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How to approximate the solutions of certain 
free boundary problems for the Laplace equation 
by using the contraction principle 

By Andrew Acker, Mathematisches Institut I, Universit~it Karlsruhe (TH), 
Karlsruhe, Federal Republic of Germany 

1. Introduction and main results 

We derive a procedure, based on the contraction principle (Banach fixed 
point theorem), for numerically approximating the solutions of the following 
free boundary problem with hydrodynamic applications. 

Problem 1 (see Fig. 1). Let be given a function a (p) = a (x, y): IR 2 --* 
which is continuous, strictly positive, weakly monotone increasing in y, and 
a-periodic in x (for some value e > 0). Let IB denote the Banach space of  all 
continuous, a-periodic functions f :  ]R ~ ]R, endowed with the maximum 

n o r m  II/[I = max {]f(x)l: x ~ R}. Given F ~ IB, we define X = {f~  ~ : f > F } .  
For e a c h f e X ,  let f2 (f) = {p = (x, y) e IR2: F(x) < y <f (x )}  and let U(f;p)  
be the o--periodic (in x) solution of the boundary value problem V2U = 0 in 

(f),  U = 0 on f, U = 1 on F (where f and F are viewed as their graphs in 
IR 2 *)). We seek a func t ionf  e N[ such that 

] V U ( ~ p ) l = a ( p )  on f ,  (1) 

i.e., for eachp ej~ ]VU@,q)] ~ a(p) as q ~ p ,  q e t? (f). 
The existence of a function f 6  2N satisfying (1) follows from Beurling 

[7, Theorem 2]. The solution in unique (for given a > 0 and functions a (p) 
and F e IB) by the Lindel6f principle (see [8, pp. 16-21] and [1, Lemma 4]). 
If a (x, y) is a real analytic function of each coordinate variable, then accord- 
ing at a result of  Lewy [9], the curve f is analytic and U(f;p) can be 
harmonically continued across ]~ Therefore, the interior normal derivative 
Dn U @, p) exists o n f a n d  satisfies D,~ U (J~ p) = I V U @, P) I = a (p). 

Our method for approximating f requires a certain family of operators 
T~: Y~ ~ Y~, 0 < e < 1, which we now proceed to define. For any p, q E 11t 2, 
we let da (p, q) denote the infinum of l ad  := a (p') I dp'l among all 

~) Since a function f: It ~ N is defined by its graph, we have f =  graph (f) := {(x,f(x)): x e ~} 
Thus p Ef meansp e graph 0r), etc. 
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Figure 1 S t /  

1 
I [2(f) :v2u(f;p)=O 

rectifiable curves ~ joining p and q. (Thus da is a generalized distance 
function in JR 2. In the important case where a(p)-= c, we have da(p, q) 
= c.  [p - q].) For 0 < e < 1, we let the auxilliary operators (b~: N ~ N and 
7'~: X ~ X be defined such that 

q)~ ( f )  = {p ~ (2 (f) :  U 0c; p) = e} (2) 

and 

T~Cf) : {p : ( x , y )  ~ JR2: y > f ( x )  and d~(J:,p) : e}, (3) 

where da(J]p) = rain {d~(q, p): q ~J]. (The proof that these sets are indeed 
functions in Y~ (i. e., graphs of functions in J~) is deferred to w 2.) Finally, we 
define 

T~=~U~oq)~, i.e., T~0O=7'~({b~(f)) f o r f e X a n d  0 < e < l .  (4) 

Thus, for any f e 3~ and 0 < e < 1, T~ (f)  ~ X is that curve whose points lie 
above, and at a generalized distance e from, the level curve at height e of  the 
function U(f ;p ) .  (See Fig. 2.) Notice that qs,  T~ and T~ are monotone 
operators, e. g., 

T~ (f)  -_< T~ (g) whenever f ~  g in Y~. (5) 

One can easily define a set Y~= { f e  IB: F1--<f= F2} ~ 3~, where 
F1, F~ ~ X c~ C ~ (IR), such that 

f ~  and T~: ~ for a l l 0 < e < l .  (6) 

Figure 2 
The operators (be: Y< -* Y~ and 
T~: ]~ ~ ]Yr in the case 
a (p) = constant. 

