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1. Introduction 

During the last decade, time domain approaches to inverse scattering 
problems based on so called wave splitting have been highly successful. 
Particularly, in the field of electromagnetics, but also in the context of 
continuous mechanical systems, wave splitting in conjunction with invariant 
imbedding or Green's function technique has been used to solve a number 
of interesting inverse scattering problems [6]. The systems considered have 
in general been such that they can be modeled by hyperbolic second-order 
differential equations, but wave splitting has also been performed on some 
non-hyperbolic equations [15]. Of particular interest for us in the present 
context is the wave splitting of the fourth-order Euler-Bernoulli (E-B) 
equation given in [15]. 

In the analysis of stationary vibrations of beams, it is in many cases 
considered sufficient to model the beams by means of the Euler-Bernoulli 
equation. This simple model can be found in many textbooks on vibrations 
and waves [3]. It is even used for cases of anharmonic loading by means of 
a Fourier decomposition of the fields [5]. The Euler-Bernoulli equation is an 
equation which in many respects resembles the parabolic heat equation. 
While being a perfectly respectable equation for vibrations of not too short 
a wavelength, it shares one clearly undesirable feature of the latter equation; 
for transient phenomena it predicts an infinite speed of propagation. As for 
the heat equation, it is perhaps fair to say that few people have cared about 
this, since the equation is sufficiently accurate for most of the problems 
considered by engineers. However, in the context of inverse scattering 
problems, it turns out that the infinite speed of propagation causes serious 
problems [ 15]. It is in fact fatal in the sense that it apparently precludes the 
possibility of reconstructing the material properties from scattering data. 
This is due to the fact that the reflection operator for all times will depend 



Vol. 45, 1994. Wave splitting of the Timoshenko beam equation 867 

on the material properties of the entire scattering region, which makes 
imbedding approaches less likely to be effective. 

While the Euler-Bernoulli equation is unsuitable for inverse dynamical 
problems, it should be mentioned that the inverse problem for the static 
Euler-Bernoulli equation, with a sought non-linear deflection-dependent 
load, admits an, in fact entirely elementary, solution [11]. 

The unphysical nature of the dynamic Euler-Bernoulli equation has 
perhaps been of little concern to most investigators, but for other reasons 
more accurate equations have been developed. The standard derivation of 
the Euler-Bernoulli equation has at a preliminary stage a term containing 
the effects of rotational inertia of the beam sections (see, e.g., [3]). This term 
is usually discarded as being in some sense small. As pointed out in Ref. [2], 
the Euler-Bernoulli equation with the rotational inertia term included, 
commonly referred to as the Rayleigh (R) equation, has the advantage over 
the '~ptain" Euler-Bernoulli equation of having an upper bound on the 
phase velocity. This does, however, not save it from being unphysical in 
precisely the same manner as the Euler-Bernoulli equation. But what is even 
more surprising is that the Rayleigh equation even has an upper bound on 
its group velocity, and still allows an infinite speed of propagation. This 
somewhat confusing circumstance will be clarified in an appendix. 

A considerable improvement from this point of view is offered by the 
Timoshenko (T) equation, derived in [13]. In this equation, the effects of 
both rotational inertia and shearing of the beam sections are taken into 
account. Incidentally, Timoshenko shows that as far as the calculation of 
eigenfrequencies is concerned, the shearing term in a typical case is roughly 
four times as important as the rotational inertia term. From the present 
point of view, the shearing term is all-important, as it makes the equation 
hyperbolic and thus removes the infinite wave speed. 

There are some considerations on the accuracy of the Timoshenko 
equation which should be made. The Timoshenko equation (as well as the 
Euler-Bernoulli and Rayleigh equations) is derived under the assumption 
that the wave-length is greater than the extension of the cross section of the 
beam. If this assumption is not fulfilled the three-dimensional equations of 
linear elasticity should presumably have to be used, the beam acting as an 
elastic wave-guide. This probably means that when inverse problems for a 
beam is considered, the results of reconstructing various quantities, varying 
with the length coordinate, could only be known to be accurate to within 
this approximation. One would not expect the results to be accurate 
(compared to three-dimensional theory) at length scales less than the 
transverse extension of the beam. 

