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ABSTRACT 
Non-linear finite element results from a round robin are compared with empirical and experimental data obtained for 
three types of geometries: compact specimen, three-point bend specimen and a center-cracked panel subject to 
uniaxial loading. The solution parameters to be compared in various forms are: applied load, clip gauge displace- 
ment, Rice J-integral (with no limit placed on method of calculation), K~, crack opening profiles and plastic zone 
development. 

1. Introduction 

Numerical methods of stress analysis are powerful tools which can produce solutions for 
elastic-plastic deformation of solids and in this connection have found widespread use in 
fracture mechanics. Unfortunately, the absence of exact solutions creates difficulties in 
assessing the accuracy of these solutions. A previous comparison [1] has shown the serious 
discrepancies that can exist between solutions to an identical problem, even for programs 
based on similar formulations. 

As well as checking for self-consistency amongst  different solutions of the same problem, 
it is also useful to check numerical results with actual experimental results. The suggested 
round robin problems have all been tested experimentally, and hence loads and displace- 
ments can be compared directly. 

This paper summarises the results of a round robin problem given at the Second 
International Conference on Numerical Methods in Fracture Mechanics, held at University 
College Swansea, U.K., in July, 1980. For this conference the following problems were 
suggested: 

(1) Elastic-plastic compact  specimen (CS) analysis. 
(2) Elastic-plastic three-point bend (BEND3) analysis. 
(3) K~ calculations for BEND3 and single edge notch tension (SENT) specimens. 
(4) Slow crack growth of a center-cracked panel (CCP) subject to uniaxial tension. 
A brief account of the program together with procedures used was requested from each 

participant. The results presented at the conference were in an anonymous form, with each 
contributor designated by a letter of the alphabet. 

2. Description of the problems 

The specimens chosen may be represented by two-dimensional numerical models. The 
BEND3 specimen can be considered as a plane strain problem, whilst the CS and CCP 
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geometries are represented by plane stress. These two extremes represent the overall de- 
formation behaviour of the specimens. 

The CS and BEND3 specimens involve static analysis only, and no fracture loads are 
quoted. In the CCP specimen, stable crack growth was monotored, and accurate modelling of 
this specimen requires the use of some appropriate fracture criterion, in addition to the elastic- 
plastic analysis. 

The four problems presented involve a considerable amount of computing effort, and 
participants were not obliged to carry out all the computations. Partial results for any 
particular specimen were acceptable. 

No limitation is placed on the method of calculating the J-integral. Table 1 gives some of 
the definitions of J used in this paper. 

TABLE 1 
Summary of definitions for evaluating the J-integral 

Joo Contour integral [3] jcO=fr(wdy dul '~ - Ti~xdS ) 

1 dU 
Jp~ Difference in potential energy [4] JP° B da 

Jvi Virtual crack extension [5] 
1 

Je~ Sumpter's energy split [6] Jes 
B(W - a) - - ( ~ l e d U e  + tlpdUp) 

Jco is usually averaged over a number of paths to render Jco. Two load/displacement 
curves (and hence two computer runs) are required to calculate Jp~ from two equivalent 
geometries with their respective crack lengths differing by da. dU is the difference in energy 
absorbed by the two geometries (or the difference in area under the two load/displacement 
curves ) .  

For Jvl, a solution for one single crack length is required and the crack is advanced by 
moving nodal points rather than removing nodal tractions at the crack tip. Thus the change in 
structural stiffness can be calculated, enabling dU/da to be obtained. 

J,s requires one computer run to obtain the elastic (U~) and plastic (Up) absorbed energy 
components. 

2.1. Compact specimen (CS) 

In an experimental investigation on thickness effects at the Institut fiir Eisenhiittenkunde, in 
Aachen, W. Germany, standard CS specimens of varying thickness were tested. For the 
thinnest specimen, 3 mm thick, considerable plasticity occurred prior to unstable fracture. 
This specimen has been chosen as the numerical model. Load and clip gauge displacements 
were monitored during testing, with the clip gauge measuring the displacements at the load 
line between the points marked A and B on the machined notch in Fig. 1. Whether to model 
the loading pin hole was left to the contributors themselves. 

The material properties are quoted in Fig. 2. Two results were required for this specimen, 
the load and J-integral versus clip gauge displacment. The specimen was loaded experiment- 
ally by load control, with the experimental value of J obtained from the load/displacement 
curve using Merkle and Corten's equation in Ref. [2]. 

A list of persons responsible for the nine contributions is shown in Table 2. 