/ Te(f) :da(% (f) ;p)=E 

/ / f "~ 

%~ (f) :u (f ;p) =e 
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In order that f ~ x ,  it suffices that ]VU(F1;p)  l > a ( p )  on F1 and 
IVU(F2;p) I < a(p) on F2, by [7, Theorem 1]. By the monotonicity of T~, we 
have T~: N --+ N provided that F1 < T, (Fi) < F2, i = 1, 2. 

Our main result is 

Theorem 1: In Problem 1, assume the function F(x) is Lipschitz continu- 
ously differentiable (L.c.d.) in JR. Then T~ is contracting in 7s~ for any 
0 < e <  1, i.e., 

II T, (f) - T~ (g) tt <- o~ tl f -  g tl for all f ,  g E Y~ , (7) 

where 0 < oc = o~(e) < 1. Thus, T~ has a unique "'fixed point" f~ e 7~, which 
can be obtained by successive approximations, i.e., 

O~ n 

I]T?(J)-~[]  <= I{T~( f ) - f l l  foral l  f ~ Y ~ a n d n ~ N .  (8) 
1 - ~  

Moreover, 

]lJ~ - f l l  ~ 0 as e ~ 0 +, where f ~  Y~s (1). (9) 

The proof  of Theorem 1 is given in w167 3 and 4. The contraction principle, 
on which Theorem 1 is based, is discussed in, for example, [11], where the 
estimate (8) is also derived. 

Remark 1: Basically, our method  for approximating f is to first choose e 
very small, so that ! lJ~-f[I  is small, and then approximate J~ to within a 
small error by applying T~ a sufficient number  of times to some function 

f ~  X.  It is not hard to see t h a t f E  X satisfying (1) continues to exist and be 
approximable by this method even in some cases where the curve F is not 
the graph of  a function, for example, when a (p) = 1 and F is the periodic 
extension of the square-tooth curve in Fig. 5. The main difficulty of the 
method is: at each step in the inductive determination of the functions T~ (f),  
one must  numerically approximate the function U(T~( f ) ;p )  in Q (T~(f))  in 
order to approximately obtain the function # ,  (T~ (f)) ~ X (see w 5). Some 
approximate solutions of Problem 1, which were obtained by this method,  
are graphed in Figs. 4 and 5. 

Remark 2: Given 0 < e < 1 and func t ions f  g E X satisfyingf-<_J~ =< g, it 
follows from the monotonicity of  T, (Eq. (5)) that 

T ~ ( f ) = f ~ <  < - =  T~(9) for a l l n ~ N  

These inequalities provide a more practical means of estimating I] T~ (f) -J~ ]1 
than does (8), especially since a (e) ~ 1 as e ~ 0. 

Remark 3: In the case where a (x, y) is a real analytic function of each 
coordinate variable, the estimate (9) has the stronger form: II J~ - f  I] = O (e) as 
e-~ 0+ .  

Remark 4." The following free boundary problem (Problem 2) is an inter- 
esting variant of Problem 1 in the context of doubly-connected plane regions 
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(see [10] and [1, Lemma 11]). Let b(p): IR2~ IR+ be a continuous, strictly 
positive function such that 2 �9 b (2 p) is weakly monotone increasing in 2 = 0 
for each p ~ IR 2, and let IE denote the class of all curves F having polar 
coordinate representations F = {(0, r (0)): 0 e IR}, where the function 
r (0): IR ~ IR+ is continuous, strictly positive and 2 re-periodic. Given F* e C, 
we seek a curve/~ e r containing F* in its interior complement, such that 
iV0(p)l=b(p) on f ,  where tQ(p) solves the boundary value problem 
V2r = 0 in f) (= the doubly connected region bounded by /~  u F*) ,  0 = 0 on 
/~, D =  1 on F*. The conformal mapping G (z) = i '  log (z) (i. e., the trans- 
formation x = - 0, y = log (r), where (0, r) are polar coordinates) reduces 
Problem 2 to Problem 1 in the case where a = 2 7r, a (x, y) = r- b (0, r) and 
F ( x )  = l o g  (r* (0)). If r e  iN solves Problem 1 in this case, then the corre- 
sponding solution of Problem 2 is given in polar coordinates by the function 
f (0) = exp ( f (x) ) .  Notice that if b (p) = 1 in Problem 2, then a (x, y) = exp (y) 
in the equivalent form of Problem 1. 

