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Abstract. We present a nonlinear field theory of the brain under realistic anatomical connectivity 
conditions describing the interaction between functional units within the brain. This macroscopic field 
theory is derived from the quasi-microscopic conversion properties of neural populations occurring at 
synapses and somas. Functional units are treated as inhomogeneities within a nonlinear neural tissue. 
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1. Introduction 

The brain operates as an open complex physical system which exhibits spatio- 
temporal behavior. A necessary condition for this pattern-forming character of 
the brain is a nonlinear dynamics and a spatial interconnection. The functional 
behavior of the brain is encoded in these spatio-temporal structures and can be 
extracted from the dynamics of the macroscopic quantities measured by the EEG 
and MEG [10-l 2, 161. According to synergetics [ 13-151 this extraction contains 
all the relevant information about the spatio-temporal behavior of the brain and has, 
in general, a small number of degrees of freedom. This idea has been formalized 
to the order parameter concept based on circular causality: the order parameters 
are determined and created by the cooperation of microscopic quantities, but at 
the same time the order parameters govern the qualitative behavior of the whole 
system. Based on this approach phenomenological models were set up in the past 
for different experiments in order to find evolution equations that describe the 
experimentally observed macroscopic dynamics [9, lo]. On the quasi-microscopic 
level, ensembles of neurons are gathered together in units, which tend to behave as 
single entities. 

The present paper aims at bridging the gap between a quasi-microscopic and a 
macroscopic description. We define a mathematical description of the input-output 
behavior, the conversion operations, at the synapses and the somas of neurons in an 
ensemble. Here the idea of separation of time scales and spatial scales is utilized 
such that a spatio-temporal description is obtained relevant for the macroscopic 
level obtained from EEG and MEG measurements. This description is reduced to a 
one-variable field equation given as a non-linear partial differential equation. Here 
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the brain is considered as a nonlinear medium with specific dispersive properties. 
Functional units like the auditory cortex area are assumed to interact as inhomo- 
geneities with this medium. The coupling between these inhomogeneities and the 
neural sheet is nonlinear and given by the field equation. The geometry of the 
brain, given by the dimension and the boundary conditions of the brain, is an open 
question and non-trivial. Fuchs et al. successfully used the geometry of a closed 
sphere in the case of EEG measurements of o-waves [I 11. Nunez proposes two 
geometries: a closed sphere and a closed one-dimensional loop [2]. Here we use 
a one-dimensional description for reasons of simplicity. The expansion to higher 
dimensions is obvious. 

2. Anatomical and Physiological Considerations 

As is well known, the elementary unit of which the nervous system is composed 
is the neuron which is divided into three basic components [8]: the dendrites, 
the cell body and the axon. The dendrites act as the receptive side of the neuron 
and provide a large surface area for the synapses. There are mainly two kinds 
of synapses [6, 71: Excitatory synapses release transmitters that, on contact with 
the postsynaptic membrane, create currents depolarizing the postsynaptic cell. 
Inhibitory cells release transmitters that tend to hyperpolarize the postsynaptic cell 
or to increase the conductance of the postsynaptic membrane to chloride, thereby 
diminishing the effects of the depolarizing currents generated by the excitatory 
synapses. It is believed in general that in the cortex, all the synapses that a given 
neuron makes release the same neurotransmitters (Dale’s principle) [7]. Today, 
most investigators agree that for the analysis of cortical function, it is safe to 
assume that excitatory and inhibitory neurons can be categorized according to 
the types of transmitters they release at their synaptic endings. Here we want to 
deal with the two main cell categories: Pyramidal neurons and stellate neurons. 
Anatomically it is realized that the axons of pyramidal neurons are always involved 
with excitatory synapses and the axons of stellate neurons with inhibitory neurons. 
Thus we can assume that excitatory neurons only have excitatory synapses and 
inhibitory neurons only inhibitory synapses. In a simplified manner synapses can 
be viewed as small batteries which convert the inputs from other neurons by 
initiating electric currents on the dendrites which are spatially integrated at the 
cell body. By Kirchoff’s law these currents are linearly summed up and cause 
a resulting current. If the resulting current at the cell body exceeds a certain 
threshold, it will be converted into a pulse train along the axon without attenuation. 
Pools of neurons in local neighborhoods tend to share activity and thus can be 
regarded as the quasi-microscopic entities that perform spatially coherent behavior. 
The EEG measures macroscopic quantities which mainly correspond to summed 
dendritic potentials [8] and the MEG measures macroscopic quantities mainly 
corresponding to summed dendritic currents [3]. The cortical neurons are connected 
via intracortical fibers over short distances which can be excitatory or inhibitory, 
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Table I. 