M.H. Bleackley and A.R. Luxmoore 17 

t000.0- 

950.0- 

900.0- 

850.0- 

800.0- 

w= 100.0 I 25-0 ~ 

' ~  All in mm dimensions 
tiil Displacement of clip 

~ i l o  gauge measured on 
~ _ ~zs,o ~ ~ - =  750 T. ® axis of load at AB 

Axis of symmetry- ~ I X 

~ ./3.o 

P 

Figure 1. Geometry of compact tension specimen. 
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TABLE 2 
Participants in the compact specimen round robin problem 

Comparison of finite element solutions 

M. Bleackley 
T.K. Hellen 

K. Kashima 
D. Mackay 
M. Rahimian and 
Ehrlacher 
M. Sakata, S. Aoki 
and K. Kishimoto 
T. Watanabe 

G. Yagawa, T. Aizawa 
and Y. Takahashi 
Y. Yamada and 
I. Nishiguchi 

University College of Swansea, West Glamorgan, Wales, U.K. 
Central Electricity Generating Board, Berkeley Nuclear Laboratories, Gloucester- 
shire, England. 
Central Research Institute of Electrical Power, Japan. 
University College of Swansea, West Glamorgan, Wales, U.K. 
Laboratoire de Mecanique des Solides, Ecole Polytechnique, palaiseau, France. 

Tokyo Institute of Technology, Japan. 

Century Research Center 
Corporation, Japan. 
University of Tokyo, Japan. 

University of Tokyo, Japan. 

2.2. Three-point bend (BEND3) specimen 

A major problem in fracture mechanics is posed by the presence of cracks in welds. In a recent 
experimental investigation (Dawes, 1976, unpublished), a substantial difference in fracture 
behaviour was observed between shallow and deep cracks in welded specimens tested in a 
three-point bend configuration, Fig. 3, with deep cracks producing brittle behaviour. 

The specimen shown in Fig. 3 was modelled with a/W ratios of 0.1, 0.15 and the standard 
0.5 I-7], using the material properties quoted in Fig. 4. In the experimental tests only clip gauge 
displacements were monitored with the clip gauge points located at A, Fig. 3. The gauge 
measured displacements 3 mm above the top surface of the specimen. 

Five sets of results were required from this specimen: 
(a) Load versus clip gauge displacement. 
(b) J versus clip gauge displacement. 
(c) Crack opening profiles for a/W = 0.5 at a clip gauge displacement of 0.7 mm. 
(d) Center of rotation r. 
(e) Plastic zone profile for a/W = 0.5 at a clip gauge displacement of 0.7 mm. 
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Figure 3. Geometry of the three point BEND specimen. 
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The center of rotation is important when converting clip gauge displacement to crack tip 
displacement (Fig. 5). The center of rotation is measured by the distance from the crack tip, 
and this distance is put into non-dimensional form by dividing by the ligament length (W - a) 
giving the ratio r. 

The extent of the plastic zone, as calculated numerically, is very sensitive to the numerical 
refinements used. Although the plastic zones were not observed experimentally, it is of 
considerable interest to compare the different numerical evaluations, especially in a problem 
involving a boundary between dissimilar materials. 

The specimens were loaded experimentally by load control and from the load/load-point 

displacement curve experimental J~s values were obtained. 
A list of contributors is shown in Table 3. 

TABLE 3 
Participants in the three-point bend weld round robin problem 

M. Bleackley 
K. Kashima 
M. Kikuchi 
N. Mukaimachi 
T. Murakami and T. Mori 
T. Watanabe 

University College of Swansea, West Glamorgan, Wales, U.K. 
Central Research Institute of Electrical Power, Japan. 
Tokyo Science University, Japan. 
J.G.C. Corporation, Japan. 
Toshiba Electric Comapany, Japan. 
Century Research Center 
Corporation, Japan. 

A similar analytical round robin for a three-point bend homogeneous specimen with 
a /W = 0.5 has been carried out by Wilson and Osias [1]. 

2.3. K I Stress intensity factors for the BEND3 and SENT geometries 

It  is now well extablished that numerical methods can calculate stress intensity factors with a 
high order of accuracy. The main interest has now centred on the cost effectiveness of varying 
solutions. Reducing the number of degrees of freedom will reduce the cost, but it will also 
reduce the accuracy. Hence special crack tip formulations and other tehcniques have been 
devised to overcome this problem. 

