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Stokes flow past a slightly deformed fluid sphere 

By H. Ramkissoon, Dept. of Mathematics, University of the West Indies, 
St. Augustine, Trinidad, W.I. 

1. Introduction 

The Stokes flow due to the translation of a spherical fluid particle in an 
unbounded fluid medium has been investigated independently by Rybczynski [1] 
and Hadamard [2]. However, there are cases when the droplets are not perfectly 
spherical and it is to this situation that we now address ourselves. 

In this note the problem of symmetrical flow past a fluid spheroid whose 
shape varies slightly from that of a sphere, is examined. Explicit expressions are 
obtained for both the external and internal flow fields to the first order in the 
small parameter characterizing the deformation. As a particular case, we consid- 
er the flow past an oblate spheroidal fluid particle and determine the drag 
experienced by it. Special well-known cases are then deduced. 

2. Statement and solution of the problem 

In the case of axisymmetric incompressible creeping flow, the solution of 
Stokes equation in spherical polar coordinates is given by [3] 

O(r, O) = ~ (A,r" + B,r -'+* + Cnr n+2 + D,r-'+3)I,(~) (2.1) 
n = 2  

where ~ is the stream function, ~ = cos 0 and 1, (if) is the Gegenbauer function 
related to the Legendre function P, (~) by the relation 

P.-  2 (~) -- P. (~) 
I,(~) = , n > 2 .  

2 n - 1  

These functions have the following special property [3] relevant to our work: 

(m -- 2) (m -- 3) m ( m - - 1 )  
[m [2 = - -  In-  Z + Im 

2 (2 m - 1) (2 m - 3) (2 m + 1) (2 m - 3) 

(m + 1)(m + 2) 
- 2 ( ~  -~- ~ m  + 1)-/m+2, m > 2. (2.2) 
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Let the surface S of a spheroid approximating that of the sphere r = a be 
r = a [1 + f(0)]. The orthogonality of the Gegenbauer functions permit us, 

under general circumstances, to assume the expansion f (0) = ~ aK IK (0. We 
can therefore take S to be ~= i 

r = a [1 + ~,, I m (0] (2.3) 

and neglect terms of 0 (~) .  We now state our main problem. 
Consider slow steady flow of an incompressible fluid of viscosity #e past a 

fluid spheroid of viscosity #i whose surface S is given by (2.3) and which is 
assumed to be macroscopically at rest in an otherwise uniform stream of speed 
U in the direction of the negative z-axis in the absence of body forces. Assuming 
that the motion is axially symmetric, determine both the internal and external 
flow fields. 

In view of the 
the usual manner, 

axial symmetry and incompressibility of the flow we can, in 
introduce a stream function ~ defined by 

1 ~7  j 1 ~ o  

u r =  r 2 s i n 0 8 0 '  UO-rsinO Or (2.4) 

and satisfying (2.1). Here u (r, 0) = (u r, Uo, 0) represents the velocity field. There 
are two distinct fluid motions, namely the internal motion within the spheroid 
and the external motion of the flow past the spheroid. We shall use superscripts 
(i) and (e) to distinguish between these separate motions occurring inside and 
outside of the fluid spheroid respectively. We take the stream function in the 
exterior of S to be 

~ - ~  2 + --a + c2 a'* + d 2 I2 (0  

+ k (A,a" + B,a -"+1 + Cn a"+2 + D,a-"+3)I,(~), (2.5) 
/1=3 

while in the interior of S we take it as 

U a  2 -  i ~ + c ; a g + d ~  12(() 

+ ~. (A',a" + B',a -'+1 + C'.a ~+2 + D~a-"+3)I,(~) (2.6) 
. = 3  

r 
where a = - .  Using the condition 

a 

I 
7 t(e) --. ~ U r 2 sin 20 as r ~ ~ (2.7) 
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and the fact that  the components  of velocity at the origin must  be finite, the 
above representat ions (2.5) and (2.6) now take the form 

