >_v B. Assume that for 
each tuple (wi, ai) in A, there exists a corresponding tuple (w~, bl) in B where 
at = b~. If it is the case that wl > w~ we shall say that A >~ B. We now extend 
the MOM operator to act on weighted bags. 

DEFINITION. A bag mapping G~: U x• -+ I is called a weighted MOM operator 
if it has the properties: 

WO. 1 If A _>v B, then G,o(A) > G~,(B). 
WO. 2 If D = A @ B, then Gw(D) >_ Gw(A). 
WO. 3 G,,,(A @ ((1,0))) = G~,(A). 
WO. 4 If A >~ B, then G,~(A) > G,~(B). 

We now turn to the corresponding definition for weighted MAM operators. 

DEFINITION. A bag mapping H~o: U I• ~ I is called a weighted MAM operator 
if it has the properties. 

WA. 1 If A > .  B, then H~o(A) > H~,(B). 
WA. 2 If D = A @ B, then H,:(D) > H~(A). 
WA. 3 H,,(A @ ((1, 1))) = Hw(A). 
WA. 4 If A >~, B, then H~(A) < H~(B). 

The introduction of these weighted bags along with the weighted mappings will 
provide a framework for generalizing the idea of weighted aggregations. The 
weighted operators allow us to consider aggregations where the elements differ 
in importance. 

Assume A is a weighted bag. We define the right-pointed complement of this 
bag as ARC where every element (w~,a~) in A is replaced by (w~,~), with 
~ -- 1 - a~. We now define the concept of the dual of a weighted bag mapping 
in a similar way to which we defined it in the earlier section. 

DEFINITION. Assume F~: U ~• --, I is a weighted bag mapping. We define the 
dual of F~,, P~o, as 

-g'w(A) = 1 - F(ARC). 

We now indicate that weighted MOM and MAM operators are duals of each other. 
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THEOREM. Assume G~o is a weighted MOM operator then ~w is a weighted 
MAM operator. 

THEOREM. Assume H~, is a weighted MAM operator then ~o  is a weighted 
MOM operator. 

We shall now look at some classes of weighted bag operators, the proofs of 
all the results in this section are found in Yager (1993b). We first define a class 
of weighted MOM operators based on the logical connectives. 

THEOREM. If S is a t-conorm and T a t-norm then G,,,(A) = Si(T(w~, a/)) is a 
weighted MOM operator. 

The following are examples of this class of  operators: 

1. G~(A)  = 

2. G~(A)  = 

3. V~(A)  = 

4. G~(A)  = 

5. C~(A)  = 

Maxi[Wi A ai] (A = Min). 
Maxi[wlai]. 
Mini[l, ~ 1  wlai]. 
Mini[l, ~in=l wi A ai]. 
1 -H;'=I w~o~. 

Using the duality relationship we obtain the following theorem. 

THEOREM. If S is a t-conorm and T a t-norm then H,,,(A) = Ti(S(W, ai)) is a 
weighted MAM operator. 

Among this class of operators are 

H~,(A) = Mini[(~i V ai)](V = Max), 
n 

H.(A)  = H ( ~ ,  + wi a,). 
i=l  

The following theorem introduces another class of weighted MOM operators. 

THEOREM. Assume g is a mapping from the real line into the unit interval 
g: R --. I such that g(z) > g(y) if x > y (monotonic nondecreasing) then 
G~,(A) --- g (~ ,~ l  wiai) is a weighted MOM operator. We shall call these 
additive weighted MOM operators. 

Using our duality theorem we can obtain a class of dual additive weighted 
MAM operators, generalized weighted and aggregators. 
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THEOREM. Assume h is a mapping from the real line into the unit interval 
h: R ~ I such that h(x) < h(y) if z > y (monotonic nonincreasing) then 
H,o(A) = h(~,i~=l wi-al) is a weighted MAM operator. 

We see that G,, essentially increases as ~w~ai  increases, that is as more 
important elements are satisfied we increase our satisfaction. On the other hand, 
H~, works by considering the unsatisfaction, gl, and as more important aggregates 
are not satisfied we decrease the total aggregate score. 

5. Ranking objects in the retrieval system 

In the preceding, we discussed the issue of criteria aggregation. We shall now 
specialize this to the ranking of objects for an information retrieval system. We 
discussed two classes of aggregation, MOM and MAM operators. We recall that 
the MOM operator is a generalized andlike operator. In information retrieval 
systems we see the criteria specified by the user as being connected by an andlike 
operator, assuming the user generally wants all the criteria satisfied. That is, a 
person desires to obtain further information about houses in a certain price range 
and in a particular location and having certain amenities. Thus, the appropriate 
family of operators are the MAM operators. We have described two classes 
of MAM operators, the t-norm and the additive. We shall consider here the 
additive class. We recall that the weighted additive formulation is 

,,) Score(y) = h wi(1 - Ai(y . 

However, in constructing the criteria function, as discussed in Section 2, we can 
implicitly include the importance weights, thus we can use an alternative version 

Score(y) = h 1 - Bi(y , 

where B~ are the importance modified criteria. 
In addition, since all we need is a ranking of the objects we can use any 

monotonically nonincreasing function for h. We shall use the exponential func- 
tion, thus 

Score(y) = Exp - E ( 1 - B i ( y ) )  = Exp - 1 Exp Bi(y) . 
i~l i=1 

Since the term Exp( -~ i~1  1) = Exp(-n) > 0 plays no role in determining the 
ranking we can use 
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Sc~ = Exp (~=1 Bi(Y) ) ' 

Furthermore, since taking the log of score does not effect the ordering we can use 

Score(y) = ~ Bi(y) 
i=1 

Thus, the ranking of the objects can be obtained by simply ordering them 
according to the total of their scores of the importance modified criteria. 

6. Conclusion 

We have discussed a number of issues related to the construction of a weighted 
multicriteria information retrieval system that uses fuzzy subsets as mechanism 
to allow for the flexible evaluation of user requirements. We have discussed the 
potential use of MAM and MOM operators as a tool for the aggregation of 
user requirements. 

7. Notes 

1. In this paper we use the term information retrieval in a more colloquial 
sense than the narrow definition used in the technical literature where it 
usually refers to textual retrieval involving keywords. We refer the reader 
to Miyamoto and Miyake [4] for an interesting discussion on the distinction 
between information retrieval systems and other closely related technologies 
such as database management systems and query response systems. 

2. The formulation of raising the fuzzy subset to a power to include importances 
has the drawback of not enabling us to change membership that are zero in 
the original fuzzy subset. This drawback can be circumvented if we restrict 
the use of this formulation to fuzzy subsets which are of the exponential type. 

3. I would like to thank M. Zemankova for suggesting this interpretation. 
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