Using the geometry of Fig. 3 with a/W values of 0.10 and 0.50 and the elastic properties in 
Fig. 4, K~ values are required for the BEND3 geometry in Fig. 3, together with the same 
specimen loaded in tension by uniform displacements across the end faces. These calculations 
are repeated for a weld material having a Young's modules of 170.0 kN/mm 2. These K I values 

are quoted in the dimensionless form F~ = K~Bx//-W/P, where P is the load. 
The assessment of cost effectiveness is not simple because the same program run on two 

different computers can produce quite different costings. However as cost is the main measure 
of effectiveness, participants were asked to quote the cost in dollars for their K~ calculations. 

A list of contributors is shown in Table 4. 

TABLE 4 
Participants in the nondimensional stress intensity factor round robin problem 

P. Bartholomew 
M. Bleackley 
T. Watanbe and G. Yagawa 
G. Yagawa and H. Hirayama 
G. Yagawa and Y. Takahashi 

Royal Aircraft Establishment, Farnborough, U.K. 
University College of Swansea, West Glamorgan, Wales, U.K. 
Century Research Center Corporation; University of Tokyo, Japan. 
University of Tokyo, Japan. 
University of Tokyo, Japan. 
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2.4. Center-cracked panel (CCP) 

In an R-curve study [8] on the fracture behavior of high strength aluminium thin plates 1.6 
mm thick center-cracked panels (Fig. 6) were clamped either end by rigid steel bars. These 
steel bars were bolted through the holes indicated and loaded in a stiffloading machine, hence 
simulating the application of constant displacement across the two ends of the specimen. 
During the loading sequence, stable crack growth was observed, i.e. increasing crack length 
under increasing load up to a maximum load. After this point cracking became increasingly 
unstable. 

The initial crack plane was perpendicular to the loading axis. During the first 1-2 mm of 
stable crack growth, the crack plane rotated through approximately 45 degrees, and all 
subsequent crack growth was of this slanting type. Significant amounts of plasticity occurred 
during the loading cycle. 

The specimen displacement was measured between the gauge points AB, 152 mm apart. 
The material properties and crack extensions are given in Fig. 7. A load versus gauge-point 
displacement for the specimen was required. To obtain this, an appropriate fracture criterion 
in conjunction with the numerical analysis is required. 

A list of contributors is shown in Table 5. 
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Figure 7. Piecewise stress-strain curves for the aluminium alloy centre notch specimen. 

TABLE 5 
Participants in the center-cracked panel round robin 

M. Bleackley 
T. Takahashi, T. Aizawa 
and G. Yagawa 
Y. Yamada and I. Nishiguchi 

University College of Swansea, West Glamorgan, Wales, U.K, 
University of Tokyo, Japan. 

Institute of Industrial Science, University of Tokyo, 

3. Results 

3.1. Compact specimen results 

The numerical details of the nine contributors (A-I) are listed in Table 6. The results are 
plotted as 1) the applied load (P)/clip gauge displacement (~),  Fig. 8 and 2) J/Vg results Fig. 9. 
Four contributors chose the initial stiffness and the remaining five the tangential stiffness 
method of solving the non-linearities of the problem. Small strain incremental plasticity 
theory was employed by eight of the contributors, while the ninth (G) employed a large 
rotation (updated Lagrangian) formulation. 
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Figure 8. Round robin. Variation of load with clip gauge displacement (Vg) for the 3 mrn thick compact tension 
specimen. 

Due to symmetry only one half of the specimen was analyzed. Ten separate meshes were 
used as contributor F modelled the problem with three different meshes, and solution G used 
the coarsest of these latter three meshes. Four of the contributors chose eight-noded isopara- 
metric elements, two constant-strain triangular elements and the remaining three a mixture of 
isoparametric elements. Of these three latter contributors, H and I utilized the six-noded 
triangle and parabolic elements and B used various combinations of four- to eight-noded 

elements. In addition contributor I used 1/,v/r- singularity crack tip elements [9]. Only the 
meshes used by contributor F and G did not model the loading pin hole. 

Seven of the contributors modelled the specimen by applied load and two by applied 
displacements. Eight contributors obtained one solution each for J. Seven contributors chose 
to calculate J by Yco and one by Jvr The ninth contributor (G) obtained three solutions using 
Jpc with: 1) da = 0.5 mm using a one node release, 2) da = 0.5 mm using a two node release 
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and 3) da = 1.0 mm using a two node release. For  the contour method, J¢o was averaged over 
a number of paths except solution H which was calculated from only one path and solution I 
where a typical path was chosen that gave a good representation of the other path values. For  
the eleven P/Vg results each set of participants contributed one solution except case F which 
contributed three. 