Remark 5: Another free boundary problem related to Problem 1 is the 
following. In the notation of  Problem 1, given A > 0, one seeks a function 
f ~ iN such that the set ([0, or] x IR) r~ ~2 (1~) has area A, and [V U (f; p) ! is 
constant on f. Exactly one function f ~  iN has these properties. In [4], the 
author defined a related class of  operators T*: iN ~ iN which preserve area 
(of ([0, a] x IR)c~ f2 CO), but are neither monotone nor contracting, and 
showed that f can be approximated in the maximum norm by essentially the 
method of  successive approximations using the operators T~*, 0 < e < 1. 

Additional notation. For any p = (x, y) E IR 2, ~ e 1R, and sets P, Q c IR 2, 
we define p + ~ = ( x , y + e ) ,  Q + 0 c = { q + e : q e Q } ,  Q + p = { q + p : q e Q } ,  
d a ( P ; Q ) = i n f { d a ( p , q ) : p e P ,  q e Q } ,  d (P; Q) = inf { ] p -  q]: p ~ P, q e Q} 
and d (P; q) = d (P; {q}). Thus f o r f  ~ 113 and ~ e IR, we have 

f +  ~ = { ( x , f  (x)  + ~): x e IR} ~ lB. 

For a n y f e  lB, we define S (f)  = {p = (x, y) e 1R2: y >=f(x)}. 

2. Proof that #~ ,  q~: iN -~ iN 

For any fixed . f e i N  and 0 < e <  l, the sets ~ ( f )  and % ( f )  are 
uniquely defined by (2) and (3). Thus it suffices to show that these sets are 
(graphs of) functions in iN. Now the strong maximum principle implies 
0 < U (f; p) < 1 in f2 (J). Thus U (f; p) is strictly monotone decreasing in y in 
P- (f),  since for any sufficiently small 6 > 0, we have 

Vo (p ) :=  U (f; p) - U (f; p -  6) < 0 

on F u ( f -  6) and hence throughout f2 ( f -  6). Thus 4~ (f)  is (the graph of) a 
function [r (f)] (x): IR ~ IR, since for each x e IR the equation U (f; x, y) = e 
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is solved by exactly one value y ~ (F ( x ) , f ( x ) ) .  Clearly q}~ (f)  > F, and the 
continuity and a-periodicity of ~b~ (f) (viewed as a function of x, not f )  
follows from the strict monotonicity and a-periodicity (in x) of U (f; p). Thus 
q~ (f) e X .  

Given f e X ,  da (f; p) is clearly a continuous, a-periodic (in x) function 
in IR 2 such that d= (f ;p)  = 0 in f ,  da (f ;p)  > 0 in lR'~\f, and da (f ;p)  ~ + oo 
uniformly in x as y-- ,  + oo. Moreover, the function d= (f ;p)  is strictly 
monotone increasing in y in S ( f )  := {p = (x, y) e Pal: y > f (x )} ,  as is seen by 
the following argument. Given 6 > 0 and points p , p -  6 ~ S ( f ) ,  let 0 =  
da ( f -  5 ; f )  > 0, and let 7 be an arc joining p to f such that lyL < da ( f ;p )  
+ 0/2. Using the assumed monotonicity of the function a (q), one sees that 

d a ( f ; p  - 6) <= 1(7-  6) s lo_-< Iv- alo - o--< lylo- ~ <=da(f;p) - 0/2. 

Using these properties of d~( f ;p ) ,  one can show ~ ( f ) : = { p e S ( f ) :  
da (f; p) = e} is a function in Y~ by the arguments already sketched for ~b~ (f). 

3. The proof  that T~: 7~ -+ ~ is a contract ion for any 0 < g < 1 

To begin with, one sees using the assumed monotonicity of the function 
a (q) that 

da ( f ;p)  <= da ( f +  6;p + 6) <- d~(g;p  + 6), p e S ( f ) ,  

and hence 

(g) _-< (f)  + 6, 

both for any 5 => 0 and f, g e IB satisfying g _-<f+ 6, and it follows (by inter- 
changing f and g) that 

II 7t~ (f)  - % (g) I[ --< ] I f -  g [1 for all f, g ~ IB. 