_ 2 + _ _  + da 12 (~) + ( B .  ~ - "  +1  + D .  a - "  + a) I .  ( Q ,  ( 2 . 8 )  ga 2 o- n=3 

t[l(1) (a 4) 
U a 2 - 2 o-2 + c~ a I 2 (~) + ~ (A" o-" + C; o-" + 2) I ,  (if). (2.9) 

n=3 

The only coefficients which contr ibute  to the flow past  a fluid sphere [4] are 
b2, d2, a'2, c'2 and consequent ly  we expect all other  coefficients in (2.8) and 
(2.9) to be of 0(c~m). Therefore, except where these coefficients b2, d2, d2, c'2 
are encountered,  we may  take the surface to be r = a instead of the exact 
form (2.3). 

The unknown coefficients appearing in (2.8)-(2.9) must  be evaluated from 
bounda ry  conditions. The kinematic condi t ion of mutual  impenetrabil i ty at the 
surface requires that  we take 

7s(e)=0  on S,  (2.10) 

7x(i)=0 on S.  (2.11) 

We assume that the tangential velocity is cont inuous  across the surface. Hence, 

0 t//(e) 0 ~#(i) 

Or - Or on S. (2.12) 

We further assume that the theory of interfacial tension is applicable to our 
problem. This means that  the presence of  interfacial tension only produces  a 
discontinuity in the normal  stress trr and does not  in anyway  affect the tangential 
stress trO. The latter is therefore cont inuous  accross the surface and so t~ ) = t~ ~ 
on S or equivalently 

/xe~ r -2 ~rr / ~ ~ / on S. (2.13) 

These bounda ry  condit ions (2.10)-(2.13) lead respectively to the following: 

0 = (1 "-t- b 2 -t- d2) 12 (~) -t- (2 - b 2 --{- d2) o~ m I m (~) 12 (~) + ~,  (B  n Jr- 1),) I,  ((.), 
n=3 

0 = (a~ + c~) 12 (0  + (2 a~ + 4 c~) ~,~ I,, (() I z (~) + ~ (A' n + C',) I ,  (~), 
n=3 

0 = (2a~ + 4c~ -- 2 + b2 - d2) I2(()  

+ (2a 2 + 12c~ - 2b2 - 2) ~ I m ( ( )  I2(() 

+ ~ [nA" + (n + 2)C" + (n - 1)B, + (n - 3) D,] I ,  (() , (2.14) 
n=3 
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0 = [#, (4 c i - -  2 a~) + ,ur (2 --  4 b 2 + 2 d2)] 12 (~) 

+ [u, (12 c~ - 2 a l )  + ,ur (2 + 8 b2) ] a,,, I . ,  (() I 2 (() 

+ ~. #i {n (n - 3)A', + (n + 2)(n -- 1)C',} 
n = 3  

- I~e{ (n-  1)(n  + 2 ) B .  + n ( n -  3 ) D . } ] I . ( ( ) .  

The leading terms in the above system of Eqs. (2.14) must vanish. Hence, 

! ! t t 
I + b 2 + d 2 = O, a 2 + c z = 2 a  2 + 4 c 2  - 2 + b 2 - d2 = O, 

#i (4 c~ - 2 a~) + ~e (2 - -  4 b2 + 2 d2) = 0. 

Solving these equations, we get 

2 2 1 3 + 2 2  
a ~ -  2 ( 1 + 2 ) '  c ~ - 2 ( 1  + 2 ) '  b 2 - 2 ( 1  + 2 ) '  d 2 =  2 ( 1 + 2 ) '  

(2.15) 

where 2 = #e. The identical values were obtained for the case of flow past a fluid 

sphere [4]. Substituting these values into (2.14), we get 

2 
1 + 2 a,~ Im (~) I2 ( 0  + 

n = 3  

(B, + D,) I,  (0 = 0, 

1 + 2 am Im (~) 12 (~) + (A'n + C~) I n (~) = O, 
n = 3  

- 1) 

