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How to approximate the solutions of certain
free boundary problems for the Laplace equation
by using the contraction principle

By Andrew Acker, Mathematisches Institut I, Universitit Karlsruhe (TH),
Karlsruhe, Federal Republic of Germany

1. Introduction and main results

We derive a procedure, based on the contraction principle (Banach fixed
point theorem), for numerically approximating the solutions of the following
free boundary problem with hydrodynamic applications.

Problem 1 (see Fig. 1). Let be given a function a (p) =a (x, y): R®> > R
which is continuous, strictly positive, weakly monotone increasing in y, and
o-periodic in x (for some value o > 0). Let B denote the Banach space of all
continuous, o-periodic functions f: R — IR, endowed with the maximum
norm | f| = max {|f(x)|: x € R}. Given F € B, we define X = {f € B: f> F}.
For each feX, let Q(f) ={p=(x,») € R% F(x) <y <f(x)} and let U(f; p)
be the o-periodic (in x) solution of the boundary value problem VU =0 in
Q(N, U=0onf, U=1 on F (where f and F are viewed as their graphs in
R2*)), We seek a function f € X such that

VU (f;p)|=a@) on/], (1)

ie, foreachpef, |[VU(f,q)| = a(p) as ¢ — p, g €  (f).

The existence of a function f € X satisfying (1) follows from Beurling
[7, Theorem 2]. The solution in unique (for given o> 0 and functions a (p)
and F € B) by the Lindelsf principle (see [8, pp. 16—21] and [1, Lemma 4]).
If a (x, y) is a real analytic function of each coordinate variable, then accord-
ing at a result of Lewy [9], the curve f is analytic and U (f;p) can be
harmonically continued across f. Therefore, the interior normal derivative
D, U(f: p) exists on fand satisfies D,, U(f; p) = |VU (f, p)| = a (p).

Our method for approximating f requires a certain family of operators
T.:X - X, 0 < ¢ <1, which we now proceed to define. For any p, g € R?,
we let d,(p,q) denote the infinum of |yl.:=§a @) |dp'| among all

Y

#  Since a function £ R — R is defined by its graph, we have f= graph (f) == {(x, f(x)): x e R}
Thus p € f means p € graph (f), etc.
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rectifiable curves y joining p and ¢. (Thus d, is a generalized distance
function in R? In the important case where a(p) =c, we have du(p, q)

=c¢-|p—gq|.) For 0 <e¢< 1, we let the auxilliary operators @,: X — X and
¥.: X — X be defined such that

D, ()={peQ(): U(fip)=¢} 2
and
. ()={p=(x,p) e R: y>f(x) and do(f;p)=¢}, (3)

where d,(f. p) = min {d,(q, p): ¢ € f}. (The proof that these sets are indeed
functions in X (i.e., graphs of functions in X) is deferred to § 2.) Finally, we
define

T,=%, 0@, ie, T.(f)=P(D.(f)) for feX and O<e<1. (4)

Thus, for any fe X and 0 < ¢ < 1, T, (f) € X is that curve whose points lie
above, and at a generalized distance ¢ from, the level curve at height ¢ of the
function U(f; p). (See Fig.2.) Notice that &,, ¥, and 7. are monotone
operators, €. g.,

T.(f)=T,(g) whenever f=ginX. %

One can easily define a set X={feB: F,=/=F,} <X, where
F, F, e X n C?(R), such that

feX and T..X->X forall0<e<l. (6)

Figure 2
The operators @,: X — X and
T,: X — X in the case

a (p) = constant. o _{(F):U(fip)=¢
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In order that fe X, it suffices that |VU(F,;p)|>a(p) on F, and
|VU(F,;p)| < a(p) on F,, by [7, Theorem 1]. By the monotonicity of T, we
have T,: X — X provided that F, < T, (F)) < F,,i=1, 2.