Timoshenko has made some comparisons of the eigenfrequency predic- 
tions from the Timoshenko equation with those from three-dimensional 
elasticity in the case of very slender or very flat beams of rectangular cross 
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section [14]. An analysis along similar lines, i.e., a comparison with exact 
solutions, could be used to assess the accuracy of an inverse solution based 
on the Timoshenko equation. The point to be made is that, while a 
procedure for reconstructing the beam properties based on the Timoshenko 
equation can be "exact", the results can still be inaccurate to within the 
limits posed by the accuracy of the Timoshenko equation itself. 

Recent years have witnessed a renewed interest in the derivation of the 
various beam equations and their appropriate boundary conditions. Two 

�9 examples of this are Ref. [12], wherein the beam equations are derived in a 
novel fashion starting from non-linear continuum mechanics, and Ref. [7], 
in which a careful analysis from three-dimensional elasticity reveals flaws in 
some commonly employed boundary conditions. 

In electromagnetics, the problem of wave splitting in wave-guides has 
recently been solved [8]. This opens the possibility that a similar analysis 
could be performed for an elastic wave-guide, offering a more accurate, but 
of course more complicated, basis for attacking inverse problems on a 
beam. However, an analysis along these lines falls outside the scope of the 
present paper. 

The aim of this paper is to present a wave splitting for the Timoshenko 
equation, as well as to analyze the hyperbolicity of the Timoshenko 
equation and its less physical relatives, the Euler-Bernoulli and Rayleigh 
equations, see also Ref. [2]. We emphasize again that the purpose of 
deriving the wave splitting is to provide a necessary tool for subsequent 
developments, i.e., the application of invariant imbedding and Green's 
function techniques to transient wave propagation problems in beam 
theory. 

2. Basic equations 

The T equation, which includes both rotational inertia and shear, for a 
uniform symmetric beam is [12], [10, Sect. 10] 

( c  ~2 1 c~2'~(0 2 1 0 2 ) 1 c~2u(z,t) 
a--~ c 20-75/\0-7 ? c 2~-2 u(z, t)-+ r0c222 at2 - 0 .  (2.1) 

The z-axis is the undeformed length axis of the beam. Perpendicular to this 
axis there are the x- and y-axes, respectively, which coincide with the 
principal axes of inertia of the cross-sectional area. The y-axis, denoted the 
vertical axis, is oriented so that every cross section is symmetric with respect 
to x = 0. The vertical displacement u(z, t) is measured in the y-direction. All 
fields in this paper are assumed quiescent at time t < to, where to is a fixed 
time. The two velocities cl (effective shear velocity) and c2 (rod velocity) are 
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defined by 

869 

where 

bI  
S A  

- > 0  . < 0  

is the static moment  of the upper portion of the beam section. The 
coordinate y is the height coordinate measured from the geometrical center- 
line of the beam. Furthermore, b = width of the beam at y = 0. This is 
measured in the direction perpendicular to the length of the beam and 
perpendicular to the y direction. I and A are the moment  of inertia and the 
area of the beam section, respectively. For a rectangular beam section 

= 2/3, and for a circular beam section c~ = 3/4. 
The T equation (2.1) is hyperbolic with two families of characteristic 

curves, see the analysis in Appendix A 

f: z = _+-- + constant 
C1 

z 
_+-- + constant. 

(;2 

If shear can be ignored, the T equation (2.1) simplifies to the R equation 

•4u(z, t) 1 ~?2u(z, t) 1 ~4u(z, t) 
- - +  - 0 .  

(~Z 4 roC22 2 ~ t  2 C2 c3z 2 c3t 2 

If also the rotational inertia is ignored the E-B equation is obtained 

c34u(z, t) 1 •2u(z, t) 
- - +  - - - 0 .  ~Z4 2 2 0 t  2 roC2 

Neither the E - B  nor the R equation are hyperbolic in the t-direction, see 
Appendix A. These equations imply infinite propagation speed, and for this 

and the radius of gyration of the beam section is defined as 

r 0 ~--- 

In these definitions E is Young's modulus, 0 the density of the beam, G is 
the shear modulus. The factor ~ is a geometrical quantity given by 
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reason they are not appropriate as models for transient wave propagation 
phenomena. 

