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An exact solution for flow in a porous pipe 

By R. M. Terrill,  Dept .  o f  App l i ed  Mathemat i c s  and Theore t ica l  Physics, 

Universi ty of  Liverpool ,  L iverpool ,  G r e a t  Br i ta in  

1. Introduction 

During the past few years the problem of fluid flow in pipes with mass transfer at 
the walls has received much attention because of its practical applications. There have 
been numerous theoretical investigations usually dealing with steady, incompressible, 
laminar flow with either constant injection or suction. The theoretical solutions can be 
divided into two classes. 

The first is the fully developed solution for constant suction or injection which is 
a similarity solution. The problem reduces to solving an ordinary non-linear differen- 
tial equation in terms of a suction Reynolds number. Analytical and numerical solu- 
tions have been discussed by numerous research workers and their work is typified by 
references [1] to [7]. The second type of solution deals with the entrance region solu- 
tion and this requires a completely numerical approach to deal with the changing 
shape of  the non-dimensional velocity profile. Typical papers on this topic are refer- 
ences [8] to [10]. 

One of the limitations of investigations into this type of problem is that, as far as 
the author is aware, all the solutions have involved constant suction or injection. Any 
experiment (for example, [10]) has to be set up so that the fluid extracted from the 
wall has constant velocity. The present paper produces a fortunate exact solution which 
could prove to be most useful in both experimental and theoretical investigations of 
porous channel flow. The solution has the form of a perturbation of the flow in an 
impermeable pipe but satisfies the Navier-Stokes equations exactly. It turns out that 
many different types of velocity distributions of suction or injection are possible but 
some exhibit special features. These have the remarkable property that the Poiseuille 
velocity profile deforms continuously into the fully developed suction velocity profile 
and an entry length is not necessarY. 

The solution can probably be extended to another class of suction distributions 
and many also have some applications in other types of fluid flow problems. 

2. The equations 

Consider the axisymmetric motion of an incompressible fluid in an infinitely long 
cylinder of radius a. Choose a cylindrical polar coordinate system (r, O, z) where the 
axis 0z lies along the centre of  the tube, r is the distance measured radially and 0 is 
the azimuthal angle. Let u and v be the velocity components in the directions of Z and 
r increasing respectively. Then, for axisymmetric flow, the equation of continuity is 

0u 
--7 (rV) + r ~ = 0 (1) 
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and the Navier-Stokes equations are 

8u 8u 1 8p 
u'-~z+V 8r Q 8z t-vV2u' 

8v 8v 
u - - + v  = 

8 z  8r 

where 

1 8p j_ v(V 2 v - 7 ) , v  
8r 

(2) 

(3) 

8 2 1 8 8 2 

and wherep is the pressure, ~ the density and v the kinematic viscosity of the fluid. 
The boundary conditions at the pipe wall are 
u = 0  at r = a  (4) 

while the speed of suction or injection is assumed to be 
09 

v = ~ V/e ~' z/, (5) 
i = 1  

where the constants V,., ~i are to be determined. In addition symmetry implies that 
v = 0  at r = 0 .  (6) 

To solve equations (1), (2) and (3) it is convenient to introduce the stream func- 
tion ~u defined by 

1 8~/ 1 8~.u 
u = - -  - - ,  V = (7) 

r 8r r 8z 

and the non-dimensional variables 

r z z 
~ = ~ ,  zl=--.a (8) 

Then, after some manipulation, it can be shown that ~u satisfies 

(v~ ~,) +-~z,  v~ v -  v ~0 = v~ (v~ ~,~ (9) 

where 82 82 

It should be noted that in (9) ~/has the dimensions v a. The boundary conditions (4) 
and (6) now become 

= 0  at r / = l ,  
8r/ (10) 
8~ 

= 0  at r/=O. 
8z 

3. The solution 

Assume a solution of equation (9) in the form 
oo 

q/=fo (r/) + ~  e~'~'fi(~/), ~ i ~ 0  
i =  I 

(11) 
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where the ~i are constants to be de termined and can be posit ive or negative. It is ex- 
pected that f0 (~/) will correspond to flow through an i m p e r m e a b l e  pipe. F rom (7), this 
form for V gives the radial velocity V at the wall as 

V =  - 1 ~ ~z,. e~,:If,.(1) 
a i = l  

which is equivalent to (5). When  (11) is substi tuted into equat ion (9) it is easily seen 
that the terms in z 1 will be proport ional  to e 2~'zl, e (~'+~j)zl, e~ 1) and e ~'z~. The  
coefficients of  each of  these terms will now be examined.  

Firstly, equating the coefficient of  e 2~ z~ to zero yields 

d f  ~ l f .__~(D2f . ) l=O ' 

where 

d2j~ 
+ - ~ I .  (13) D2J~ = r/ dr/2 

Equation (12) can be readily integrated to give 

D2 f �9 = g i  rlfii (14) 

where K i is an arbi trary constant. The  coefficient o f  e (~'+ =~) z~ is 

- or,f,. ~l--~ (D'f:) - ogf: ~ (D2fi) . (15) 

However,  J} and j~ must satisfy equat ion (14) and it is readily shown that  the coeffi- 
cient of  e(~'+~')z~ is zero provided 

Ki = Kj = K say, (16) 

where K is a constant for all the equations (14). 
The only term remaining in the expansion for ~, that  can contribute to the coeffi- 

cient of  e ~ is fo (~/). Substitution in (9) gives 

fo" + 2f~" = 0 (17) 

where ' denotes differentiation with respect to ~/. The  boundary  conditions (10) give 
f~(1) = 0 and the solution of  (17) is 

f0 = Co (2 ~ / -  r/2) (18) 

where c o is an arbi trary constant. [Note the condit ion that  u is finite at ~/= 0 has been 
used.] The solution corresponds to flow in an impermeab le  pipe.  