Our main result is

Theorem 1: In Problem 1, assume the function F(x) is Lipschitz continu-
ously differentiable (L.c.d) in R. Then T, is contracting in X for any
O<e<l,ie,

IT.(Hh-T.(@=alf-gl| foralfgeX, ™)

where 0 = a=oa(e) < 1. Thus, T, has a unique “fixed point” f, € X, which
can be obtained by successive approximations, i. e.,

)

IT2() =il === |T.(H =7\ forall feXandne N, )
Moreover,
|fi—=Fl =0 as e— 0+, where fe Xsolves(1). 9)

The proof of Theorem 1 is given in §§ 3 and 4. The contraction principle,
on which Theorem 1 is based, is discussed in, for example, [11], where the
estimate (8) is also derived.

Remark I: Basically, our method for approximating f is to first choose ¢
very small, so that | f; — 7| is small, and then approximate f; to within a
small error by applying T, a sufficient number of times to some function
/e X It is not hard to see that /'€ X satisfying (1) continues to exist and be
approximable by this method even in some cases where the curve F is not
the graph of a function, for example, when a(p) =1 and F is the periodic
extension of the square-tooth curve in Fig. 5. The main difficulty of the
method is: at each step in the inductive determination of the functions 7' (f),
one must numerically approximate the function U (7T} (f); p) in 2 (T} (f)) in
order to approximately obtain the function @, (77" (f)) € X (see § 5). Some
approximate solutions of Problem I, which were obtained by this method,
are graphed in Figs. 4 and 5.

Remark 2: Given 0 < ¢ < 1 and functions f, g € X satisfying f=f; = g, it
follows from the monotonicity of T, (Eq. (5)) that

TP (f)=f,=Tr(g) forallneN.
These inequalities provide a more practical means of estimating || 77" (f) — jAl
than does (8), especially since a (¢) > 1 as¢ — 0.

Remark 3: In the case where a(x,y) is a real analytic function of each
coordinate variable, the estimate (9) has the stronger form: | i —f | = O (¢) as
e— 0+,

Remark 4: The following free boundary problem (Problem 2) is an inter-
esting variant of Problem 1 in the context of doubly-connected plane regions
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(see [10] and [1, Lemma 11]). Let b(p): R? = R4 be a continuous, strictly
positive function such that 2 - b(/ p) is weakly monotone increasing in 1 = 0
for each p € R?, and let € denote the class of all curves I" having polar
coordinate representations I ={(0,r (#)): 6 € R}, where the function
r(0): R — R4 is continuous, strictly positive and 2z-periodic. Given I'* e C,
we seek a curve I € C, contammg I'* in its interior complement, such that
[VU (p)|=b (p) on I', where U (p) solves the boundary value problem
V2U=0in O (= the doubly connected region bounded by I" U I'*), U =0 on
I, U=1 on I'*. The conformal mapping G (z) =i-log (z) (i.e., the trans-
formation x=—0, y=1log (r), where (0, r) are polar coordinates) reduces
Problem 2 to Problem 1 in the case where e=2mr, a(x,y)=r-b(6,r) and
F (x) =log (r* (9)). If fe X solves Problem 1 in this case, then the corre-
sponding solution of Problem 2 is given in polar coordinates by the function
# (6) = exp (f (x)). Notice that if b (p) = 1 in Problem 2, then a(x,y)=exp(y)
in the equivalent form of Problem 1.

Remark 5: Another free boundary problem related to Problem 1 is the
following In the notation of Problem 1, glven A >0, one seeks a function
/€ X such that the set ([0, o]xR) N Q2 (f) has area 4, and |VU (f; p)| is
constant on f. Exactly one function fe X has these properties. In [4], the
author defined a related class of operators T*: X — X which preserve area
(of ([0, g]xR) n 2 (f)), but are neither monotone nor contracting, and
showed that f can be approximated in the maximum norm by essentially the
method of successive approximations using the operators 7%, 0 < e < 1.

Additional notation. For any p= (x,y) € R?, x € R, and sets P, Q0  R?,
we define p+ta=(x,y+a), Q+a={qg+a:qeQ}, O+p={q+p: qe0},
do (P, Q) =inf{dy (p,q):p€ P, qge 0}, d(P;Q)=inf{lp—ql:peP,qe Q)
and d (P; q) = d (P; {g}). Thus for f € B and « € R, we have

fra={xf(x)+a):xecR}eB.