Therefore (7) follows (in view of the definition T~ = 7~ o q~) if, for any 
0 < e < 1, we can determine a value 0 =< e = e (e) < 1 such that 

I[ ~b~ (f)  - q~ (g)[] -< 0~ I1 f -  g [I for all f, g ~ ~ .  

Due to the monotonicity of the operators ~b~, it actually suffices to show that 
(for some value 0 <_- e = ~ (e) < 1) 

q~ ( f +  5) =< q~ (f)  + e 6 for all f e Y[ and 0 _< 6_<- J ,  (11) 

where 6-- [/F2 - F1 I[. It is convenient to divide our somewhat involved proof 
of (l l) into four lemmas, which we now state. Clearly (11) follows by 
combining Lemmas 2 and 4. The value 0 < e < 1 is assumed fixed for the 
remainder of this section. 

Lemma 1: I f  F is L. c. d., then there exists a constant 0 > 0 such that 

U ( f + 6 ; p + 5 ) = < ( 1 - O 6 ) e  for  f ~ Yg~, p e ~ ( f )  and 0 <= 6 ~ S. 
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Lemma 2: I f  F is Lc.d. and 0 > 0 is the constant in Lemma 1, then 

qs + ( f  + 3) <- q~ (f) + ( 1 -  [o e /m  (f; 3)]) 3 Jbr all f ~ Y~ and O <- d <- ~, 

where 

M ( f ; g ) = m a x { i D u U ( f + 3 ; p ) l : p c E ( f ; 3 ) }  and 

E 0 c, 3) = closure (f2 (60+ (f)  + 3) ~ S (4~+ 0c+ 3))). 

Lemma 3: inf {d 0<; q~ ( f ) ) : f e  ~}  > 0. 

Lemma 4: sup {M0C; 3 ) : f  ~ ,  0 < 3 -< ~} < oo. 

Proof of Lemma 1: We have 

U ( f +  3;p + 3) _-< U (f ;p)  - max {U ( f +  3; q): q ~ F +  3} (12) 

for any p e s (f) ,  f ~  ~ and 3 > 0 by the maximum principle, since (12) 
obviously holds for all p ~ f w  F. Again using the maximum principle, we 
find that U ( f + 3 ; ~  =< U(Fa;p) on F w  0c+3)  and hence throughout 
f2 ( f +  3) for 0 < 3 =< 3, where F a = F2 + & Therefore, it follows from (12) that 

U(f+3;p+3)<=((3)  .U( f ;p)  f o r p e f 2 ( j g ,  fe2Y~ and 0_-<3_-<S, (13) 

where ~r(3) =max{U(Fa;q):  q ~ F + 3 }  = 1. Due to our assumptions that 
F(x)  and F2 (x) are L.c.d. in R, the function VU(Fa;p): ~ (Fa) --* ]R 2 has a 
continuous extension to closure (f2 (Fa)) satisfying t/ := rain {]VU (Fa;p)]: 
p ~ F u Fa} > 0. Thus if we set L = max {] D,  F (x) l, [Dx F2 (x)/: x ~ ]R} and 
O = 0/]/1 + L 2 , then Du U (Fa; p) ~ - O < 0 on F ~ F a and hence through- 
out f2 (F~), from which it follows that 

( ( 3 ) - < 1 - O 3 ,  0<3==_g.  (14) 

Our assertion follows by combining (13) and (14). 

Proof of Lemma 2: Let f~ = q5 ( f +  3), ;2a = (2 ( f +  3) and Ua (p) = 
U ( f +  3;p) in f2a for all 3 >= 0, where f ~  ~ is fixed but arbitrary. In this 
notation, Lemma 1 states that 

U ~ ( p ) < = ( 1 - O 3 ) e < e  f o r a l l p ~ f o + 3 ,  0=<3=<$, (15) 

(where f0 =fa  [a=0). Therefore J~ -<f0 + 6 for 0 ~ 3 =< K since Ua (p) = e on .~ 
and the function Uo (p) is monotone decreasing in y in ~2a. Moreover, by the 
theorem of the mean we have 

i U a ( x , f ~ ( x ) ) - U a ( x , f o ( x ) + 3 ) ! < - O C o ( x ) + 3 - f a ( x ) ) M ( f , 3 )  (16) 

for all x ~ IR and 0 =< 6 =< c~, where 

M(f ,  3) = max{iD u Ua (p)[: fa (x) _-< y =<fo (x) + 3, 0 _-< x _-< c~} < oo. 