The T equation (2.1), which is of fourth order, can be written as a 
OzU, O~zU) *. system of equations in (u, 8=u, 2 

I bl 
8__ a=u 

az ]oi .  
LO~u 

0 1 0 

0 0 1 

0 0 0 

2 21 84 1 02 ( ~  ~ )  02 
ClC2 014 r2c2 Ot 2 0 + 

0 
~ 

0 O=u 
* 

o t.e~uJ 

For the sake of future studies of the inhomogeneous beam it is appro- 
priate to formulate the analysis in terms of u(z, t) (the vertical displacement 
of the centerline of the beam) and @(z, t) (the angle of rotation of the cross 
section of the beam) and their first z-derivatives, rather than in 
(u, 8=u, 82u, 03u)q With these dependent variables the T equation for an 
inhomogeneous beam reads Iul 

& 8za 
8=!' 

0 
0 

= 1 0 2 

c 2 at 2 

0 1 

0 0 

8 log(c~GA) 0 log(c~GA) 
Oz Oz 

1 0 2 c~ c~ 
(?2 6~t2 q -  2 2 2 2 roe2 roC2 

0 

1 
Ozu 

0 log(E/) ~0=~ 
8z 

Notice that this equation only contains four independent quantities r0, cl, c2 
and El, since 

EIc~ 
c~GA - 2 2 " 

r 0 c 2  

For a homogeneous beam, the T equation simplifies to 

I:l  o o 0 
= 1- ~ o 

1 c~ c~ 
<O J c~ gT + ~2 2 roe2 Fog2 

O 
~ ll; 

1 0,u 

o t.<O 

which contains only three independent quantities r0, cl, c2. 

(2.2) 
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3. W a v e  spl i t t ing 

3.1. Wave splitting in terms of the eigenvalue operators 

The purpose of this section is to introduce a transformation which 
diagonalizes the homogeneous T equation in (2.2). To this aim, introduce a 
transformation of the dependent variables 

I 
u ?  

u~ + 
(3.1) 

with formal inverse 

~z4' 

The intended result of this transformation is to bring the T equation to the 
following form: 

J ~ u{  0 0 22 u2 

(3.3) 

where the operators 2i are the eigenvalues of the T equation. Explicit 
representations of these operators are found in Section 3.2. The matrix ~ - i  
expressed in these operators is 

1 1 1 1 

--21 --22 21 )~2 
1 0 2 1 (~2 1 ~2 1 (~2 

~'~ e, ~ t  2 ~ - c - ~ t  - -z  ;~ c,~t 2 ha 4 ~ t  2 

where the operator ~' is defined as 
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Time convolutions are defined by a star (*) throughout this paper, i.e., 

( f ( ' )  * g('))(t) = f ( t  -- t ')g(t') dt'. 
oo 

The operators 2~ and 2~ that occur in the definition of the matrix operator 
-1 above can also be represented as 

f 1 9 2 
' ~  - c~ ot  2 v ( . )  �9 

1 ~2 
~2 _ c~ 0t  2 + v ( . )  �9 

where the function V(t) is 

1 
V(t) - t~ H(t)I2(t/z) 

YO C2 

where 

r0(e~ --  e~) 
27-- 

2c~c2 

and 12 is the modified Bessel function of order 2, and H(t) is the Heaviside 
step function. 

In order to express the operator ~' in a simple way, it is convenient to 
introduce the functions Q(t) and S(t) (Io is the modified Bessel function of 
order 0, and Jl is the Bessel function of order 1) 

f [ t/~ 

= ~ lo(4') d~' 
,/0 

t / r  o Jl(~') 
s(t) = ~ ~(t) jo - ~  d~" 

and then define the operators ~ and 5 P as the time convolutions 

f ~f( t )  = (Q(') *f('))(t) 

5Pf(t) = e~ [f(t) + (S(') *f('))(t)]. 
s 
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The operator 3 satisfies 

2~(2 2 - 2 2) = 2(2 1 - 222)~ = 1. 

The operator N in (3.2) can be represented as 

873 

~ = ~  

1 02 ) 
- 2~ c 2 ~  - 5 o &  5 o 2 2 - 2 ,  1 

1 0 2 
22--C7~t-- ~ 5O2 l - ( 5 ' ~  - 1  

1 

- 222 c 2 ~  5O22 - ( 5 O 2 2 - 2 , )  1 

1 a 2 
2 2 - 5~ 5O21 - 22 - 1 

e~ Ot 2 

3.2. Representation of the eigenvalue operators 

Explicit representations of  the matrix entries in (3.3) can be obtained in 
a systematic fashion by a simple ansatz. Specifically, the representations of  
21 and 2 2 a r e  

( ~ l u ? ( z ,  t )  = 

;h u ~ (z, t) 

1 0 u ~  

Cl 0t 
+ (F1 (') * u + (z, .))(t) 

1 aun- 
t7 2 at  "Jr- (F2(") * /g2 I- (z, "))(t). 