For any f € B, we define S (f) = {p = (x,y) e R%: y = f (x)}.

2. Proof that ®, ,¥,: X — X

For any fixed fe X and 0 <e< 1, the sets @, (f) and ¥, (/) are
uniquely defined by (2) and (3). Thus it suffices to show that these sets are
(graphs of) functions in X. Now the strong maximum principle implies
0<U(f;p) <1inQ (f). Thus U (f; p) is strictly monotone decreasing in y in
2 (f), since for any sufficiently small § > 0, we have

Vs@)=U(/ipp—U(fip—0) <0

on v (f— 6) and hence throughout  (f— ). Thus @, (/) is (the graph of) a
function [@, (f)](x): R — R, since for each x € R the equation U Fix,y)=¢
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is solved by exactly one value y € (F (x),f (x)). Clearly @, (f) > F, and the
continuity and o-periodicity of &, (f) (viewed as a function of x, not f)
follows from the strict monotonicity and g-periodicity (in x) of U (f; p). Thus
b, (HeX

Given fe X, d, (f;, p) is clearly a continuous, g-periodic (in x) function
in R? such that d, (f;p) =0 in f, d, (f;p) > 0 in R2\f, and d, (f;p) = + ©
uniformly in x as y — + oo. Moreover, the function d, (f;p) is strictly
monotone increasing in y in S(f) := {p = (x, y) € R% y = f(x)}, as is seen by
the following argument. Given d > (0 and points p,p—d e S (f), let o=
d, (f—8,/)> 0, and let y be an arc joining p to f such that |y}, < d.(f; p)
+ 9/2. Using the assumed monotonicity of the function a (g), one sees that

da(f,p=0)=ly=8) nSNl=ly-dl—o=lla—o=d. (f;p) — 0/2.

Using these properties of d, (f;p), one can show Y.(f):={peS(f):
dy (f; p) = ¢} is a function in X by the arguments already sketched for @, ().

3. The proof that 7,: X — X is a contraction for any 0 < ¢ < 1

To begin with, one sees using the assumed monotonicity of the function
a (q) that

d(fip)=d,(f+0,p+08)=du(g;p+d), peS),
and hence
Y.( =Y (H+4,

both for any 6 = 0 and f, g € B satisfying g = f+ 4, and it follows (by inter-
changing fand g) that

7. (N-¥.@|=]f-g| forallf,geB.

Therefore (7) follows (in view of the definition 7, =¥, ®,) if, for any
0 < & < 1, we can determine a value 0 = a = a (¢) < 1 such that

2N~ 2:(g) | =] f—g| forall fgeX

Due to the monotonicity of the operators @,, it actually suffices to show that
(for some value 0 = a=a (g) < 1)

D, (f+8) =D, (f)+ad forall fe Xand0=5=3, (11

where 6= | F, — F, || . It is convenient to divide our somewhat involved proof
of (11) into four lemmas, which we now state. Clearly (11) follows by
combining Lemmas 2 and 4. The value 0 < e <1 is assumed fixed for the
remainder of this section.

Lemma 1: If F is L.c.d., then there exists a constant © > 0 such that

U(f+o,p+0)=(1-08e forfeX,ped,(f)and 0=5=6.
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Lemma2: If Fis L.c.d. and © > 0 is the constant in Lemma 1, then

D, (f+0) =D, () +(1—[0e/M(f:0)]) 6 forall fe X and 0=5=3,
where

M(f,0) =max {{D, U(f+6,p)|: pe E(f;0)} and

E (f; 9) = closure (Q (@, () +0) n S (P, (f+ ).

Lemma 3: inf {d (f, @, ()): fe X} > 0.