Since Ua (x,f0 (x) + 3) =< (1 - O 3) e (by (15)) and Ua (x,J~ (x)) = e, we con- 
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clude from (16) that 

fo (x) + 6 - f6 (x) >= (O~e/M ~', 6)) 6, 

or, in other words, 

f6 (x) --< f0 (x) + (1 - [O e/M (f; 6)]) 6 

for all x ~ IR and 0 _-__ 6 _-__ ~ But this is equivalent to our assertion. 

Proof of Lemma 3 (see Fig. 3). Let K =  ( M + N ) / L ,  where L was 
previously defined, M =  max {F2 (x): x ~ IR} - min {F 1 (x): x ~ IR} and 
N = rain {F 1 (x) - F (x): x E IR}. Let s be the finite, simply connected 
region bounded by F*  w F, where F = ([-  K, K] x {M}) u ({0} x [0, M]) and 
F * = { ( x , - U + L [ x l ) : x ~ l R ,  Ix l<K} ,  and let U(p)  solve the bound- 
ary value problem V 2 U = 0  in ~2, U =  1 on F*. U = 0  on F. Clearly 
d ( y ; 0 ) : = i n f { l q [ : q  ~ 7 } > 0 ,  where we define 7 = { P ~ f 2 : U ( P ) = e } -  To 
prove Lemma 3, we will show that 

d(q~ (f);P0) = d(7;0)  f o r a l l f ~  3~andpo E f .  

It suffices to show, for any f i xed f  s N andp0 e f, that 

U (p) >_- 0 (p) in f ~ c ~ J ,  (17) 

where s9 =f2  ( f ) - P 0  and 0 ( p ) : =  U(f;',p+po) is the a-periodic (in x) 
solution of the boundary value problem V~0= 0 in s 0 =  0 o n ) ~ : = f - p o ,  
0 = 1 on P := F - P 0 -  Let ~ be the simply-connected region bounded by P 
and P :=(IR x {M})w ({0} x [0,M]), and let U (p) be the bounded harmonic 
function in ~ satisfying the boundary conditions U = 0 on F, U = 1 on P. 
Now 0 _-< U (p) _-< 1 in ~ by the maximum principle, and f) c sg, whereas 
and f~ share the lower boundary component F. Thus O (p) - 0 (p) >- 0 on 
P u ~  and hence throughout ~.  Since F c / ~  and F* c Closure(Sg), we also 
have U (p) - O (p) >_- 0 on F* w F and hence throughout f2. This completes 
the proof of (17), and therefore of Lemma 3. 

Figure 3 

/•F : U=O 

(-x,M), (~,M) 
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Proof of Lemma 4: For a n y f e  N,  0 _-< 5 N 5 a n d p  ~ E(f,, 5), we have 

d (p; F) _>- d (F; r 0 %  a)) --> d (g; ~ (&)) > 0 

(since f +  6 ->/71, implying (b~ ( f +  6) => g)~ (F0 > F) and 

d Co;f+ ~) _-> d ( f +  ~; e~ (13 + a) = d (f,, r g ) ) -  

Applying Lemma 3, we conclude that there exists a constant z > 0 such that 
d Co; F u ( f +  5)) ~ x and hence 

B~ (p) ~ g2 ( f +  a) (18) 

for a l l f ~  iX], 0 _-_ c~ -< c~ and p ~ E @, or where B~ Co) = {q E IR2: Iq - P ]  < ~}- 
In view of (18), our assertion follows directly from a well known inequality 
obtained by differentiating the Poisson integral formula. Namely, if W (q) is 
a harmonic function in B~ Co), then 

iVW(p) l _< (2/u) "sup {[ W(q)[: q 6B~ Co)}. (19) 

In fact one sees using (18) and (19) that M (~, 0-)_-< 2/~ for all f e  3~ and 
0__<~<~ 

Remark 6." The proof that T~ is a contraction in 3~ is simpler in the case 
where there exists a constant/~ > 0 such that a (p + c$) => (1 +/z 5) a (p) for all 
5-> 0 and p = (x ,y )E  IR 2 satisfying y g F(x).  In this case, one can show 
T~ ( f +  6) _-< % (f)  + (1 - (/~ e/a)) 5 for all f e  ~ and 0 =< 6=< 5, where a =  
max {a (x, F2(x ) + a)): x e  IR}. It follows by the discussion at the beginning 
of this section that (7) holds with ~ = (1 - (/~ e/a)). 

