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1. Introduction 

The evaluation of heat transfer by forced heat convection in slow lineal flows of 
non-Newtonian fluids has been discussed in [1] on the basis of the third order Rivlin- 
Ericksen fluid. In [1] mechanical heating in the fluid was ignored which is a valid 
enough approximation for sufficiently small Brinkman numbers. For polymer melts 
the Brinkman number is known to vary from 0 to oo and, as data in Pearson [2] show, 
it is small for slow flows of melts in small bore channels. In this note we reconsider 
heat transfer for a circular tube and examine the effect of mechanical heating on the 
heat transfer coefficient. The largest Brinkman number dealt with has the value one so 
that our results pertain to low heat generation. 

2. The velocity and temperature fields 

The radius of  the tube is a, and the origin O of cylindrical polar coordinates 
(r, 0, %) is located at the thermal entrance with O x a along the axis of the tube parallel 
to the unit vector e a. At x a = 0 the uniform temperature of the heated fluid is T o, and 
T 1 (< To) is the constant wall temperature of the tube for x a > 0. From [1] we recall 
the rectilinear velocity field in the third order fluid: 

v =  {ev 1 (r) + e a v a (r)} e a 

vl (r) = ~ (a 2 - r 2) (2.1) 

v a (r) - (a '  - P)  
4 /P  

and the average velocity v o through any cross section of the tube 

a2e [ 2(/?=+,83) aa ] 
v~ 4--7 1-  3/P P " (2.2) 

In the above/1,/~2,/~a are material parameters which are assumed to be indepen- 
dent of temperature, and e is the specific driving force in the fluid, powers of which 
beyond the third being considered negligible (vide [1]). With regard to the tempera- 
ture field we have now to consider the contribution of mechanical heating to the 
energy of the fluid. In terms of the local energy balance equation this occurs through 
the term trace (S D) where S is the determinate stress defined in [1] and O is the sym- 
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metric part of the velocity gradient tensor. Very simply the equation that emerges for 
the temperature field T is, in standard notation, 

OT ~ O 2 T 1 OT O 2 T~ 
O c v v - - = k  ox3 --gF +-; V;-r ! 

1 { (Or/2 /Or\41 
+--2 It\Or] +(fl2+fl3) k~r) t" (2.3) 

We may note, in relation to the solution of (2.3), that we start off knowing the 
velocity field through (2.1). This is a consequence of our assumption that It,/71,/?2 are 
independent of temperature since then the velocity field is uncoupled from the tem- 
perature field. 

In [1] we have the dimensionless quantities 

T -  T 1 r x3 2 a ~ v o c~ 
0=  To-T1 ' x =-- ,a z - - - , 2 a P 6  P6 k (2.4) 

to which, bearing in mind (2.1), we add 

e v 1 2 
w = - - -  (1 - x 2) (2.5) 

v o K(?) 

where, as in [1], we have defined 

4 a~ (f12 +/?a) 
- e2; K (~) = 1 - - - .  (2.6) 

It3 6 

By inserting (2.4) and (2.5) into (2.3) we obtain the following temperature equation 
in which, consistent with the third order fluid approximation, powers of e higher than 
the third have been neglected: 

v O0 020 1 O0 f x ' !  2 

4v 0 Oz O x ~  § -x-- ~-x + 8 B r  (2.7) 

subject to 

O ( x , O ) = l ,  x e ( O ,  1); O ( 1 , z ) = O , z > O .  (2.S) 

In (2.7) 

v 2 i --;-~ ] Br Itv~ (2.9) 
v o K(~) ( 1 - x 2 ) - o ( 1 - x ' )  ; k ( T o - r  0 

the latter quantity being the Brinkman number of the fluid. Also longitudinal heat 
conduction has been ignored for large P6clet numbers as discussed in [1] and [2]. In 
the event that Br is zero (2.7) reverts to the equation considered in [1] and this fact 
may be used to generate the solution of (2.7) by the principle of superposition. Thus 
we put 

0 (x, z) = 01 (x, z) + 0* (x) (2.10) 

where 
v 001=02 01 1 001 

q - - - - -  01 (1, z) = 0  (2.11) 
4v o az ~gx 2 x O x '  

and 
d20 * 1 dO* r x ' ,  z 
dx ~ q  x dx ~-8Br / -K-~!  =0,  0 " ( 1 ) = 0 .  (2.12) 
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The solutions of (2.12) and (2.11) are 

Br 
0* (x) (1 - x 4) (2.13) 

2 {K (~)}2 

0, (x, z) = ~ A,~ q~m (x) e - ;"* (2.14) 
m = l  

where, in the latter solution, the eigenfunctions Cm (x), m = 1, 2, 3 . . . .  have the ex- 
panded forms 

~m (x) = Z a~# ) Jo (n ,  x) (2.15) 
p ~ l  

and (2 v, p = 1, 2, 3 . . . .  are the positive zeros of J0 (/2). The eigensolutions {2m, a~} 
have been evaluated in [1]. It remains for the composite solution (2.10) to satisfy the 
first of the conditions (2.8). 