Lemma4: sup (M (f.0): f€X,0=0=4} < 0.
Proof of Lemma I: We have
U(f+6p+0)=U(f,p) max{U(f+4q):qe F+d (12)

for any pe Q (f), fe X and 6= 0 by the maximum principle, since (12)
obviously holds for all p € fU F. Again using the maximum principle, we
find that U(f+0;p) = U(F,;p) on Fu(f+4) and hence throughout

Q (f+6) for 0 = 6 = b, where F, = F, + 5. Therefore, it follows from (12) that
Uf+8p+0) =00 U(fip) forpe(f), feX and 0=5=4, (13)

where {(6) =max {U (F,;q): g € F+ 6} =1. Due to our assumptions that
F (x) and F, (x) are L.c.d. in R, the function VU (F,; p): @ (F,) — R* has a
continuous extension to closure (Q (F,)) satisfying #:=min{|VU (F;; p)|:
p e FuF}>0. Thus if we set L=max{|D,F(x)|, D F, (x)]: x € R} and
O=n/Y1+L?, then D, U(F,;p)=—60 <0 on FuF, and hence through-
out 2 (F,), from which it follows that

(@O=1-06 0=06=4. (14)
Our assertion follows by combining (13) and (14).

Proof of Lemma 2: Let fo=® . (f+5), Q=0 (f+9) and U;(p)=
U(f+36;p) in Q5 for all =0, where fe X is fixed but arbitrary. In this
notation, Lemma 1 states that

Us(p=(1-008e<e forallpef,+d, 0=6=4, (15)

(where f, = f3]s=0). Therefore f5 = f, + 0 for 0 = 6= 4, since Us (p) = on f;
and the function Us (p) is monotone decreasing in y in £;. Moreover, by the
theorem of the mean we have

| Us (x, fs (%)) = Us (x, fo () + 0 = (fy (%) + 015 (x)) M (f; ) (16)
forallx e R and 0 = § = 9, where

M(f,0)=max{|D, Us (p)|: f5(x)=y=f,(x)+6,0=x=0} < 0.
Since Us (x,f, (x) + )= (1 — 0 ) ¢ (by (15)) and U; (x, f5 (x)) =&, we con-
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clude from (16) that
So () +0—f5(x) = (0.¢/M (f;9)) 6,
or, in other words,
Jo ()= fo(x0) + (1 —[0&/M(f;9)]) o
for all x € R and 0 = § = 4. But this is equivalent to our assertion.

Proof of Lemma 3 (see Fig.3). Let K= (M + N)/L, where L was
previously defined, M =max {F, (x): x € R} —min {F, (x): x e R} and
N=min{F, (x) - F(x): x e R}. Let Q be the finite, simply connected
region bounded by I'* U I', where I' = ([— K, K] x {M}) u ({0} x [0, M]) and
I'*={(x,-N+L|x|):xeR, |x{ <K}, and let U(p) solve the bound-
ary value problem V*U=0 in @, U=1 on I'*. U=0 on I'. Clearly
d(y;0):=inf{|q|: g € y} > 0, where we define y={peQ:U(p)=¢}. To
prove Lemma 3, we will show that

d(®, ();p)=d(y,0) forall fe Xandp, €.
It suffices to show, for any fixed f € X and p, € f, that
Up)zU@p) in 2nQ, (17

where @=Q (f)—p, and U@p):=U (fp +p,) is the o-periodic (in x)
solution of the boundary value problem V2U =0 in @, U=0onfi=f— Do,
U=1 on F:=F—p,. Let @ be the simply-connected region bounded by F
and I :=(R x {M}) u ({0} x[0,M]), and let U (p) be the bounded harmonic
function in Q satisfying the boundary conditions U=0 on I, U=1 on F
Now 0= U (p) =1 in @ by the maximum principle, and & < @, whereas &
and Q share the lower boundary component F. Thus U (p) — (7 (p)=0 on
F U f and hence throughout @. Since I < I and I'* < Closure (), we also
have U(p)— U (p) =z 0 on I'* U I' and hence throughout Q. This completes
the proof of (17), and therefore of Lemma 3.