4. Proof  that [[ Z - f  [i ~ 0 as g ~ 0 + 

Let 2 •  0 < e <  1, and let E_+= 
{6 e (0, 1): 2• (e) ~ 0}. Since ]lJ~ - f l l  = max {2+(e), 2_ (6)}, 0 < e < 1, it suf- 
rices to show 

lim sup 2+ (e) _-__ 
e~0+ 

In order to prove 

& Coo (e), r ~ ) )  = 
maximum principle 

6= u (L;p~(~)) 

0. (20) 

(20) in the "+"  case, choose (for each 6 e E+) points 
(e)) and Pl (e) e r (J~) satisfying & Coo (e),pl (e)) = 
e. Since ~ N f +  2+ (~), 0 < e < 1, we conclude using the 
and Lemma 1 that 

_-< u ( f +  ;~+ (e);pl (e)) 
N (1-- O )~+ (e)) U(J~pl (e)-)~+@)), e ~ E + .  

On the other hand 

da ( Z P l  (e) - ;.+ (e)) <- & COo (e) - ;~+ (e) ,pl  (e) - ~.+ (e)) 

<= & Coo (e), Pl (e)) = e 

(21) 
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by the monotone  proper ty  of  the function a (q). Also, one can show using (1) 
that 

IIVUOr;p)I-aco)I <= co (damp) )  i n f 2 ( f ) ,  

where we use (p to denote  an arbi trary function such that ~o ( e ) ~  0 as 
~ 0 +. Therefore ,  i f  ~ c t2 ( f ) ,  e e E+,  denotes a smooth  curve joining the 

po in tp l  (e) - )t+ (e) to f ,  with generalized length I ~ l a  < ~ (1 + ~ (~/t, then 

U (1~ pl (e) - )~+ (e)) _-__ ~ IV U (J] q) l I dq] <- S (a (q) + ~o (da (f, q))) ]dql 
~'e 7e 

---I~1o (1 + ~o (~l/-<_ ~ (1 + ~o (~/t, ~ u + .  (22) 

By combining (21) and (22), we obta in  

(1 - O )~+ (e)) (1 + ~o (e)) >- 1, e e E + ,  

f rom which (20) immedia te ly  follows in the "+"  case. 
For  the p roo f  of  (20) in the " - "  case, for each e e E_  let 7~ denote a 

curve of  steepest  ascent o f  the function U(f ,q)  whose endpoints are 
P0 (e) e f c ~  (J~ + 2_ (e)) and Pl (e) e 45 (j~) + 2_ (e). Since - <  - f = f~ + 2_ (e), 
0 < e < 1, we conclude,  using the m a x i m u m  principle and L e m m a  1, that  

U ( ~ p  1 (e)) <= u(f~ + 2 _  (e);pl (e)) = (1 0 2 _  (e)) U(c~;p~ (e) - 2 _  (e)) 
= (1 - O 2_ (e)) e, e e E _ .  (23) 

D u e  to (1), we have 

I l v u ( f , p ) l - a ( p ) l < - ~ o ( u ( f ' , p ) )  in f 2 ( f ) .  

Since 7~ ~ t2 Or)\f2 (q~ Or)), we conclude that 

U~p~ (~l) -- $ t v u  (f, qtl [dql >= ~ (a (q) - (o (e))Idq] 
7~ 7e 

=> I~/~l. (1 - e (el l  e do COo (8) ,p l  (8)) (1 - fp (e)) 

->_ e (1 - ~o (e)), e e E _ .  (24) 

By combining (23) and (24), we obta in  

O" 2_ (e) = p (e), e e E _ ,  

from which (20) immedia te ly  follows in the " - "  case. 