There is good agreement between the experimental and numerical load/displacement 
curves in Fig. 8 although element type, mesh pattern and plasticity method vary with solution. 
At low load levels the numerical and experimental values coincide but at the higher load levels 
the experimental values are interspersed between the numerical ones. For  case F's three 
solutions threre is no discernible difference between solutions even though there is a widely 
varying number of elements (although the meshes have the same pattern) between the finest 
and coarsest mesh. 

The J/Vg curves of Fig. 9 are in very good agreement for all solutions except cases H and 
one solution from case G. The poor representation of contributor H may be attributable to Jco 
being obtained from a single contour and not an average. One of G's three solutions for Jp~ is 
not in good agreement with the general body of results for da = 0.5 mm using a one node 
release. For  a two node release as with one other of G's solutions, the crack length is extended 
by da over one element side, as a parabolic element is used. For  a one node release, da is taken 
over just half an element side, so that the crack tip is at the mid-side node. As the crack opens, 
deformation occurs between the two remaining restrained nodes situated at and immediately 
behind the crack tip. This is because the element deforms in a parabolic fashion and cannot 
accommodate a straight boundary behind the crack tip. This gives rise to a small but 
appreciable increase in the limit load over the corresponding value for da = 0.5 mm using a 
two node release. Hence there is a smaller change in potential energy d U and so a reduction in 

Jpe. 
Shiratori and Miyoshi [10] have reported a similar round robin analysis of a compact 

specimen conducted in Japan. They divided the analysis into a "standard" problem where 
both the mesh and J¢o paths were specified by the organizers, and a "non-standard" problem 
where no limits were imposed. The agreement between different solutions for the standard 
problem was extremely good, and understandably better than for their non-standard case. 
The agreement reported in this paper lies somewhere between these two Japanese 
comparisons. 

3.2. Three-point bend specimen results 

The six contributions (J-O) for this geometry presented ten solutions (Table 7). Six of the 
solutions were for a/W = 0.5, and two each for a/W = 0.1 and a/W = 0.15. Of the six 
contributions, four were obtained using tangential stiffness and the remaining two by initial 
stiffness. Small strain incremental theory was employed in all the contributions. 

Due to symmetry only one half of the specimen was analyzed, with the elements arranged 
so as to accommodate the weld. Eight different meshes were constructed for the ten solutions, 
to model the required different crack lengths, one each for J, L, M, N and two for K, O. Four  
contributors chose eight-noded isoparametric elements and the remaining two constant- 
strain triangles. 

With the exception of solution O, which used applied displacements, the solutions were 
obtained using applied force increments. Four  of the contributors obtained J from Jco and 
two by virtual crack extension (Jvi). 

Figures 10a, b, c show the load/clip gauge displacement (Vg*) curves for a/W = 0.1, 0.15 
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TABLE 7 
Basic details of the three point bend weld specimen round robin problem 

27 

Solu- Plasticity Element type Calculation a/w 
tion method method of 

J integral 

Number of 
elements in 
half space 
mesh 

Number of Comments 
degrees of 
freedom 

J Tangential 8 node Virtual crack 0.5 
stiffness Isoparametric extension 

K Tangential 3 node Path integral 0.1, 0.15 
stiffness Constant (Mean value) 

strain 0.5 
triangle 

L Initial 8 node Virtual crack 0.5 
stiffness Isoparametric extension 

M Tangential 3 node Path integral 0.5 
stiffness Constant (Mean value) 

strain A 

N Tangential 8 node Path integral 
stiffness Isoparametric (Mean value) 0.5 

Jes and 0.1 
O Initial 8 node Path integral 

stiffness Isoparametric (Mean value) 0.15, 0.5 
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Figure 10a. Round robin. Variation of load with clip gauge displacement (Vo*) for the 3 point BEND weld specimen 
(a/w = 0.1). 
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and 0.50 respectively. The numerical and known plane strain elastic compliances (obtained by 
boundary collocation [11]) for each crack length, though in modest agreement with each 
other, are not in agreement with the experimental compliances. This may be because the 
specimens cannot be represented by a plane strain constraint and should be represented by a 
three-dimensional model. The numerical limit loads overestimate the experimental limit 
loads by a maximum of about 15~ in the shallow cracked specimens (Fig. 10a, b). Unfor- 
tunately for the standard cracked geometry, the experimental specimen chosen fractured in 
half before a limit load was achieved. The maximum variation between the numerical results 
for the standard geometry (Fig. 10c) is about 10~. This is better than that obtained in [1] (for a 
corresponding a/W = 0.5) of approximately 30%. 