T:U=0
(=X,M) ﬂ (K,M)

F=f-p,

(Ol _N)
Figure 3
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Proof of Lemma 4: Forany fe X, 0 = 6= §and p € E(f. ), we have
dp; Y zd(F, ¢, (f+0)=d(F,®, (F)) >0

(since f+ o= F,,implying @, (f + 0) = &, (F,) > F) and
d(p,f+0)z=zd(f+ 6 ®.(f)+0)=d(f, P, (f)).

Applying Lemma 3, we conclude that there exists a constant » > 0 such that
d(p; F U (f+ 9)) = x and hence

B, (p) =Q(f+9) (18)

forall fe X,0=6=5and p € E (£ 5), where B, (p)={g € R* |g—p| < »}.
In view of (18), our assertion follows directly from a well known inequality
obtained by differentiating the Poisson integral formula. Namely, if W (g) is
a harmonic function in B, (p), then

VW ()| = (2/%) -sup {| W (9)|: q €B, (p)} . (19)
In fact one sees using (18) and (19) that M (f; ) =2/x for all fe X and
0=d=o.

Remark 6: The proof that T is a contraction in X is simpler in the case
where there exists a constant z# > 0 such that a (p + d) = (1 + u ) a (p) for all
6= 0 and p=(x,y) € R? satisfying y = F(x). In this case, one can show
Y (f+O=¥.(NH+ (1~ (ee/a)d for all feX and 0=5=5, where a=
max {a (x, F,(x) + §): xe R}. It follows by the discussion at the beginning
of this section that (7) holds with @ = (1 — (u &/a)).

4. Proof that | f, — f|| > 0ase — 0+

Let As () =max{t (f(x)~/(x): xeR}, 0<e<1, and let E.=
{e € (0,1): As (&) = 0}. Since | /. — f|| = max {1+ (8), 1- (&)}, 0 < & < 1, it suf-
fices to show

limsupl+ (6) =0. (20)
g0+

In order~ to prove (20) in the “+” case, choose (for each ¢ € E4) points
Po@ efin (F+7+(e) and p, (o) € @, () satisfying da (9, (&), p, (£)) =
de (P, (&), P (fo)) = &. Since f; = f+ 214 (¢), 0 < & < 1, we conclude using the
maximum principle and Lemma 1 that
e=U(f;p.(9) = U(f+ 2+ (2); 1, (¢))
=1=0)+(e)U(fip, () =2+ (), ec€ Ey. 21
On the other hand

dy (f Py (8) = 24 () = do (P (8) = Ax (8), P, (8) = As (2))
=d, (po (8)7 P (‘9)) =&
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by the monotone property of the function a (g). Also, one can show using (1)
that

IVU(p) | —a@) =9 ([da(fip) inQ(),

where we use ¢ to denote an arbitrary function such that ¢ (o) = 0 as
a — 0 +. Therefore, if y, = Q (f), ¢ € E,., denotes a smooth curve joining the
point p, (¢) — A+ (&) to f, with generalized length |7 ). < ¢ (1 + ¢ (¢)), then

U(fip (e) =2+ @)= [ VU9l |dg| = [ (a(q) + 9 (du (f, 9))) | dq]|

=lrl.(1+9@E)=e(1+09(), eeks. (22)
By combining (21) and (22), we obtain
1-0l:(e)(U+p@E))=1, eecky,

from which (20) immediately follows in the “+” case.
For the proof of (20) in the “—” case, for each ¢ € E_ let y, denote a
curve of steepest ascent of the function U (f,g) whose endpoints are

P efn(fiti_(e) and p, (&) e ®, (f) +i_(&). Since f=f +i_ (o),
0 < & < 1, we conclude, using the maximum principle and Lemma 1, that

Uip (@)= U(F+ (90, (9) =1 =0 I_ (&) U(fe;0, (&) — A- (&)
—(1-0i_(e))e, cekE_. (23)

Due to (1), we have
IVU(ED | —a@|=eUEp) in Q).
Since 7, = 2 (\Q (&, (f)), we conclude that
U(fp, (6))—§ VU (f,9)||dq| = f (a(q)— ¢ (2)) dq|
= |Ve| (I-9(e)=da (Po (&), p, ()1 —9 (o)
ze(l—9(e), ecek_. (24)
By combining (23) and (24), we obtain
O-I_(e)=p(e), eek_,

from which (20) immediately follows in the “~" case.