5. Numerica l  results 

Our basic p rocedure  is to choose e > 0 small, so that  I I J~ - f l l  is small, 
and then induct ively compute  the functions fn = T2~ (f)  (for some f e J r  until 
II N , + I - L  LI is very small, We  have tr ied out  this procedure  in several cases 
where  a CO) =- C (C a constant) (see Figs. 4 and 5). 
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Our main difficulty was in making a "reasonable" choice of e. It is 
important that e be not too small, because the rate at which the curves fn 
progress toward J~ is roughly proportional to e. Also, the distance between 
neighbouring points in the rectangular grid used for the discrete computation 
of the functions U(fn;p), n = 1, 2, 3, . . . ,  must be substantially smaller than 
(e/C) (= the approximate distance between j~ and ~ (f~)). Thus, the cost of  
numerically approximating J~ increases rapidly as e decreases toward 0. On 
the other hand, e should be small enough so that I I ~ - f l ]  is "sufficiently 
small". One potential tool for deciding when e fullfills this requirement 
would be an a priori bound M such that 11J~ - f  11 =< M e, 0 < e < 1. In fact 
the author obtained such a bound (assuming a (p) =- C), but did not succeed 
in finding one which, in practical cases, was small enough to serve the 
indicated purpose. Therefore, in order to try out our method, we chose a 
modestly small value of  e (namely e = 1/5) and computed J~ in this case, 

leaving unanswered the question of  how small [ IJ~-f l l  is. The results thus 
obtained are graphed in Figs. 4 and 5. 

In Fig. 4, the lowest curve represents the function F(x) 10 = -5- cos (n x/5). 
The middle and upper curves approximate the functions J~ (x), e = 1/5, 
which correspond to F in the cases a (p) -- 3/5 and a (p) = 2/5, respectively. 
The relative improvement Ilfn+l-f,~ll at the last completed iteration was 
.005 in the case a Go) = 3/5 and .0012 in the case a (p) = 2/5. 

For our results in Fig. 5, we let F be a (10-periodic) square-tooth curve of 
height 10/3, as shown. The lower and upper computed curves approximate 
the function J~ (x) (e = 1/5) in the cases a (p) =- 3/5 and a (p) --- 2/5, respec- 
tively. The relative improvement at the final iteration was .0013 in the case 
a (p) =- 3/5 and .000022 in the case a (p) = 2/5. 

In all computed curves in Figs. 4 and 5, the horizontal separation of  
points indicates the size of the grid used for computing the functions 

U (A;P).  
Remark 7: Although we have not attempted this, the efficiency of our 

procedure for approximating f could no doubt  be improved by defining 
f~+l = T~, (fn), n = 1, 2, 3 , . . . ,  where the values 0 < e,~ < 1 are initially large, 
but gradually decrease as II f~ - f ~ - i  [] decreases. 
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Note added in proof. Due to the rnonotonicity of T~, if T~ (f) =<f for somef ~ X, thenf->_j~ 
and in fact the functions f~ = T~ (J) decrease monotonically to their limit )~. Similarly, if 
T~ (f) ~f, thenf--<j~ and thef~ increase tof~ (see [12, p. 6]). This provides a simple test for deter- 

-mining whether a given functionf e Y~ is an upper or lower bound forf~. 
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Zusammenfassung 

Wir zeigen, wie der freie Rand einer idealen Fltissigkeit, welcher einer verallgemeinerten 
Bernoulli-Bedingung gentigt, unter geeigneten Umst~inden approximiert werden kann. Unsere 
Methode sttitzt sich auf eine Klasse freier Randperturbationsoperatoren T~, 0 < e < 1, welche 
relativ zu einer geeigneten Norm und R~inderklasse kontrahierend sind und deren Fixpunkte 
gegen die gewtinschte Lrsung der freien Randaufgabe mite --, 0 + konvergieren. 

Abstract 

We show how the free boundary of an ideal fluid, subject to a generalized Bernoulli 
condition, can (under appropriate circumstances) be approximated. Our method is based on a 
class of free-boundary perturbation operators T~, 0 < e < 1, which are all contracting relative to 
a suitable norm and class of boundaries, and whose fixed points converge to the desired free 
boundary solution as e ~ 0 +. 
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