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Abstract. The nature of convective instability in a slender magnetic flux tube is explored. A sufficient
condition for stability is derived for the case of an arbitrary temperature profile in the external medium.
The discussion allows for the possibility of a temperature difference between the interior and exterior of
the tube. Special cases of our sufficiency condition reduce to Schwarzschild’s criterion and its generalisa-
tion by Gough and Tayler (1966).

The distribution of stable and unstable eigenvalues, for the particular case of a linear temperature
profile, is discussed in detail.

For a tube of infinite depth, with a uniform temperature gradient A inside the tube equal to that in the
ambient medium, a necessary and sufficient condition for convective stability to occur inside the tube is

4 -1 2 1\2
—,—“2(7—+A6>(Z+—c-2-0—>+(1+——7> >0,
'Y(AO) Y 2 Ua 2A0

where ¢g and v, are the sound and Alfvén speeds inside the tube, and v is the ratio of specific heats. The
stable modes form a continuous spectrum; the unstable modes are discrete and infinite in number.

In a tube of finite depth d, with a linear temperature profile, a necessary and sufficient condition for
convective stability is derived. There exists a critical depth d* such that tubes of depth 4 are stable if and
only if d <d*. In a finite tube, only discrete eigenvalues occur.

The critical depth d* is determined for a wide range of conditions, and the results applied to the Sun.
Under the assumptions of the present model, intense flux tubes are convectively stable if sufficiently
shallow (with depths 1-2 X 10® km or less). Tubes that extend deeper into the solar convection zone are
potentially (convectively) unstable, but may be stabilised for sufficiently strong magnetic fields (typically
greater than about a kilogauss). The observed downdrafts inside intense flux tubes, if a manifestation of
convective instability, are thus likely to be a transient phenomenon in which the field inside the tube is
further intensified until hydrostatic equilibrium obtains. Convective instability in a flux tube is thus a
possible means of achieving kilogauss field strengths.

1. Introduction

It is now generally agreed (see reviews by Stenflo, 1976; Harvey, 1977) that the
magnetic field of the quiet regions of the photosphere is made up of intense flux
tubes, located in the boundaries of supergranules. The field in these flux tubes is
estimated to be in the range 1-2 kG, their diameters 100-300 km.

Why the Sun seems to arrange preferentially the general field at its surface into
slender flux tubes, in opposition to the powerful expansive pressure of the confined
magnetic field, is not completely clear. Of course, the simple kinematical effect of the
supergranular flow, tending to concentrate the magnetic field in the corners and
boundaries of supergranules, is well understood (Parker, 1963; Weiss, 1964; Clark,
1966). But some other means is required for compressing fields to the very high
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pressures of kilogauss fields. One suggestion is that the gas inside the flux tubes is
cooler than the surroundings, being actively refrigerated by the generation and
emission of overstable Alfvén waves (Parker, 1976; Roberts, 1976a). More recently,
Parker (1978) has suggested, as an alternative explanation, that the reduced heat
transport in the kinematically compressed magnetic field (of a few hundred gauss)
leads to an almost adiabatic temperature gradient inside the tube, so that the
temperature inside the thermally insulated tube is cooler than its surroundings. This
then leads to an enhancement of the already existing downdraft in the tube and, as a
result, the field is further compressed to eventually reach observed kilogauss values.
A third possibility has been suggested by Galloway ez al. (1977), who have shown
that convection in a Boussinesq fluid can compress magnetic fields to strengths
beyond equipartition values.

By whatever means the Sun actually achieves the compression of magnetic fields
into intense flux tubes, the fact remains that such fields exist. Given, then, the
existence of such a slender kilogauss flux tube, what motions are likely to occur inside
the tube? In an attempt to answer this question, Roberts and Webb (1978) developed
a system of non-linear zeroth-order equations governing vertical motions in a slender
tube. Their theory allowed for a complete description of the effects of buoyancy,
temperature stratification, and compressibility. The discussion in Roberts and Webb
(1978) was primarily directed towards wave motions in the tube.

In this paper we consider the nature of convectively unstable motions in a magnetic
flux tube. We investigate the role of the magnetic field in preventing such instability,
including the effect of the splaying of the field lines with height. We should note that
distinct from the convective instability is the tendency for the surface of the flux tube
to be unstable to fluting (interchange instability). This has recently been considered
by Meyer et al. (1977).

It turns out that we are able to obtain sufficient conditions for stability against the
tendency towards convection for a flux tube with an arbitrary temperature profile. In
the special case of a linear profile we are able to describe in detail both the velocity
field and its instability boundaries. Finally, we argue that convective instability may
be a means of achieving intense fields.