(3.4) 

The functions Fi(t), i = 1, 2 are identically zero for negative time. In the 
equations below, only a positive time argument  t is considered, and thus a 
Heaviside function H(t) is suppressed in some formulae. A power series 
expression of, e.g., F1 (t) in t can be obtained from the identity 

•/1 2 02 / 1  0 4 02 
2 ( C 2  -~- C 12) ~'72 - [ - 4 4  (6'22 -- C 12)2 ~-g--r~ 

1 3u;-(z, t) 
cl •t 

+ (& (') �9 u + (z, 9)(0. 

Formally squaring the operators, rearranging and balancing terms lead to a 
system of  expressions from which coefficients of  arbitrarily high order can 
be obtained. The explicit expressions up to sixth order in t are 
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L 

c ~ ( l + q )  f l  3+2qc4(l+q)t 2 7 + l O q + 4 q  2 
Fl(t) = roC 2 6 4  roc 222 3072 

xlc4( l  + q)t2"] 2 
\ rff~ 7 

77 + 172q + 140q 2 + 40q 3 
-+ 

1474560 

x(  c4(l+q)t2~3 } 
-2--25- " + O(t8) 
FoC2 / 

c 2 ( l + q )  f l  3 - 2 q c ~ ( l + q ) t  2 7 - 1 0 q + 4 q  2 
F2(t) 

- -  r 2 c 2  ~74 64 r~ + 3072 

(c~(lro ~ + q)t2) 2 77 - 172q + 140q 2 - 40q 3 

1474560 

where the constant q is 

(3.5) 

c~ + d 
q c ~ -  c~" 

Based upon physical considerations, the constant q is taken to be larger 
than 1 or 

C 2  

q > 1 , * > - - >  1. 
Cl 

This condition is met if the following reasonable assumptions are valid: 

< 2 and v > 0. 

The first assumption is motivated by the fact that e is the ratio between the 
average shear stress and the shear stress at y = 0 .  The latter is ap- 
proximately equal to the maximum shear stress, so in most reasonable 
cases ~,,does not  exceed 1. The second assumption is related to the Poisson 
ratio v 

E - 2G 
]}  - -  _ _  

2G 

which for "ord inary"  media is larger than 0. The exceptions are few, e.g., 
cork and some composites, and for the beam applications addressed in this 
paper this is not  a strong limitation. 
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The asymptotic behavior of the functions Fi (t), i = 1, 2 for large time t 
can readily be obtained by Laplace transform techniques. The result is 

e tl~ { 
r l ( t )  - x / ~ c l  ~ 2 - ( 8 t 3 q ( q  + 1)/z3) -1/2 

+3(1 + q2) 
(StSq(q + 1)/~5)-1/2 + O(( t /~) -7 /2)~  

% 

8q 2 ) 
(3.6) e tl~ { 

F2(t) - x//~c2v2 (8t3q(q -- 1)/r 3)-i/2 

3(1 + q2) 
(8tSq(q _ 1)/rs)-~/2+ O((t / 'c)-7/2)~ 

8q  2 ) 

where 

r0c2 ro(e~ - c~) 
e~(q + 1) 2c~c2 

This asymptotic behavior seems to suggest that the functions Fi(t) ,  i = 1, 2 
are related to the modified Bessel functions. This surmise is confirmed by 
another series representation of the functions Fi(t) ,  i = 1, 2. 

F, (t) - k~ ,  ( - 1)k(q + 1) -kWk(tt~) 

L 1 ~, (q 1)_~w~(tl~) 
F2(t) czz 2 k =1 

where 

are binomial coefficients, and the functions Wk(~) are integrals over the 
modified Bessel functions of order, k, i.e., 

Wk(~) = ~ - k + l  kI~(~) k = 1, 2, 3, 
, �9 . . 

where the anti-derivative ~1 is 

0 7- ' I(~) = f ( ~ ' )  d~'. 
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The series expansions of  the functions W k ( { )  are 

_ ~ k ( k  + 2 j  - 1)! ~2k+2j-2 
W k ( ~ )  -- 2k + j=O 2jj!(k  + j ) ! ( 2 k  + 2j - 2)! 