Finally the coefficient o f  e ~* a is 

r/J~ D~d~ +f. ' - (r/f~') = ~ D4f/, 

and, using (14), this can be reduced to 

~;f,- 
K(2 f '  + K qfi) =-~v (K f~ - f ~ " ) ,  
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where f~ and fo satisfy (14) and (17) respectively. It is immediately seen that it is 
necessary for both K and f "  to be equal to zero. The condition on fo (t/) means that a 
solution through an annulus (which involves a term like t/log t/) is not possible and 
only a solution through the pipe (18) can be found. It is also worth noting that the 
flow through parallel plates can be obtained from the flow through an annulus by 
taking the correct limit (the method for finding this limit is given in [11]). Con- 
sequently there is not a corresponding solution for flow through parallel plates. 

Thus it only remains to find the solutionsJ~ (t/) of  the differential equation 
~z 2, 

t/fr + 4f , -  = O. (19) 

The transformation t/= x 2 or72, f~ = t/l/2 g i changes equation (19) into B essel's equation 
and the appropriate solution that is finite at t /= 0 can be shown to be 

f i  = ci t/t/2 Ji  (~i t/t/2) 

oo ( -1 ) "  t /n+l  

~-CiZ 
n=0 n! ( n + l ) !  

The only other boundary condition that must be satisfied is u = 0 at r = a; that is 

dj~ 
- - = 0  at t /= l ,  
dr/ 

o r  

Jo (~;) = o. 

Thus the ai are the zeros of the Bessel function Jo (x) and have values given by 

- o~i = 2.405, 5.520, 8.554, 11.792, 14.931 . . . .  , (21) 

and tending rapidly to the value ( 4 - ~  -3) ~r where n is an integer. 
The required solution is 

o0 
- Co (t/2_ 2 t/) + ~ . c i  rl I/'2 J~ (~i t~ I/'2) exp (0t~ zl) (22) 

i=1 

with velocity components written in terms of r and z given by 

u - - 4 c ~ ( r  2 - a  2)+ c*,.Jo e," exp a S a  

and 

v =-.__~l c* J ,  (~, -~-) exp (ai ~-)  (23) 

where c~' = co/a  2 and c* = ai ci a: exp {- 0~i a}, an arbitrary constant. 

Discussion 

The solution has some remarkable features which will become apparent. Firstly 
we observe that in the absence of suction and taking co* < 0 we have flow down an im- 
permeable pipe. From (23) it can be seen that c* > 0 (~i > 0) corresponds to injection 
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of the fluid and this will increase the velocity along the channel at r = 0 which is con- 
sistent with the usual deductions made on physical grounds. Similarly c* < 0 corre- 
sponds to suction and decreases the centre line velocity. 

The solution (23) gives fully developed flow through a porous channel with 
variable suction in the same way that all the previous analytical solutions for constant 
suction have been fully developed. Consequently all these solutions have required "a 
development length" before the solution is attained. However  (23) has some remark- 
able features which can be illustrated by choosing a simple velocity of  suction V of 
the form 

V= 2 2 J1 (~i) cosh (~-~) 

= 2 J1 (~i) {e ~ ~/" + e -  ~' ~/"} 

where 2 is a constant. Then the velocity component u is 

2 J  {~ir t  {e-~'=/a-e ~'z/a} u = 4 c* (r 2 - a z) + o \ - -~]  

= 4 c * ( r ~ - a 2 ) - 2 2 J o ( - ~ )  sinh (~-~)  �9 

It is immediately obvious that at z = 0 the velocity profile of  u is that given by the 
flow in an impermeable pipe and so an entry length is not required. The flow con- 
tinuously deforms from that in an impermeable channel. Further by adding several 

suction terms 2iJ1 (oti) cosh ~i and making an appropriate choice for ;ti we can 

make the suction commence with zero velocity at z = 0 and finish with zero velocity 
at an appropriate position downstream! 

It is worth noting that although Jo (e; r) is an oscillating function in the pipe for 
ic~il > 2.4, it does not follow that there is reverse flow because the ci can always be 
chosen such that c* dominates the flow. 

The solution is a useful addition to flows in porous channels and indicates that 
even stranger solutions are conceivable. For example, a suction of the type 
~ f , ( r )  e ~'~ cos (/~;z + ~,.) is a natural extension and this leads to complex Bessel func- 
tions which are at present being studied by the author. 

The author is grateful to Professor Rott for some suggestions and, in particular, to 
an illuminating way of looking at the solution which will be discussed in Appendix 1. 

Appendix 1 

The paper has been concerned with obtaining an exact solution of the Navier 
Stokes equations with variable suction or injection at the pipe walls. An insight into 
the resulting solution (23) can be obtained by writing it as 

u = Uo (r) + ~z 

~z ' 



552 R.M. Terrill ZAMP 

where ~0 is the potential function 

oo ac*  [ 

By substituting for u and v in equations (2) and (3) and eliminating p, it can be 
shown that it is a possible solution provided u 0 (r) = A r 2 + B, where A and B are con- 
stants. Thus for a velocity distribution o f  this type (for example, Poiseuille flow in a 
pipe), it is possible to superimpose potential flows upon the viscous flow. 
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Summary 

An exact solution of the Navier-Stokes equations for flow in a porous pipe is presented. 
This solution allows the suction or injection at the wall to vary with axial distance and will 
provide new insight into flows through porous pipes. 

Resum~ 

Une solution exacte d'rquation de Navier-Stokes est prrsent~e pour l'rcoulement d'un 
liquide visqueux dans un tube permrable. Ce liquide est aspir6 ou inject6 avec une vrlocit6 
variable et la solution donne une nouvelle optique quant aux tubes poreuses. 
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