Times scales 

Synaptic delay 1 msec 
Neuronal refractory time 1 msec 
Inhibitory delay due to propagation 1 msec 
Membrane time constant 10 msec 
Excitatory delay due to propagation 100 msec 

Spatial scales 

Spatial range of intracortical fibers 0.1 cm 
Spatial range of corticocortical fibers 1Ocm 

but also via corticocortical fibers through the white matter over long distances [7]. 
The latter are exclusively excitatory. The spatial range of the dendritic trees is 
comparable to the intracortical connection range [7]. 

The ranges of physiological parameters vary a lot dependent on the cortex 
areas and types of fibers considered. We emphasize that here we only want to 
give an impression of the relation of the parameter scales to each other. Detailed 
discussions of parameter ranges can be found in [3, 5-71. Synaptic delays and 
refractory times are of the order 1 msec, the neuronal membrane constant is in the 
range of several msec [6]. Corticocortical propagation velocities have a wide range 
from 0.2 m/set [5] up to 6-9 m/set [2]. Here we will use 1 m/set as an average 
propagation velocity. The lengths of corticocortical fibers range from about 1 cm 
to 20cm [2] which yields a broad range of delays of lO-200msec. In Table I we 
give a survey of the parameter scales on which our subsequent discussion will be 
based. 

Single neurons have two main state variables [8]: dendritic potentials (wave 
amplitude), which correspond to the synaptic activities, and the axon pulse fre- 
quency. The conversion of pulse frequency to current amplitude occurs at synapses, 
the dendritic wave amplitude is converted to a pulse frequency at the somas. In 
ensembles of cortical neurons activity densities are defined over spatial distribu- 
tions of neurons. Here the pulse-to-wave conversion at the synapses is constrained 
to a linear small-signal range, whereas the wave-to-pulse conversion shows a sig- 
moidal behavior [8]. These two conversion operations for ensembles are shown in 
Figure 1. 

3. Derivation of a Field Theory of the Brain 

We mathematically formalize the conversion operations at the synapses and the 
somas of neural ensembles and derive from these a nonlinear partial differential 
field equation describing the spatio-temporal behavior of brain activity. 
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Wave-to-pulse Pulse-to-wave 

Figure 1. On the left, the wave-to-pulse conversion operation performed at the somas of neurons 
in an ensemble is shown. This conversion shows a sigmoidal behavior. On the right the same 
situation for the pulse-to-wave conversion performed at the synapses in a neuronal ensemble 
is shown. Here the conversion is constrained to a small signal range. The functional forms of 
these conversions presented here are only valid for neuronal ensembles and differ from the 
ones of single neurons. 

In Section 2 we pointed out that there are two conversion operations in the 
neural tissue: the pulse-wave conversion at the synapses and the wave-pulse con- 
version at the somas. The term pulse describes action potentials and the term wave 
synaptic activities. Here we have a spatially distributed system consisting of four 
components: the two variables (wave and pulse) and the two converters (wave-pulse 
and pulse-wave). The variables pulse and wave are classified in two subvariables 
according to their excitatory or inhibitory character: excitatory pulse E(x, t) and 
inhibitory pulse 1(x, t), excitatory wave $J,(x, t) and inhibitory wave &(x, t). We 
interprete these four quantities as deviations from a fixed physiological state and 
formalize them mathematically as 

(1) 

(2) 
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The functions H~(z, X, t) represent the output of a conversion operation and 
fk (z, X) the corresponding distribution function depending on the spatial connec- 
tivity. The considered surface area of the brain is denoted by I’. In order to set 
up equations for the conversion output we make the following considerations (see 
Section 2): 

l Excitatory neurons only have excitatory synapses, inhibitory neurons only 
inhibitory synapses. 

l In ensembles of neurons the pulse-wave conversion at the synapses is linear, 
the wave-pulse conversion at the somas nonlinear and sigmoidal. 

l The spatial distribution range of the dendrites and intracortical fibers is very 
short. Only the corticocortial connections cause a significant delay via propa- 
gation. 

l External input is realized such that afferent fibers make synaptic connections. 

These items lead to the following relations between conversion output and summed 
action potentials 

H,(x,X,t) = s E ( i x,t- &4)) ~..s(X,t-y) (3) 

f&(x,X,t) = s I 
(( 

x,t- y)) M iii1 (X,t - y) (4) 

and between conversion output and summed synaptic activities 

( ( 
Ix - Xl HE(X,XJ) = s, $Je x, t - ~ 

V ) ( 
-$$ x,+1” + 

v ) 

+p, XJ-X( ( V >) 

HJ(X,X, t) = si tie 
( ( 

Ix--XI x, t - ~ 
1 ( 

-& ~,+I?! + 
v v ) 

fpi ( X,t - la: , 
V )) 

(5) 