2. The Equilibrium State in a Slender Flux Tube

The equilibrium configuration of an intense magnetic flux tube is sketched in
Figure 1. The internal pressure po(z) and density po(z) are related by the barometric
relation

dp()

q4, - Pog: (1)

while the ideal gas equation determines the internal temperature To(z):

po(z) = pol2)Tol2), @)
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Fig. 1. The equilibrium configuration of an intense magnetic flux tube.

where k is Boltzmann’s constant, #t is the mean particle mass and g is the
acceleration due to gravity. Lateral pressure balance demands that the external
confining gas pressure p.(z) satisfy

Bi(z)

pole)+ =5 2 =pe(2). ©

where Bo(z)Z is the zeroth-order (induction) field of the flux tube. The external
atmosphere is also in hydrostatic equilibrium, and so

dp.
dz

= T PeE (4)

where p.(z) is the density in the exterior region.
From (3) it follows that

%(B—iiﬁ)=g(po—pe)~ )

Introduce the scale-heights Aqg=kTo(z)/mg and A, =kT.(z)/rag, of the internal
and external atmospheres, and write

Ao(2)+A(2)=A(2), 6)

where A (z)is a measure of the temperature difference between the two regions. Then
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(5) may be combined with (2) and the corresponding equation for the exterior region
to give

i(B%(z)>=_ 1 (B%(z)#A(z)
dz \ 2u Ao(z)\ 2 A(2)

Now, in the presence of a strong magnetic field, we may expect a temperature
difference to exist between the interior and the exterior of the tube, despite the
natural tendency for thermal conduction to smooth out such a difference. There are
strong theoretical reasons (Parker, 1955, 1976, 1978; Roberts, 1976a, b) for believ-
ing this conjecture; indeed, if the flux tube is not cooler than its surroundings it is
difficult to imagine how such intense fields occur. The observational evidence is
presently inconclusive; in fact, the tubes appear as bright dots (Frazier, 1970) against
the surrounding photosphere. They appear bright because they are less dense than
their surroundings, so that one sees deeper into the Sun where the ambient
temperature is higher than at the surface (Spruit, 1977).

Now the effect of a magnetic field upon the energetics of the basic-state is not well
understood, so it is necessary to model the likely behaviour of the field in creating a
temperature difference. There are clearly several possibilities. For example, it is
reasonable to suppose that the strongerA’Hé field (relative to the confining pressure),
the larger the temperature difference the field creates.

Introduce

pe(2) ™

_Ae(z)— Ao(2)

w0 =R

(8)
the ratio of the temperature difference between the internal and external media to
the external temperature. Then, to model the behaviour of the magnetic field, we
may suppose that 7(z) is proportional to the ratio of the magnetic pressure to the
external gas pressure, and write

B5(z) )
2upe(z)’

+(z)= e( 9)
where 6 is a constant of proportionality. It is assumed that 8 is less than or equal to
one; also, for a cool interior 6 is positive.

With the above form of 7(z), Equation (7) gives

1dB_ (1-6)

B() dz 2A0(Z) ' (10)
Combined with (1) and (2) this gives
Bi(z)~(po(2))'°. (11)

Flux conservation implies that r5(z)Bo(z) = r5(0)Bo(0), where ro(z ) is the radius of
the tube at the height z above the arbitrary reference level z =0 (chosen to
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correspond to optical depth 15000 = 1 in the solar atmosphere). Thus
ro(z)~ (po(2))** . (12)

Much of the subsequent discussion will be given in terms of the function
cs(2)/va(z), where co(z)=(ypo(z)/po(z))"’? is the sound speed and va(z)=
= Bo(z)/(upo(z))"/? is the Alfvén speed inside the flux tube. (v is the ratio of specific
heats, which may be a function of z.)

It may be noted that the parameter ¢5/va is related to the plasma béta inside the
tube by

CO(Z)

va(z)

where Bo(z)=2upo(z)/B5(2).
The densities inside and outside the tube are related by

=3vBo(z),

pe(z) )
pO( ) 1 Be

where B. =2up.(z)/B5(2), (B. <1).
Now the parameter cg/va satisfies (from (1), (2), and (10)) the equation

P 1+- 0)(

Y0 g( ¢t )_ -6
co dz \ywi/ Ayz)’

and so (for #>0) ¢3/yva increases with depth (—z) in a cool tube in such a way that

(13)

CO(Z)
YA (2)

~(po(2))". (14)

In particular, if 6 =0 (so that the temperatures inside and outside the tube are
equal), then
1 2
—colz)~valz)
Y
and
B3i(2)~po(z),  roz)~po*(2). (15)

The relation in (15) was first given by Parker (1953) in his discussion of magnetic
buoyancy and the formation of sunspots.

3. Vertical Motions in a Slender Flux Tube

The equations governing motions of a perfectly conducting, inviscid, ideal gas
embedded in a magnetic field have been presented in Roberts and Webb (1978)
(hereinafter to be termed Paper I). In a cylindrical coordinate (r, 6, z) system, in
which there is no azimuthal dependence, each of the physical variables is expanded in
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its Maclaurin series about r = 0. Retaining the zeroth-order (r - 0) terms leads to the
following set of non-linear equations, describing vertical adiabatic motions:

av av) ap

hAATILAQ DU 16

p(at v 5 P8 (16)
d

g[_)+va_§7=7_p<_£+uﬁf_)>’ amn

at dz p \ot dz

_‘3_(£>+i(f’_v):0, (18)

at\B/ 9z \B

where p(z, t) is the density, p(z, t) the pressure, v(z, t) the vertical (zeroth-order)
velocity inside the flux tube of vertical (zeroth-order) field B(z, t). The details of the
derivation of these equations are given in Paper 1. Here we shall discuss the linear
perturbhtions from the equilibrium state described in Section 2 by use of Equations
(16)-(18).