It is interesting to note that for the standard crack depth, the two contributors using 
constant strain triangles (K, M) gave the stiffest results in both the linear and non-linear 
regions, and showed the greatest discrepancies from the elastic compliances (the isopara- 
metric elements all gave good agreement with the elastic compliance). This may be due to the 
tendency of these triangular elements to give overstiff behaviour in bending problems. 
However, the difference between these two solutions and the other numerical results is 
smaller than the discrepancy with the experimental results. 

Figures lla, b, c show J~o as a function of Vg* for a/W = 0.1, 0.15 and 0.5 respectively. 
Also shown on these three figures is J~ obtained from 1) the experimental load/displacement 
curve and 2) the numerical load/displacement curve from contributor O. 

For a/W = 0.1 and 0.15, the two numerical J~o and numerical J~, results are indistin- 
guishable at low displacement levels. At higher levels the discrepancies become more appa- 
rent with the two numerical J~o curves varying by a maximum of 20~o. These two numerical J~o 
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curves for each crack length give a rough bound on the numerical and experimental Jes results. 
All six participants contributed in Fig. 1 lc for the standard specimen. As mentioned 

previously, these standard geometries failed in a brittle fashion producing low J values. For 
the elastic portion of the curve there is good correlation between all the numerical, analytical 
and experimental results. In the plastic region, the two solutions using constant-strain 
triangles (K, M) gave significantly higher values, as would be expected from the load/displace- 
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ment curves. However, solution L, if extended, would appear to indicate even higher J-values. 
The maximum deviation between these curves is approximately 15~ compared with 29~o for 
the difference between the J/load-point displacement values of [1] at the same load-point 
displacement. 

The crack surface contours for the three crack lengths are shown in Fig. 12 at a 
displacement of ~* -- 0.7 mm. These profiles seem to be relatively insensitive to the modelling 
chosen. The only large variation is between solution K and O for a/W = 0.1, but this is due to 
contribution K using constant-strain triangles which fail to show the characteristic COD. 

The rotation factors for a/W = 0.1, 0.15 and 0.5 are shown in Figs. 13a, b, c, respectively. 
Slip line theory dictates that once general yield occurs and a hinge forms, the center of rotation 
r remains constant. The numerical solutions for the two shallow crack geometries are in 
considerable disagreement. At high loads solution K is actually declining whilst solution O is 
still rising. The agreement between the six contributors is better in Fig. 13c for the standard 
geometry. Haigh and Richards [-12] quote a value for r = 0.46, though in this case the curves 
are still rising and it may be that the specimens are not loaded sufficiently to attain this value. 

Figure 14 shows the plastic zone development for the standard geometry at a value of V0* 
equal to 0.7 mm. Although the meshes vary widely as regards refinement and element type, the 
plastic zones are very similar from the five contributors (J, L, M, N, O). 
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3.3. K I results for the BEND3 and SENT geometries 

There were five participants (P-T) for this problem with four of them participating in the 
shallow notch analysis (Table 8a) and all five participating in the standard specimen analysis 
(Table 8b), with two solutions from P. 

Two participants used Jco and another Jpe to determine KI, using the relationship: 

KI = ~/[EJ/(1 - v2)] with E equal to 170.0 kN/mm z in the case of the specimens modelled 
with a weld. The remaining two participants used virtual crack extension [5] and direct dis- 
placement [13] formulations. All the solutions for the SENT geometries were modelled 
using applied displacements. 

Participants P-S utilized the eight-noded isoparametric element and T, the constant- 
strain triangle element. For P, Q, R the midside node of the crack tip element was moved to 

the quarter-point to represent the I/x//) - singularity [9] along the edges of the element from 
the crack tip. 

The results obtained from the BEND3 and SENT geometries are listed in Tables 8a and 
8b for a/W = 0.1 and 0.5, respectively. There are no known theoretical or analytical elastic 
solutions for the non-homogeneous specimens. Known elastic solutions for the homogeneous 

BEND3 specimens with S / W  = 4.0 for K~v/-W-B/P = 3.54 (interpolated value) and 10.61 for 
the shallow and standard geometries respectively [11]. The corresponding numerical results 
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all underestimate these values by a maximum of 14.1 and 5.9~, respectively. This latter value 
compares with 470 from [1]. A difficulty arises with the homogeneous SENT specimens, for 
although accurate elastic solutions exist for the geometries with bending unrestrained [14], 
this is not the case with restrained bending, which occurs with uniform applied displacements. 