3.  Thermal  resul ts  

The mean transport temperature as defined in [1] is 

1 1 

O(z) = ~ v O x  d x / f  v x  dx (3.1) 
0 0 

so that through use of (2.9), (2.10), (2.13), (2.14), (2.15) and the first of (2.8) it is 
found that 

0 (z) = A2m e - '~z + 1 - (3.2) 
m=l 12 {K(D} a -~ -  

where 

64 a~ m) Lp I ( L p -  Rp) 
K (~) 2 {K (~) }2 

A~ - (3.3) 

Z N• (a(vm)) 2 - • q ~(m) ~(m) Q. u~ .q (p 4 q) 
p = l  p,q 

and, apart from 

i 128 576 ~ ( 140 2304 9216)1 R~ Jl(/2p) 5 - - - +  3 - - - - t  

the coefficients Lv, N~, O~ are as defined in [1]. 
The rate of heat transferred to a channel wall is commonly described by means of 

a dimensionless coefficient, namely the Nusselt number 

dO,, 
Nu - k A (A T)ra (3.4) 

where k is thermal conductivity, Q,o the rate of flow of heat to the wall area A, d a 
characteristic length and (aT),.a a representative temperature difference. Evidently 
the choice of (A T)ra has a major influence on the value of the Nusselt number. For 
flows in which mechanical heating is not significant it is usual to define (dT)ree 
= T - T  1 in which 7" is the mean transport temperature (vide (3.1) above) and this 
choice underlies the Nusselt number values calculated in [1]. However Winter [3] from 
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Table 1 
Coefficients A~ v Br. 

N. T. Dunwoody and T. A. Hamill ZAMP 

Br 0 0.1 0.5 1.0 

A~ 0.8176 0.7551 0.5299 0.3043 
A~ 0.0982 0.0931 0.0739 0.0531 
A~ 0.0328 0.0317 0.0276 0.0228 

Table 2 
O(Z) v Br. 

z ~ r  0 O. 1 0.5 1.0 

0.01 0.7487 0.7279 0.6670 0.6404 
0.05 0.3918 0.3972 0.4310 0.4999 
0.10 0.1867 0.2078 0.2980 0.4234 
0.15 0.0892 0.1178 0.2348 0.3871 
0.20 0.0426 0.0748 0.2046 0.3698 
0.30 0.0097 0.0444 0.1833 0.3576 
0.40 0.0022 0.0374 0.1784 0.3548 
0.50 0.0005 0.0359 0.1773 0.3541 
0.60 0.0001 0.0355 0.1770 0.3540 

0 0.0354 0.1770 0.3539 

Table 3 
Nu (Z) v Br. 

z ~ r  0 0.1 0.5 1.0 

0.01 3.693 3.781 4.228 4.996 
0.05 1.468 1.697 2.658 3.958 
0.10 0.690 0.978 2.151 3.665 
0.15 0.329 0.645 1.918 3.531 
0.20 0.157 0.487 1.806 3.467 
0.30 0.036 0.374 1.728 3.422 
0.40 0.008 0.348 1.709 3.412 
0.50 0.002 0.343 1.705 3.409 
0.60 0.000 0.341 1.704 3.409 

0.000 0.341 1.704 3.408 

a considerat ion of  developing tempera ture  profi les in p ipe  flow has adduced  
persuasive reasons for the inadequacy  o f  the usual def ini t ion o f  the Nussel t  number  
where viscous diss ipat ion is significant. One ma in  d isadvantage  cited is that  in this 
defini t ion an a t tempt  is made  to describe two fair ly unrela ted quanti t ies  Qw and 
(A T)rof = T -  T 1 as functions of  each other. 

In the current note we take (A T) ra  = To - T1, whence on the basis o f  Four ie r ' s  
law of  heat  conduct ion together  with the dimensionless  forms (2.4), it  is easy to show 
that  the Nusselt  number  assumes the local form 

d ~ O0 ds (3.5) 
N u  (z) = - ~ -  oR Ov 
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where P = 2 ~ a is the perimeter of  the tube cross-section OR to which v is normal and, 
for the sake of uniformity with [1], the characteristic length d is take to be 2 a. An ap- 
plicaton of the two dimensional Gauss theorem followed by routine manipulations 
similar to those used in the evaluation of 0 (z) above then leads to 

~ 16Br 1 1 / Z A g 2 ~ e _ ~ , ~ +  {~--(~-~2j (3.6) Nu (z) = ~ -  ~=1 

The asymptotic values of (3.2) and (3.6) are 

5Br ( 4 ~ )  4BF 
0 (oo) = 12 {K (~)}3 1 -  ~ -  ; Nu (oo) {K (5)} 2 

and arise solely from mechanical heating in the fluid. 
The parameter ~ has been discussed in [1]. Here we choose ? = - 0.5 as being typi- 

cal of the general behaviour for negative ~ values. Numerical values of A~, m = 1, 2 
and 3, have been computed on an ICL 1903 computer for values of the Brinkman 
number Br = 0.1, 0.5 and 1.0. These are shown in Table 1 and have been used to cal- 
culate the functions 0 (z) and Nu (z) which are displayed in Tables 2 and 3. The 
case Br = 0 derives from [1] and is included for comparison although the values 
quoted here for Nu (z) have been revised in accord with (3.6). Table 2 indicates sig- 
nificant enlargement of the transport temperature with increasing Brinkman number 
outside of a small region at the thermal inlet. This is accompanied by a very marked 
enhancement of the local heat transfer coefficient Nu (z) as is evidenced by Table 3. 
Finally it is noteworthy that the asymptotic values 0 (oo) and Nu (oo) for a Newtonian 
fluid (5 = 0) exceed those for the slow flow of a non-Newtonian fluid as represented 
by the third order Rivlin-Ericksen fluid. 
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Abstract 

The effect of mechanical heating on the heat transfer characteristics of a heated non-New- 
tonian fluid in lineal flow through a circular tube is examined. Marked enhancement in the local 
rate of heat transferred to the tube wall is found. 

Zusammenfassung 

Die Wirkung der mechanischen W~rmeerzeugung auf die W~irmetibertragung einer er- 
w~irmten nicht-Newtonschen Fltissigkeit, in geradliniger Str6mung in einem kreisrunden Rohr, 
wird untersucht. Es wird eine merkbare Vergr6gerung des lokaIen W~irmetiberganges an die 
Rohrwand gefunden. 
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