5. Numerical results

Our basic procedure is to choose ¢ > 0 small, so that | f, —f| is small,
and then inductively compute the functions f, = T;' (f) (for some f €X) until
| fus1—fn| is very small. We have tried out this procedure in several cases
where a(p) = C (C a constant) (see Figs. 4 and 5).
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Our main difficulty was in making a “reasonable” choice of ¢ It is
important that ¢ be not too small, because the rate at which the curves f,
progress toward f; is roughly proportional to e Also, the distance between
neighbouring points in the rectangular grid used for the discrete computation
of the functions U (f,;p), n=1,2,3,..., must be substantially smaller than
(¢/C) (= the approximate distance between f; and @, (f;)). Thus, the cost of
numerically approximating f; increases rapidly as ¢ decreases toward 0. On
the other hand, ¢ should be small enough so that || £, —f | is “sufficiently
small”. One potential tool for deciding when ¢ fullfills this requirement
would be an a priori bound M such that | f; —f| =Me 0<e< 1. In fact
the author obtained such a bound (assuming a (p) = C), but did not succeed
in finding one which, in practical cases, was small enough to serve the
indicated purpose. Therefore, in order to try out our method, we chose a
modestly small value of ¢ (namely &= 1/5) and computed f, in this case,
leaving unanswered the question of how small | f; — | is. The results thus
obtained are graphed in Figs. 4 and 5.

In Fig. 4, the lowest curve represents the function F(x) =1~§ cos (1 x/5).
The middle and upper curves approximate the functions f£; (x), &= 1/5,
which correspond to F in the cases a (p) = 3/5 and a (p) = 2/5, respectively.
The relative improvement | f,4+1—f» || at the last completed iteration was
.005 in the case a (p) = 3/5 and .0012 in the case a (p) = 2/5.

For our results in Fig. 5, we let I be a (10-periodic) square-tooth curve of
height 10/3, as shown. The lower and upper computed curves approximate
the function f; (x) (¢ =1/5) in the cases a (p) = 3/5 and a (p) = 2/5, respec-
tively. The relative improvement at the final iteration was .0013 in the case
a (p) = 3/5 and .000022 in the case a (p) = 2/5.

In all computed curves in Figs. 4 and 5, the horizontal separation of
points indicates the size of the grid used for computing the functions
U (fa; P)-

Remark 7: Although we have not attempted this, the efficiency of our
procedure for approximating f could no doubt be improved by defining
Jur1=Te, (fz), n=1,2,3,..., where the values 0 < &, <1 are initially large,
but gradually decrease as | f,, — fu_1| decreases.
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Note added in proof. Due to the monotonicity of T,, if T; (f) = f for some f € X, then f= f;
and in fact the functions f, =T7 (f) decrease monotonically to their limit f;. Similarly, if
T. (f) = f, then f = f; and the £, increase to f; (see [12, p. 6]). This provides a simple test for deter-

“mining whether a given function /' € X is an upper or lower bound for 7.
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Zusammenfassung

Wir zeigen, wie der freie Rand einer idealen Fliissigkeit, welcher einer verallgemeinerien
Bernoulli-Bedingung geniigt, unter geeigneten Umstinden approximiert werden kann. Unsere
Methode stiitzt sich auf eine Klasse freier Randperturbationsoperatoren T, 0 < ¢ < 1, welche
relativ zu einer geeigneten Norm und Rinderklasse kontrahierend sind und deren Fixpunkte
gegen die gewiinschte Losung der freien Randaufgabe mit ¢ — 0 + konvergieren.

Abstract

We show how the free boundary of an ideal fluid, subject to a generalized Bernoulli
condition, can (under appropriate circumstances) be approximated. Our method is based on a
class of free-boundary perturbation operators T;, 0 < & < 1, which are all contracting relative to
a suitable norm and class of boundaries, and whose fixed points converge to the desired free
boundary solution as ¢ = 0 +.
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