This series expansion provides an independent derivation of  the power series 
expansions of  F i ( t ) ,  i =  1, 2 given in (3.5). 

For  numerical purposes, and to present an alternative derivation of  the 
asymptotic behavior of  the functions F~ (t), i = 1, 2, the recurrence relations 
of  the functions W k ( ~ )  are derived. This is most conveniently done by 
rewriting the functions W k ( 4 )  as 

f I1 (4) W,(~) - 

k fo e Wk(~) - (k - 2)---~T. 
(~--~')k--2Ik(4'------~))d~', k = 2 , 3 , 4  . . . . .  

For large arguments, the functions W k ( ~ )  behave as ~-3/2e~. To see this, use 
the recurrence relations for modified Bessel functions to derive 

Wk(4) = ik_ 2,~(~) - i~_ ,,~+ 1(4) (3.7) 

where 

im,n(4) = ~ ~-mln(~),  m = --  1, O, 1, 2, 3 . . . .  , n = 1, 2, 3 , . . . .  

The functions im,n(4) can be found recursively, up and down, by combining 
the following two formulae [9]: 

f 
m(1 -- m ) i m +  1,~(4) = 24(1 -- rn) im, . (4)  --  [(m -- 1) 2 - -  n 2 - -  ~2]i m _ ~,n(~) 

+ ~(2rn -- 3)im _ 2.(~) -- ~2im -- 3,. (~) 

2i,~,.(~) -- im+ ,,~+ l(~) -- ira+ 1,.--~(~) = 0. 

The asymptotic behavior of the functions im,n(~) is calculated in Ref. [9, 
page 215]. This provides an independent way of  computing the asymptotic 
behavior of  the functions F i ( t ) ,  i = 1, 2 given in (3.6). The dominant  terms 
on the right hand side of  (3.7), which are proportional to ~-1/2e~, cancel, 
and the leading term is therefore proportional to ~-3/2e~, which agrees with 
the result presented above in (3.6). 

The connections between the functions Fi(t), i = 1, 2 and the modified 
Bessel functions alluded to above can also be seen in another  way. Specifi- 
cally, it is possible to express the functions F i ( t ) ,  i = 1,2 in a series 
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expansion in terms of Ik( t /z) ,  k = 0, 1, 2 , . . . ,  since (see Ref. [1, replace z 
with iz in eq. 11.2.4]). 

r 

k = l :  
1 

i = 2(10( ) 

2 k-2 ~ ( k + j - 3 ) !  
k_>3: ik_2.k({) = (k _ 3)! j= ~ J[ ( -  1)iI2x + 2j_ 2(~). 

By expressing the functions Wk(~) in terms of modified Bessel functions 
it is obvious that the functions F~ (t), i = 1, 2 can be expressed as a series 
expansion of modified Bessel functions. For small arguments this choice is 
as good as the power series expansion given in (3.5). However, for large 
arguments the modified Bessel functions Ia.(t/'c), contrary to the functions 
Wk(t / z ) ,  have incorrect asymptotic behavior and large cancellation effects 
are expected. 

A. Hyperbolieity of the Timoshenko equation 

A. I. The Timoshenko equation 

The T equation (2.l) of Section 2 is 

t )  + 2 - 0 .  
roc  2 ~ t  2 

The underlying characteristic properties of this PDE are determined by 
studying the polynomial P(x,  y)  in the xy-plane. 

P(x,  y) = x 4 - a2y a - b2x2y 2 + c4y 4 

which is obtained by replacing z- and t-derivatives with ix and iy, respec- 
tively. The positive constants a 2, b 2 and c 4 are 

1 a 2 _ 
,2 2 

1 0C2 

1 1 
b 2  

1 
C4"~--- 2 2" 

C2C1 

Notice that 

b4 _ 4c4 = c~ 



878 P. Olsson and G. Kristensson ZAMP 

The principal part  of  the PDE corresponds to the monomial  Pro(x, y) 

x4 (x2  4,44 
The four distinct roots of  Pm(X, y) = 0 are 

b2 + d 2 
x = + y ~  ~ - i  y 

C2 

b~ - d 2 x=+_y ~------i y. 
Cl 

These four roots determine the characteristic curves of  the PDE  in the 
zt-plane. Specifically, the normal ~ to the characteristic curve satisfy 

Pm(nx, ny) = O. 

f nx= +__ny C2 

Ci 

The P D E  is hyperbolic in the ~-direction if [4, p. 349] 

�9 The complex roots of  P(x + nx'c, y + nyr) = 0 satisfy . ~  > 7 for all real x 
and y and some constant  7. 