1 + 2  

n = 3  

- -  a m I,. (~) I 2 (~) 

[ n A ' ,  + (n + 2)C~ + (n - I)B, + (n -- 3) D,]I,(()  = 0, 

(2.16) 

222 + 132 
I + a .  I ,  (012 (() 

+ ~ [n(n - 3)A'. + (n + 2)(n - I)C~ - 2 (n  - l ) ( n  + 2 ) B .  
n = 3  

- 2 n ( n  - 3) D,I I,(~) = 0. 

Solving the above system of Eqs. (2.16) with the aid of the identity (2,2), we see 
that the coefficients vanish for all n exept when n has the values m - 2, m, m + 2. 
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These surviving coefficients are 

F3 + 2 m 2  - 62  
A ' _ 2  COmEt k 2(1 + 2) 

B i n - 2  = ~  1 + 2  F1 ' 

C ' _ 2 = c ~ m E l I 8 2 - - 3 - - 2 m 2  1 
2 (1 + 2) + F~ , 

F1,  

E 3 - - 2 2 + 2 2 m + F 2 1  ' 2 ( i + ~  

+ , 

Din_ 2 = O~mE 1 

! 

A m = - -  a m E 2  

B m = - -  o~ m E 2 

I3  - 4 2  + 2 2 m  
C ' = . m E 2  2(1 + 2 )  

D,. = c ,.E2G, 

and 

Am+ 2 = ~mE3 

Bin+ 2 = O~mE 3 

Cm +2 = 0r E3 

I 2 2  + 3 + 2 2 m  1 
2 (1 + 2) -- F3 ' 

2 f31,  
1 + 2  

[ -  3 - 2 2 m  + F31 ' 
 ii+7) 

Din+ 2 = o~m E 3 F3 , 

where 
(m - 2)(m - 3) 

E,  = 2 (2m -- 1)(2m -- 3)' 

(m + 1)(m + 2) 
E3 = 2 (2m -- 1)(2m + 1)' 

E 2 

= 

m(m - 1) 

2(m + 1)(2m -- 3)' 

222 + 432  + 2 2 m  2 - -  322m - 192m + 6m + 3 2 m  2 - 15 

G = 

G = 

2(1 + 2) 2 (2m -- 5) 

3 -- 172 -- 2Zm z -- m22 -- 3m22  + 7 2 m - -  6m 

(1 "t- 2) 2 (4 m -- 2) 

622 + 152 + 3~2m2 + 5m2 z + 3 m 2 2  + 5 2 m  + 6m + 9 

(1 + 2 )  2 ( 4 m + 6 )  

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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We have thus determined the stream functions for both  the external and internal 
flow fields. With the aid of (2.8) and (2.9) they are now given by 

~(e) (0" b2 0") 2 0.3 - m Din- 2 as - m) Ira-- 2 (() ----- + --0" + d2 I2 (~) + (Bra-2 + 

-I- (Bin0" -m+ l -[- Dma-~+3)Im(~) 

+ (Bin+z0" -m-1 + Dm+20"l-m) Im+2(~), 

7t(i) 

U a 2 

where the constants  have all been determined. 

(2.21) 

, 0"m - 2 , __ (0~i 0"2 _~_ C2 0.4)[2  (~) -[- ( A ~ _  2 + Cm-2 0"m)Ira-2 (~) 

0"m + 2 , + (A'm am + C'~0"m+Z) tm(~) + (A~,+2 + C m + 2 0 " m + 4 ) I m + 2 ( r  

(2.22) 