The linear equations describing perturbations about the basic-state described in
Section 2 follows immediately from (16)-(18):

dov_ _9p_
po(2)6t~ 2 P& (19)
a ! a !
5?+p0(z)v.=c(z,(z)<£+po(z)v) , 20)

Bo(2) - po(z) L+ (Bo(2)0) (2)~ Bb (@ )oole))w + po(2)Bo(z) 2= 0,
ot ot 0z

2D

where v, p, p, and B now refer to the perturbations (so, for example, the fotal density
is po+p), and a dash denotes differentiation with respect to the vertical coordinate z.

The flux tube is related to its surroundings by assuming that the pressure
perturbation in the exterior region is negligible. Then the radial component of the
momentum equation gives

p+iBo(z)B =0. (22)

It should be noted that the use of (22) has recently been criticised by Wilson
(1979), who argues that its use leads to a degenerate solution. His criticism is
discussed in detail in Roberts (1979), and is shown to be without foundation.

Assuming a time-dependence of the form e*”, (19)~(22) may be combined to give
a second order differential equation for the velocity amplitude #(z), defined by
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iwt

v="7(z)e"™, namely
& (c_zr’_B_é_L>§é
dz* \¢7 By, H,/ dz
2 2 7 ’ 2 2.
w _No d (B() g) (BO g)(CT NO)]A
4 — LBy 8) (204 ) (T _X9) |50, 23
[ cx dz \By c¢p By ci/\ctr g v @3
where
2.2
C2= ColAa
T (c5+va)

The Brunt-Viisild frequency, No(z ), and the density scale-height, Ho(z), are defined
by
1 phl)
Ho(z)  po(z)’

Note that in deriving Equation (23), we have made use of Equation (1) only in the
basic-state. The temperatures inside and outside the tube may be unequal. However,
for the special case To(z) = T,.(z) the equilibrium state is completely characterized by
the scale-height Ay(z):

2
2, v__ 8 &
N @ =g o 3@

=), )= O L )= 0 14,
1 1+A45() gyl
Ho(z)  Aolz) NO(Z)—AO(Z)( Y +A0(Z)>- (24)

Equation (23), for T = T, and y assumed constant, then reduces to
8 1 dé (0’-Nj() "\ N§ @2\ .
L N, O N PR P
dz® 2A4(z)dz cr(z) 2/ ¢o(z)
Equation (23)' is Equation (31) of Paper L.

23)

4. Sufficient Conditions for Convective Stability

In order to discuss the stability of a slender flux tube, it is convenient to write
Equation (23) in the canonical Sturm-Liouville form:

d/ . dd\ . .
o)) +or@—a@NE =0, (25)
where
_Po(z)c7(2) _ po(z)
ole)-2ITD -2,
and

2 2 ’ ’ 21 2
- ) B 5 ]

2 2 2
BO cr dz B() Co B() Co crt g



256 A. R. WEBB AND B. ROBERTS

Together with boundary conditions of the general type

a;19(0)+a»5'(0)=0 }

(26)
b1 (=d)+bot'(—=d)=0

(for constants a1, a,, b1, and b,), imposed at levels z = 0 and z = —d, Equation (25)
constitutes the standard form of the Sturm-Liouville boundary-value problem (see,
for general theory, Ince (1944); and, in the context of a stratified fluid, Yih (1965)).
(Particular forms of these boundary conditions will be considered in Section 6,
with reference to the special case treated there.)

It follows from the general Sturm-Liouville theory that eigenvalues w? are real
and, provided d is finite, these eigenvalues form an infinite sequence that may be
ordered in increasing magnitude; thus

WI<w3< o <@i<eee

Furthermore, w?2 - 00 as n - o (Ince, 1944, Chapter X).

Thus, under the boundary conditions (26), with d finite, there are an infinite
number of eigenmodes with eigenfrequencies w;(j =1, 2,3,...). If w,? >(, then the
jth mode is stable. If wf <0, then the jth mode is unstable. Thus, in particular, the
basic-state is unstable if w3 <0 and (since v} < w}, j>1) this will be the mode of
maximum growthrate. Unfortunately, Sturm-Liouville theory does not provide us
with a direct calculation of wi. However, we may elicit further information on & (in
particular the sign of w?) by obtaining a first integral of Equation (25).