(6) 

where a, and ai are constant parameters, pj (X, t) external input to the neural sheet 
and S and Sj the sigmoid functions of a class j ensemble. The propagation velocity 
ZI is assumed to be fixed with a small variance. The distribution functions f~(x, X) 
and fr(x, X) are of short range and can be assumed to be &like. Inserting these 
into (2) we obtain 
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E(x,t) = J dXS(x - X)&(x,X, t) 
I- 

1(x, t) = s, dXS(x - X)&(x,X, t) 

= ffz(x, t) = si[Tk(x, t) - $4x, 4 + z-%(x, Gl (8) 

Replacing the variables &(x, t), T+!J~ (x, t) in (7), (8) according to (1) we obtain 

E(x,t) = se [I Wf&, X)K4x, X, t)- r 
- rWfi(GWWGW) +~&,t) J 1 (9) 

1(x$) = si [I dX.f&, X)&(x, X, t>- r 

- s, d-Yfi(x, X)Wx, X, t> + pi@, t)] . (10) 
Inserting (3), (4) into (9), (10) the following retarded integral equations are 
obtained: 

E(x,t) = se [I dXfe(x, X)a,E X, t 
r ( 

- J dXfi(x, X)ail X, t - r ( 

1(x,t) = si [I dXf,(x,X)a,E 
r ( 

- J dXfi(x, X)aJ X, t - 
r ( 
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These equations describe the spatio-temporal behavior of summed action potentials 
in the brain and correspond to the phenomenological model by Wilson-Cowan [4] 
for the case that the time scale of the neural membrane is much smaller than the 
delay via propagation along corticocortical fibers. 

In order to obtain the dynamics of synaptic activities we insert (3), (4) into (1) 
and obtain 

= a, 
s 

dXf&, X)E lx - XI X, t - ___ 
r V 

$i(x, t) = s r dWi(x, X)&(x, X, t) 

Inserting (7) into (13) and (8) into (14) the system reads 

-$i (x,t - y) +p, (x,, - V)] 

$J~(x, t) = ~i r dXfi(x,X) * Si J X, t - e) - 

(13) 

(14) 

(15) 

(16) 

These equations describe the spatio-temporal behavior of summed synaptic activi- 
ties in the brain and correspond to the phenomenological model by Nunez [I]. 

As pointed out in Section 2 the EEG and MEG mainly measures macroscop- 
ic quantities generated by dendritic potentials and currents which correspond to 
synaptic activities. Thus we focus in the following on the evolution equations (15) 
(16). We specify the sigmoid function Sj (nj) as the logistic curve 

s.j = 
1 1 

1 + exp(-vjnj + ~jOj) - 1 + exp(vjOj)’ (17) 
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where 8, denotes a fixed physiological state, usually the excitation threshold, and Vj 
denotes the sensitivity coefficient of response of the corresponding neural subset. 
Since we interprete $j as deviations from Qj, we can set 0, = 0. We expand (17) 
into a Taylor series up to third order in nj and obtain 

sj (nj 1 M Qjnj - tp~n~, 

where oj = vj/4. Here the sigmoid function is approximated by odd orders in nj 
due to the choice 0, = 0. Increasing the distance to this inflexion point second- 
order terms of nj will turn up which can be eliminated by a linear transformation. 
Next, we look at (16) in more detail. The time scale of the intrinsic dynamics of 
$i(z:, t) is given by the synaptic decay time and the delay via propagation along 
intracortical fibers. We assume the connectivity functions to be of the following 
form: 

where (19) takes into account that intracortical connections are mainly local. Here 
the spatial range of the distribution of the fibers defines a hierarchy in time scales. 
The excitatory synaptic activity $J~(z, t - )z - Xl/w) operates on a much slower 
time scale than the inhibitory synaptic activity $+ (z, t - \IC - X~/TJ). With (19) the 
evolution equation (16) of inhibitory synaptic activity reduces to 

&(x:, t) = d%[dk(~, t> - dJi(X:, t) + Pih a (21) 

Using (18) and taking only linear contributions of (21) into account we obtain the 
following behavior of the inhibitory synaptic activity: 

(22) 

Here the dynamics of $i(z, t) is expressed in terms of the leading order of the 
slowly varying quantities r+!+ (x, t) and pi (z, t), which means that on this time scale 
the intrinsic dynamics of &(z, t) is negligible. The higher order contributions of 
these quantities cause small modifications of the corresponding parameters and are 
neglected here. Inserting (22) into (15), we readily obtain for the dynamics of the 
excitatory synaptic activity: 

+p x,t-- ( ) 
V )) 

(23) 
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where 

and 

Equation (23) represents a one-variable neural tissue equation which will serve 
as the starting point of the following analysis. We will follow the idea that the 
input signals to the neural sheet and output signals from the neural sheet can be 
understood as inhomogeneities which are embedded into the neural sheet. These 
inhomogeneities represent the localized areas in the brain that perform different 
functional tasks. The coupling of these inhomogeneities to the neural sheet is 
described by (23). This yields the following form of the stimulus p(z, t): 