The costs of analysis varied widely, with the standard notch analysis showing much 
greater variation. However, solution P (Table 8b) for the standard notch is based on 
commercial rates and the rest on university rates. 

3.4. Center-cracked panel (CCP) results 

Three contributions (U-W) were obtained for the CCP analysis. Two of the contributors 
employed the tangential stiffness method and the third initial stiffness (Table 9). 

Due to symmetry only one-quarter of the specimen was analyized with the crack aligned 
along an axis of symmetry, so that slow crack growth could be modelled by releasing the 
restrained nodes along the boundary. Two of the solutions used the eight-noded isopara- 
metric element whilst the third used various isoparametric elements varying from four to eight 
nodes. 

A two-dimensional analysis cannot model the 45 degree slant nature of the actual 
fracture surface, and all contributors assumed that "fiat fracture" occurred. 

Although it was intended that a fracture criterion should be utilized to model the slow 
crack growth, solutions U and V used the relationship between crack extension and clip 
gauge displacement (detailed in Fig. 7) to obtain the required load/displacement curve. 
Solution W used a single valued parameter Q [15] equal to the work done in releasing the 
nodal reactions ahead of the crack-tip in order to advance the crack. After the first extension 
(decided by inspection of the experimental data) a critical value Qc was calculated and 
subsequent crack extension was allowed according to the condition Q > Qc. 

The numerical and experimental load/clip gauge displacement curves are shown in Fig. 
15. The three numerical solutions show good correlation with each other, but they all 
overestimate the elastic compliance of the experimental curve. It is only after slow crack 
growth has occurred, that all the curves coincide at a maximum load of approximately 80 kN. 
Although the experimental and numerical modelling was done under displacement control, 
only solution V shows a drop in load as slow crack growth proceeds, because the other curves 
have been "smoothed". 

TABLE 9 
Basic details round robin problem of the centre notch 

Solution Plasticity Element Number of Number of 
method type elements in degrees of 

quarter space freedom 
mesh 

U Tangential 8 node 35 268 
stiffness Isoparametric 

V Tangential 4-8 noded 50 272 
stiffness Isoparametric 

W Initial 8 noded 52 185 
stiffness Isoparametric 
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4. Conclusions 

This elastic-plastic round robin has been concerned with three types of geometry and in 
general the correlation of results has been good, particularly for the numerical load/displace- 
ment curves. 

With the exception of two contributions to the J/Vg results (reasons are given for these 
contributors' discrepancies), there is very good agreement between the numerical and experi- 
mental P, J /V  o curves for the CS analysis. These results show less deviation than those of [ 10], 
for their "non-standard" problem but not for their "standard" problem where discrepancies 
occur only at high load levels. 

The numerical solutions for the three-point geometry show a greater scatter than those 
from the compact specimen, but this scatter is smaller than that demonstrated in the paper by 
Wilson and Osias [1]. 

The fact that the numerical variation for the BEND3 is greater than that for the CS 
geometries may be due to the concentrated load on the axis of symmetry, adjacent to the 
crack. Reliable numerical modelling of concentrated loads in elastic-plastic stress fields 
requires more detailed information than that provided in the current study. Deviation of the 
BEND3 numerical results from the experimental data may be indicative of some three- 
dimensional effects in the real situation. 

As with the BEND3 analysis, the numerical P/V o results for the CCP specimen modelling 
slow crack growth, although in good agreement with each other, overestimate the experi- 
mental compliances. It is only at the maximum load that there is agreement between the 
numerical and experimental results for the CCP specimen. 
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RI~SUMI~ 

Les r6sultats d'616ments finis non lin6aires r6sultant d'une consultation circulaire sont compar6s avec des donn6es 
empiriques et exp~rimentales obtenues pour trois types de g6om6trie: 6prouvette compacte, 6prouvette de flexion 
en trois points et panneau/l fissure centrale soumis/t une charge uniaxiale. Les param6tres de la solution qui 
doivent ~tre comparbs darts les diff6rentes formes sont: la charge appliqu6e, le d6placement d'un extensiom+tre, 
l'int6grale J (sans r6serve sur sa m&hode de calcul), KI, les profils d'ouverture de fissure ainsi que le d6veloppement 
de la zone plastique. 