Multiplying (25) by 4*, the complex conjugate of 4, and integrating by parts, it
follows that

22 e @@L+ e @)6'7) dz ~ [0(2)8*8']%
Lar@)ol dz '

@7

Itis clear from the form of (27) that our earlier restriction that d be finite is now no
longer necessary. Thus, in the subsequent discussion d may be infinite.
Suppose, now, that the boundary conditions are such that

[o(2)0*0]24=<0

(as are the special cases of (26) examined in subsequent sections). Then it follows
from (27), on noting that o-(z)> 0 and r(z) > 0, that a sufficient condition for ? to be
positive, and thus a sufficient condition for stability, is

q(z)>0 forallz, —d=z=0.

Thus, under such boundary conditions, a sufficient condition for stability is

N3 d(Ba g) (Ba g)(czr' N
—+—\l=+=F)+|=+ ———1>0
¢¥ dz\By, ¢} A (28)

throughout —d=z=0.

2
By c¢p
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It is of interest to examine the sufficiency condition (28), under the assumption that
the interior of the flux tube is cooler than its surroundings, and y constant. In terms of -
the function 7(z), introduced in Equation (8), (28) may be written in the form

' 2
[(.2_—7)(1 —r@)+ &) (1+”§‘(z)> Ao(z)] X
Y 7(z) co(z)
()

(1—7(2))co(z)+va(2))

to be satisfied throughout —d <=z <0,
In terms of the parameter 6, introduced in (9), the sufficient condition for stability,

inequality (29), becomes

2/v)-(1-9) ( s
2/vXco/va)+(1—0)

to be satisfied throughout the atmosphere.

There are two special cases of (30) of immediate interest. In the extreme
circumstances where thermal conduction is so efficient as to remove the temperature
difference, so that 7 = 8 =0, (30) reduces to

>—A6(z)~<YT_1>, (29)

7) 0> a5~ (7). (30)

2
Co +‘UA

-1
0>—-Ag— (7—) .
Y
Thus, a sufficient condition for stability in a slender tube, which is in temperature

balance with its surroundings (i.e. A= A.), is that
N3(z)>0 throughout —d=z<0. (31)

This is the usual condition for convective stability in the absence of a magnetic field
(Schwarzschild, 1906).

In the special case for which 8 =1, and 7(z)= B}(z)/2up.(z), it follows from
Equation (10) that By(z)=0 and po = p.. Thus, the case # =1 corresponds to a
uniform (vertical) column of magnetic field; in this case, a sufficient condition for
stability to convection in a uniform slender flux tube is

Bi/u
B4/ p+vpo(z)

This is in fact the sufficient condition for stability in the presence of a uniform,
laterally unbounded, magnetic field, originally derived by Gough and Tayler (1966)
using the energy principle of Bernstein et al. (1958). Our analysis shows that the
above condition also holds in a slender flux tube, provided the magnetic field is
uniform.

Returning to the general sufficiency condition (30), we sketch in Figure 2 the
condition (30), plotting cd/vi against Ay for various values of @ in the range
0=<6=1,andfor v =1.2. Itis clear from the figure that the cooler the interior of the
tube (i.e., the larger the value of 9), the more likely that the sufficient condition for

-1
>—Ay— (Y—> throughout —-d=z=0.
Y
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Fig. 2. Sufficient condition (Equation (30)) for stability in a flux tube with a cool interior. Stability is to
the left of the curves. The larger the value of the parameter 6, the cooler the interior of the tube.

stability is satisfied, for a fixed magnetic field. It may be noted (see Equation (13))
that c3/vZ increases with depth for 6>0 (cool interior), and so for § =1 the
sufficient condition is simply

va(—d) . (y—1
c%<—d)+ui(—d)>*A°‘( y )

where d is the depth of the layer.

Finally, returning to (29), we may note that for the special case 7(z)=17o, a
constant, considered in Parker (1976) and Roberts (1976b), the sufficient condition
for stability reduces to

2— 3 -1
(oY) 8 e (12Y),
vy / cotva Y

to be satisfied throughout the atmosphere.

The sufficiency conditions derived above provide useful information as to the
prevention of instability in the tube. However, the criteria are clearly of somewhat
limited value, simply by being only sufficient conditions: the conditions may be
violated at some depth or indeed for all depths, and yet the tube be stable. Thus, in
order to obtain a more precise condition for stability, we shall consider, in Section 6,
the special case of a linear temperature profile inside the flux tube. We shall further
assume, for the sake of simplicity, that temperatures inside and outside the tube are
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equal, so that 7= 0. If the temperatures are different, then the tube is likely (as we
have seen from the above sufficiency conditions) to be even more stable that the
analysis in Section 6 reveals.

5. The Local Approximation

Before discussing, in the next section, an exact solution to the velocity equation
(23Y, we shall consider the so-called ‘local’ approximation. This serves to illustrate
many of the features of the more general analysis without the attendant complexity.
We suppose that the coefficients of the velocity and its derivatives in Equation (23
do not vary greatly with depth and, by way of illustration, we look for solutions
satisfying the simple boundary conditions:

=0 at z=0; (32)
and

=0 at z=-—d, (33a)
or

>0 as z->—00, (33b)

Of course, such a treatment is not directly applicable to the Sun. But the results are
indicative of the more general case, and so serve to give a qualitative guide to the
expected behaviour in the solar convection zone.