Ph t) = P(4s(t), (26) 

where ,0(x) defines the spatial properties and s(t) the temporal behavior of the 
input signal. In the case of m signals at different locations with a different temporal 
behavior we obtain the following formulation: 

p(X, t) = fJPi(Z, t) = g&(z)%(t). (27) 
i=l i=l 

Expressing the time delay via propagation along the corticocortical fibers by a delta 
function J(t - T - IIC - Xl/ ) II we can rewrite (23) as follows: 

$~~(lc, t) = k 1: G(x - X, t - T) . p(X, T) dX dT 

with the Green’s function 

G(z-X,t-T)=S Ix - XI t-T-- 1 .----e -1x-Xl/o, 
V 20, 

and 

P(X, T) = ae * [cue (i%e (X7 T) + ~4x7 T)) - 

-~%?(~+e(X,T) +P(XJ”))~I- 

We perform the following Fourier transformations: 

ikx-iwt$e (k, w) dk dw 

(28) 

(29) 

(30) 

(31) 
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&c, t) = (2;)2 JJ -1 -1 ezka-zwtp(k, w) dk dw 

‘%t, to) = (2;)2 JJ -1 -z ezkE-zwtag(k, w) dk dw, 

(321 

(33) 

where 

(=x-X to = t - T, (34) 

and obtain the relation 

$Je(k 4 = 9(h 4 . P(h 4. (35) 

The Fourier transform g(k, w) of the Green’s function G(J, to) can be determined 
as 

guw> = J=’ dtJm -CC -W dtoG(t, t0F 
iktfiwto 

w; - iwow 
= (VW + (wo - iw)2) 

with the parameter 

(36) 

Rewriting (35) in the space and time domain, the following partial differential 
equation is obtained: 

* $e + (w; - v2A)$, + 2wr,& = (4 +wo$) * p(xJ> (381 

with 
r m 1 

r m 
M a,* I CXe(&!Je(X, t, + CPiCx7 t)>- 

i=l 

m 

-$az(Ptie(x7 t> + CPi(x~t))3 1 * (39) 
i=l 

This fundamental field equation of the brain is our final result. It governs the 
spatio-temporal behavior of the electromagnetic brain activity. Our field equation 
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Figure 2. Functional input and output units are embedded as inhomogeneities in the neural 
sheet whose spatio-temporal dynamics is described by the field variable & (z, t). 

allows to make a connection to phenomenological macroscopic models which 
will be published elsewhere. Distinguishing functional input and output units we 
write an input unit which conveys diverse input to the neural sheet as pin(z, t) = 
Pin(+in@)~ Th e si na s,,t(t) of a functional output unit is defined by g 1 

so& = s r dXPout (X)+e 6% t), (40) 

where ,L&~(z) denotes the localization of the unit in the neural sheet. In Figure 2 
we give a schematic presentation of the model we developed here. 

4. Discussion, Summary and Conclusions 

The present paper bridges the gap between a quasi-microscopic and a macroscopic 
description of the spatio-temporal dynamics of the brain. We introduced a mathe- 
matical description of the notion of conversion operations at the synapses and the 
somas of neurons in an ensemble which represents the quasi-microscopic level of 
description. Considering a time-scale hierarchy as well as a spatial-scale hierar- 
chy we could derive equations governing the spatio-temporal behavior of synaptic 
activities and of action potential densities. The considered time scale of 100 msec 
is due to delays via propagation of action potentials along corticocortical fibers, 
the considered spatial scale of several cm is due to the spatial range of excitatory 
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corticocortical fibers and short-range inhibitory fibers. These scales are anatom- 
ically realistic. The macroscopic level of description is given by EEG and MEG 
measurements that mainly pick up the signals of dendritic potentials and currents 
which correspond to synaptic activities. We reduced the equations of the synaptic 
activities to a one-variable field equation given as a nonlinear partial differential 
equation. In this order of approximation around a fixed physiological state inhi- 
bition plays a minor role and could be eliminated. It contributes to the constant 
field parameters as inhibitory background effects. This approximation will not be 
valid any more, if higher order patterns, i.e. smaller spatial and/or temporal scales, 
in the EEG or MEG are considered. Our derivation substantiates the idea that the 
brain acts as a nonlinear medium with dispersive properties. Functional units like 
the motor cortex areas or the thalamus are assumed to interact as inhomogeneities 
with this medium. These inhomogeneities obviously have a strong impact onto the 
dispersive properties of the brain. One of the major tasks in the future will be the 
handling of the localization of these inhomogeneities. 

Our proposed nonlinear field theory opens a vast variety of possible future 
theoretical and experimental investigations on the base of the ideas presented here. 
Particularly periodic phenomena like periodic driving or self-generated oscillations 
like in the case of o-waves, are interesting to view from this aspect. 
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