3. Application to a fluid oblate spheroid 

As an application of the foregoing, we now consider the particular case of 
the oblate spheroid 

x2 + y2 Z2 
C ~ -~- C 2 (1 - -  ~;)2 - 1 ,  

where again we are neglecting terms of 0 (e2). Its polar  form is 

r = a [ l + 2 e I 2 ( ( ) ]  or a = l + 2 e i 2 ( O ,  (3.1) 

where a = c(1 - e ) .  To apply the results of the last section, we put  m = 2, 
am = 2e. It  follows from (2.17) that  A~ = B o = C~ = Do = 0, and it can be 
verified that the external and internal stream functions given by (2.21) and (2.22) 
respectively, now take the form 

~ ( e )  = U t2 2 -t- (d 2 - -  d2 e + 2 D 28) 

+ + 1 
E{ (7 (r;} 7 t ( ~  2 a~ c + ( c ~ + 2 e ~ e + 2 C ~ e )  c 12(() 

--t- (2A~.(~)4 --~- 2Ct4,s (~)6}14(~))], ( 3 . 3 )  
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where a~, b2, c~, d 2 are given by (2.15) and 

3 22 2 2 + 3  

22 22 + 262 622 + 232 + 21 
35 35 , (3 .4)  

822 + 122 2022 + 372 + 21 
' D4 C 4  m_ 

35 (1 + 2) 2, 35 (l  "-~ 2) 2 

The flow fields within the fluid oblate spheroid and outside of it are now 
completely determined. We now propose to examine a feature of this flow which 
is of most practical significance - the force experienced by the spheroid. 

To evaluate this drag, we appeal to a simple elegant formula derived by 
Payne and Pell [5]. From this formula, in the case of slow, steady axisymmetric 
flow past the oblate spheroid, the drag D experienced is given by the expression 

D = 8 ZCl.t e lim (3.5) 
r -~ ~ r s i n  2 0 ' 

where 7z~o is the stream function corresponding to the fluid motion at infinity. 
1 U r 2 sin 2 0. Substituting this and (3.2) into (3.5), gives Here ~go~ = U r 2 12 (() ----- 

2 2 
D = -  6ZCPeCU(1 - ~e) 1 + g (3.6) 

1 + 2  

The following special cases can be deduced immediately: 

(a) RigidOblate Spheroid(2=#--~=O).Inthiscase#i 

D=__6ZC~eCU( 1 1 - ~ e ) ,  

a result obtained by Happel and Brenner [4]. 

(b) A Perfect Fluid Sphere (g = 0). Here we get the well known result [4] 

D=_6z~#ecU 1 +~2 (3 .7 )  
1 + 2  

(c) A Gaseous Oblate Spheroidal Bubble (Pc > &). This gives rise to a new result 

D = 4rc/~ecU(1 --�89 

As a consequence of our results, we see that the force exerted on the fluid 
oblate spheroid is less than that experienced by a fluid sphere of radius equal 
to the equatorial radius of the spheroid. We may make another comparison. 



866 H. Ramkissoon ZAMP 

A sphere of radius c (1 - �89 e) would have the same volume as our spheroid and 
its resistance from (3.7) would be 

D=_6rC#ecU(l _ �89  l + ~ 2  
1 + 2  

On comparison with (3.6), we see that a fluid sphere of equal volume experiences 
a smaller resistance than the fluid oblate spheroid. 
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Summary 

The Stokes flow past a fluid spheroid whose shape deviates slightly from that of a sphere, is 
examined. To the first order in the small parameter characterizing the deformation, an exact 
solution is obtained. As an application, the case of a fluid oblate spheroid is considered and the drag 
experienced by it is evaluated. Special well-known cases are then deduced. 

Zusammenfassung 

Die Stokes-Str6mung um einen Flfissigkeitstropfen, dernur  leicht von einer perfekten Kugel 
abweicht, wird untersucht. Eine L6sung wird gefunden, die exakt ist bis zur ersten Ordnung 
im Deformations-Parameter. Als Beispiel wird der Str6mungswiderstand eines abgeplatteten 
Fliissigkeits-Sph~iroids berechnet. Die Methode liefert fiir bekannte Spezialf/ille korrekte L6sungen. 
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