We may write Equation (23) in the form

I SV P
e '+ -2 =0 34
6= 0 W= 05 =0, (34)
where
2 2Cgr Y 0(2)
22()=N3 55 (1+57). (35)
02 va

Note that 2 has the same sign as N3, and so may be positive or negative,
Assuming a locally constant atmosphere, the general solution of (34), satisfying
the boundary condition (32), is

6=Al(e/\12__e)\21), (36)
where Aj, A are the roots of the quadratic
1 2-0?
A ———A+(C—2>=0, G7)

and A, is an arbitrary constant. To discuss (36) further, it is convenient to consider
the cases of finite and infinite depth separately.
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Consider first the case of finite depth, for which the solution # of (36) satisfies the
lower boundary condition (33a). This condition implies that

(/\Z—Al)d=2n77i, (38)

for integer n.
Now, since (36) may be rewritten in the form

$=A, e%(A1+A2)Z{e%()\1—A2)z _ e—%(/\l—/\z)Z},

and from (37) we have

/\1+)tz=ﬁ—,
0

the solution for the velocity is

. . (nwzZ
d=Ae"*o gin(—
d bl

where A is an arbitrary constant.
Now, solving (37) gives

1 _(w2~02)},

—_ 2=
A1=22) 4{16/1(2) e

which, when combined with (38), determines the eigenvalues w>:

n27T2 1 ) 3

2 2
=0 +( +—>lcr.
@ d> 16A2/)°T

(39)
Note that if

2
cr

1643

0%+ >0,

i.e. if

y/16 o (y=0
O O R ).

then all modes are stable, and we have an infinite sequence of positive eigen-
values wf,.

However, if —02<c2T/ 1643, then unstable modes are permissible; but as d -0
Equation (39) implies that

2 2.2
2 R mTCT

w ~ d2 ’

and so there exists a critical value d’ of the depth d, below which the basic-state is
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always stable. From (39), this critical depth d’ is given by

2 2
—n“mr
¥ = . 40
7D+ (1/1643) (40)
Thus, if d < d¥, there are no unstable modes. Note that the depth d7 is a function
of n, the minimum value of which occurs for n = 1. Then d = dT =d*, say, where:

2
-7

T Q%R+ (1/1643)

d*? (41)
Finally, we should note that there are no modes for which

2
¢t

16A3°

w <0+

For then A; and A, are real, and so cannot satisfy condition (38), i.e. ¥ is non-zero
everywhere, except at z =0.

Consider now the case of infinite depth, for which the solutions of the velocity
Equation (34) are subject to the boundary conditions (32) and (33b). The solution
(36) may now be written in the form

1 Q-2
A _ z/4A0 . _— ]’
P=Ae sinh [(16/1% el ) z

satisfying the condition # =0 at z =0.

If (c7/16A5)+ 02> —w><0, then condition (33b) is satisfied for all »>, i.e. for
w?> 7 +(c3/16A3) the spectrum of eigenvalues w? is continuous (i.e. no discrete
eigenvalues exist).

For (c%/16A3)+02*~»*>0, § >0 as z »—o0 provided w”> 27, Therefore, if
0?>(*, we again have a continuous spectrum; while if w*< (27, then there is no
solution satisfying the boundary conditions.

The above illustration shows that for a finite depth, there is an infinite number of
positive eigenvalues. There may exist a finite number of unstable modes provided 27
is sufficiently negative; however, if the depth d is sufficiently small, no unstable
modes exist. Qualitatively, these results agree with those to be presented in the
following sections. However, we should note that differences do arise for the case of a
flux tube of infinite depth, in that, in the ‘local’ approximation, we find a continuous
spectrum for w?>0?; whereas for the case to be presented in the next section, we
find a continuous spectrum for > >0 and an infinite number-of discrete eigenvalues
for w><0.

6. The Linear Temperature Profile
Here we shall consider the special case of the linear profile

Ao(2)= A0(0)+2A5(0), (42)
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for which A is a constant. In order that the temperature and density increase
monotonically with depth (see Equation (24)) it is necessary that the scale-height
gradient, A, satisfy

—1<A$<0.

Further, we shall suppose, for simplicity, that 7(z)=0(i.e. the temperatures inside
and outside the tube are equal) and that vy is a constant. (Note that for 7 = 0 the ratio
c&(z)/vi(z)is a constant.) Thus, as we have seen in Section 3, a sufficient condition
for stability to convective motions is N 2>0.1In particular, the isothermal atmos-
phere (A =0) is always stable.

Under these assumptions, the governing equation for the velocity perturbation
is Equation (23, for which an exact solution is known (Equation (45) of Paper I).

We use this solution here in order to investigate in detail the nature of motionsin a
linear temperature profile. To find the eigenvalues > using this solution we must, of
course, specify appropriate boundary conditions on the velocity.

6.1. BOUNDARY CONDITIONS

We have considered two alternative forms of the lower boundary condition, namely

<

-0 as z->-00; (43a)
=0

<

at z=-d. (43b)

Thus, we are requiring that the velocity & tend to zero at a depth d, which may be
infinite. It is necessary to consider the two cases separately, as the discussion in
Section 5 indicates. We shall concentrate on the former condition, leaving the
discussion of the case of finite depth to the end of this section.