�9 Pm(nx, ny) r 0 

If  the P D E  is hyperbolic in the r~-direction, the Cauchy problem has one 
and only one solution in the half space {r �9 r~ > 0}. 

One generic case is r~ = (0, 1). This corresponds to specifying Cauchy 
data on t = constant. The roots of  P(x, y + z) = 0 are 

/ a  2 + b2x 2 -b ~(a 2 + b 2 x 2 )  2 - 4c4x  4 
T ~ y + 

- ~ /  2c 4 

which implies tha t  all roo ts  are real  

3 r = 0  

and the P D E  is hyperbolic in the direction fi = (0, 1). 
The second case is r~ = (1, 0), which corresponds to specifying Cauchy 

data  on z = constant. The roots of  P(x + ~, y) = 0 are 

"c = - - x  -t- ___ v V q -  a2y 2 
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which im 9lies that .~z = 0 or 

~ b  4 a 2 b 2 < a 
~ z  = Y 7_, - c 4 -~ y2 2 lyl 

a 

O, lY[>- 7 
which is bounded and the PDE is hyperbolic in the direction r~ = (1, 0). 

The analysis presented in this section can be compared to the results in 
Ref. [2]. 

A.2.  The Rayle igh equation 

An analogous analysis of  the R equation 

04u(z, t) 1 62u(z, t) 104u ( z ,  t) 
- -  + - -  - - - 0  (~Z4 r0c222 &2 c 2 & 2  at 2 

implies that the polynomials are 

P(x ,  y)  = x 4 - a2y 2 - bZx2y 2 

and 

I ' m ( x ,  y )  = x 4 - b 2 x 2 y  2 = x 2 ( x  2 - b 2 y 2 ) .  

The positive constants a and b are 

r0 C2 

1 

C2 

These polynomials are obtained from the analysis above by letting the 
velocity Cl --+ Go (c 4 --+ 0). 

The four roots of  Pm(x,  y) = 0 are 

- -~  

= + y b  = +__Y. 
C2 

This equation is not hyperbolic in the direction r~ = (0, 1), since Pro(0, l) = 
0. It is, however, still hyperbolic in the (1, 0), since Pro(l ,  0 ) =  1 and the 
complex roots of  P ( x  + z, y) = 0 are 

z = - x  + +- X / T  + a2y2 
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which implies that  .~z = 0 or 

yb X /~ /  4a____~ 2 - 
,3~ = - ~  l + b2y 2 1 

which is bounded  for all y. 
It is interesting to notice that  in fixed frequency analysis of  the Rayleigh 

equat ion the group velocity is bounded  for all frequencies. This seems to 
contradict  the infinite speed of  propagat ion  entailed by the above analysis. 
However,  it should be recalled that  the group velocity is at most  a measure 
of  the average energy t ransport  velocity. It provides no upper  bound  on the 
m a x i m u m  energy t ransport  velocity. 

A.3. The Euler-Bernoulli equation 

The E-B equat ion 

4u(z, t) 1 ~?2u(z, t) 
OZ4 ~- 2 2 Ot 2 - -  0 

r 0 c 2  

implies that  the polynomials  are 

P(x, y) = x 4 - a2y 2 

and 

P~(x,  y) = x 4. 

The positive constant  a is 

1 
a =  

r0 c2 �9 

These polynomials  are obtained f rom the analysis above by letting both  
velocities cl, c2 ~ ~ (c 4, b 2 ~ 0). 

The only root  of  P.,(x,  y) = 0 is x = 0 and this equat ion is not  hyper- 
bolic in any direction. 
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Abstract 

In recent years, wave splitting in conjunction with invariant imbedding and Green's function 
techniques has been applied with great success to a number of interesting inverse and direct scattering 
problems. The aim of the present paper is to derive a wave splitting for the Timoshenko equation, a 
fourth order PDE of importance in beam theory. An analysis of the hyperbolicity of the Timoshenko 
equation and its, in a sense, less physical relatives the Euler-Bernoulli and the Rayleigh equations--is 
also provided. 
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