In addition to the lower boundary condition (43a), we must specify the flow at (say)
z = 0. We shall write this boundary condition in the general form

a16(0)+a2i5'(0)=0 , (44)

where a; = 0and a, = 0. Thus, with a; = 0 and a; = 1, we allow for the possibility that
the vertical velocity is a maximum (or minimum) at the observed level z =0; with
a, =1 and a,=0, condition (44) imposes a top on the flux tube at z =0, beyond
which no flow penetrates. In fact, our results are not sensitive to the precise form of
the constants a; and a,. However, it should be noted that our results are sensitive to
the alternative cases of the tube’s depth being finite or infinite.

6.2. THE EXACT SOLUTION OF THE VELOCITY EQUATION

Consider the case of equal temperatures (To= T,), for which Equation (23) is
applicable. We shall employ the boundary conditions (43a) and (44).
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To find the solutions of (23)' it is convenient to introduce in place of z the new
independent variable x, where

2457(0) | @ X
CT(O) Ao

Then (23) becomes

d*s 1 dv [s2—(1+1/2A6)2])
——{1+ £1— §=0,
dx? ( Ab )x dx ( x? v

AY*(z), x>0. 45)

(46)

where the + sign applies to stable solutions (w”>0), and the — sign to unstable
solutions (< 0). The constant s” is defined by

o= ’Y(:o) (7 1“)@ 5:) + zizj @7)

Note that s* may be positive or negative, but is positive if N3 >0.
In terms of the x variable, the boundary condition (43a) becomes

>0 as x->00; (43aY)

whilst condition (44) becomes

dé
a0 +3Abax—=0 at x=x,, 44y
dx
where
Xo(w) 2A0(0)
w =
¢ cr(0)

It is convenient to discuss the stable and unstable cases of (46) separately.

6.2.1. Stable Solutions

Consider the velocity equation (46) under the assumption that w? is positive (so that
the plus sign applies). The solutions of (46) are (see Section 5.4 of Paper I)

6 ~x""20L (x) and x"PMY(x), (48)

where J; and Y, are Bessel functions of the first and second kind (Abramowitz and
Stegun, 1967). Note that s may be real or imaginary.

Now both of these solutions tend to zero as x - 0, provided —1 <A <0. Thus,
since this condition on Ay is satisfied, both solutions (48) satisfy the lower boundary
condition (43a). Furthermore, the upper boundary condition (44) can be satisfied
for any value of xq simply by choosing a suitable linear combination of the two
independent solutions (48). Thus, the boundary conditions no longer determine
a discrete set of eigenvalues w>> 0 (in contrast to the results found in Section 5 for
a finite domain, —d = z =0). Hence, for the infinite domain z <0, there exists a
continuous spectrum of eigenvalues o> >0, whether s° is positive or negative.
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6.2.2. Unstable Solutions

Suppose, now, that w? is negative, so that the minus sign applies in the velocity
Equation (46). The solutions of (46) are now

B ~x"V2or (x) and x'TYPMK((x), 49)
where I,(x) and K,(x) are modified Bessel functions (of the first and second kind) of
order s (which may be real or imaginary).

In order to satisfy the lower boundary condition (43a) we must reject the solution
involving the modified Bessel function of the first kind, since it is unbounded as
x - 0. So consider the second solution x'*/24°K (x). It is convenient to discuss the
two cases s° =0 and s> < 0 separately.

(@) s*=0.

For this case K(x)is a real positive, monotonically decreasing function of x. Also,
we may show from (47) that (for s>= 0) we have

0>Ah>-3+2/y)"*.

Therefore, for v in the range 1<y=5/3, 1+1/24,<0 and x“”“"Ks(x) is
monotonically decreasing; so the boundary condition (44) is not satisfied for any
value of @2<0, i.e. no unstable solutions exist for s*=0. Hence, subject to the
boundary conditions (43a) and (44), the fluid is stable if s*>=0. Note that this is
consistent with the sufficiency condition for stability obtained in Section 4.

(b) s*<0.

Writing s> = —»?, where » is real and positive, the solution for the velocity is

D ~x"TPMK (x). (50)

The velocity ¢ as a function of x is sketched for various A 4 in Figure 3. For purposes
of illustration, we have taken co=v, and y=1.2.

W RIK ix)

-004{ V03
\
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002

-002

-004

1
! -025

Fig. 3. The function x“”“"K »(x) for y=1.2,co=vs and two values of Aj. For 0>A}>
>-5 (Ah< —3) the function oscillates infinitely with increasing (decreasing) amplitude as x - 0.
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It may be noted that & may be expressed in terms of the Whittaker function W ;,
by observing that

1/2

K@ =(35)  Wouln). 51)

(Gradshteyn and Ryzhik, 1965, p. 1063).

Now the zeros of the Whittaker function W;,,, (x) have been investigated by Dyson
(1960), in relation to the stability of an idealized atmosphere with constant shear flow
and exponentially decreasing density (see also Case, 1960). Dyson found that for [
real and m purely imaginary there are no complex zeros, and that there are an infinite
number of simple zeros, on the positive real axis, which are bounded and have a point
of accumulation at x = 0. In our problem, / =0, and m = iv is purely imaginary.

Therefore, with boundary conditions (43a) and (44), there are an infinite number
of (negative) eigenvalues w>, with the property that

w<wi< <wi< o -<0; (52)
furthermore,
2
w,>0 as n->o00,

and w? is finite.
Thus there are unstable (w”<0) solutions, satisfying the boundary conditions
(43a) and (44), if and only if s*<0, i.e. if and only if

7(/‘110) (7 A )(2 ui) + 2/116>z<0'

Hence, a necessary and sufficient condition for the tube to be (convectively) stable is

y(jo) (y l”)( s—AH 215)2”’- (53)

The line s* = 0 is sketched in Figure 4 as a function of the parameters cg/v% and
Ab. From (53) we see that a sufficient condition for s*>0, and hence a sufficient
condition for stability, is N >0, in agreement with the results obtained earlier
(Equation (31)).

For—3+(2/ 'y)l/ >> A} >~1, unstable solutions exist for all values of*cg/ vi. Note
that c3/va - 0 does not imply Bo - o, if p, (2 )is fixed, because the magnetic pressure
in the tube cannot exceed the confining external pressure. Thus, the limit c%/ 04 >0
is achieved by allowing (see (3)) Bo(z) = 2up.(z))"'?, for which po(z) and po(z ) both
tend to zero (and thus the tube is evacuated by the magnetic field).

For
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) ‘
l §2<0
>0 solutions  for  w'<0
no solutions
for wW'<Q
- 3217 , ‘
-(%1) -345) A -10

Fig. 4. The line s>=0 (see Equatlon (47)), shown schematically in the (co/vA) Ag plane, d1v1dmg the
region with unstable modes (s < 0) from that with only stable modes (s*>> 0). The dashed line, N3 =0,is
the asymptote for s>=0 as c2/v3 - .

there is a critical value of ¢3/va, given by

; L 1/2 1/2
<5—2)cm:4(/1(’)+(’y‘y—1)/'y)<A6+%+(%> )(A6+%—(%) ) (54)

below which the solution is stable. So, provided the field is sufficiently strong, the gas
in the flux tube is stable to convection.

Also, it may be noted from Figure 4, that the effect of increasing the ratio of
specific heats, v, is that the line s* = 0 is moved to the right, giving a greater region for
stability. Thus, for certain values of c(z)/ vi and Ay, increasing v may stabilise the
perturbation.

Consider now the fastest growing eigenvalue w3, the existence of which for s < 0 is
guaranteed by (52). The values of w3 have been determined numerically for a range
of values of the parameters c5/va and A} . For convenience, it was found simpler to
use the form (50) for the velocity, and to solve numerically Bessel’s equation for

K. (x), matching the numerical solution to the known asymptotic forms as x > 0 and
X —> 00,

Figure 5 shows a plot of w} (suitably non-dimensionalised) against c¢g/v% for
various A g . For the sake of illustration, we have taken the upper boundary condition
as ¢’ =0 at z =0. (The results are similar for the general boundary condition (44).)
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Fig. 5. The non-dimensional growthrate, (—wao(O)/g)”z, of the fastest growing mode as a function of
c2/v?3 for several values of A). We have taken v =1.2 and the upper boundary conditionas §' = 0at z = 0.

Now, as ¢5/va = ®©, v - 00; and we may show (by considering the asymptotic form
of K, (x) as v - o0) that
2

Co
——2——>00 .
(2N

wi->NJ(0) as

Thus the behaviour of w? at large cﬁ/vi indicated in Figure 5.
For Ay < —3+(2/v)""? the mode is unstable for all values of c3/v4, and

2 2
2 ygAo 2 Co
Wy > X as —=->0,
VO R

where X, is the largest value of x, for which the boundary condition (44) is
satisfied, with

For
1/2

-1 2
—<Z—)>A6>—%+(—> ,
Y Y

there is no unstable solution for (c5/v3)< (c(z)/vi)cm, where (C%)/U‘i)crit is given by
(54). Figure 5 also shows that w} is a monotonically increasing function of c¢5/vi ;
thus, the weaker the magnetic field, the faster the growthrate of the instability.
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In Figure 6 we have plotted w? against A} for various values of ¢3/v4 . We see that
there is no solution for any value of c%/vi, if

0>A6>—(3’:-1),
y

i.e.if N3>0; and that (for a given ¢3/v3%) there is a minimum value of Ab, given by
3 2 ¢d 2 co v AN

M=~ (242 ) 214 )24 )] 55

Ocric 2 ¥ U%\ v Ui 2 Ui ( )

for which the solution is stable if 0> A5 > Aq_,.
We also find that, for given co/va and A}, the growth-rate of the fastest-growing
mode is a decreasing function of .

05
g
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25

03 (91):0
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0 -02 -04 -06, -08 -10

Fig. 6. The non-dimensional growthrate, (~w314(0)/g)"/?, of the fastest-growing mode as a function of

Ay for various cg/ v, Again, for purposes of illustration, we have taken y = 1.2 and the upper boundary
condition as ' =0 at z =0.

6.3. FINITE DEPTH

Finally, in this subsection, we consider the effect of applying the lower boundary
condition (43b), so that the tube has a finite depth d.

The first important (though perhaps not suprising) point to emerge is that there no
longer exists a continuous spectrum for w”>> 0. This is because the velocity Equation
(23), together with the boundary conditions (43b) and (44), form a regular (Ince,
1944, Chapter X) Sturm-Liouville system (see also Section. 4), which, from the
general theory, has discrete eigenvalues only.
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Again, for a given depth, we have a necessary and sufficient condition for the
existence of unstable solutions. We find unstable solutions exist if and only if

e2¢/v < AO(_d)

100) ° (56)

where v =~/(—s2), and ¢ depends on the coefficients a; and a, occurring in the
boundary conditions (44). In general ¢ satisfies

4 v
=p=t (—————) .
mEe=En AT A
For the special case a, = 0 (for which the upper boundary condition is '(0) = 0), we
find that

-1
¢ =tan (1+1/2A’0>’
whilst for a; =0 (for which $(0)=0), ¢ = .

The condition (56)is sketched for various d/ A ¢(0) in Figure 7. In the region to the
left of each curve, all the eigenvalues are positive; in the region to the right, there is at
least one negative eigenvalue. Thus, for values of ca/va and A} lying to the right of
the curve, there is an unstable mode of maximum growthrate.

Alternatively, from Figure 7, we see that for given cé/ v and A} there exists a
minimum depth d*, such that for d <d*, the perturbation is always stable. The

10+
8]
6
4]
2 A0S
1\
-

-02 -

4 -06 A:, -08 -10

Fig. 7. Necessary and sufficient condition for instability in a tube of finite depth, d, sketched for various
values of d/ Ay(0). For a given depth, to the left of the curve only stable modes exist and to the right there is
at least one unstable mode. The upper boundary condition has been taken as '=0at z =0, and y=1.2.
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critical value d* is determined (from (56)) by
Ao(—d*)= Ao(0) >*”. (57)

The dependence of d* on Ay is sketched in Figure 8 for various values of the
parameter cg/va.

The application of these results to the solar atmosphere is considered in the
following section.

15

101

9 -02 -04 -06

Fig. 8. 'The critical depth for stability as a function of A for various c3/va.

7. Intense Flux Tubes in the Sun

Before considering the application of the above analysis to the Sun, it is perhaps
convenient to summarise the main results we have so far obtained. The discussion
falls into two parts: (a) conditions for stability in an arbitrary temperature gradient;
and (b) instability in a uniform temperature gradient.

For an arbitrary temperature profile (case (a)), we have shown that a sufficient
condition for stability to convection is

{(2%’)(1 —T(z))+£g—))(1+l;‘2§((zz))>/10(z)} x
7(z)cp(z)

- (Y21
“Aor@E @) roiey o) ( ” )

to be satisfied throughout the depth of the tube (see Equation (29)). If the internal
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and external temperatures are equal, so that +=0, then the above sufficiency
condition is simply

N3(z)>0, (31)

to be satisfied throughout the depth of the tube.

For a linear temperature profile (case (b)), with internal and external temperatures
equal, condition (31), of course, guarantees stability to convection.

In a tube of infinite depth, with a linear temperature profile, a necessary and
sufficient condition for convective stability is that s> 0, i.e.

() () ()
A o+ ) H 1+ >0.
YA\ y AV 2A%
(See (53).) The stable (w*>>0) modes in a tube of infinite depth form a continuous
spectrum; the unstable (w?* < 0) modes, which occur if s* < 0, are discrete and infinite
in number (with a point of accumulation at w> = 0).

In a tube of finite depth d, with a linear temperature profile, a necessary and
sufficient condition for stability to convection is

e*" > Ao(—d)/ Aa(0).

(See inequality (56).) Thus, there exists a minimum depth d* below which (i.e. for a
tube of depth d less than d*) only stable modes exist. The critical depth d* is given by
Equation (57), and is sketched in Figure 8. The stable (w>>0) modes, in a tube of
finite depth, are discrete and infinite in number; there is no continuous spectrum. If
d>d*, then there exists at least one unstable (w”<0) mode; again, there is no
continuous spectrum of eigenvalues.

Consider now the application of these results to the solar atmosphere. In applying
our analysis to the Sun, we are, of course, supposing that the basic (static) state of a
flux tube is as that described in Section 2, and that any motions in the tube are
adequately described by the linear analysis of Section 3. We shall also assume that
the flux tube is in temperature balance with its surroundings. Further, we shall
approximate the convection zone by a linear temperature profile (or, more precisely,
a linear profile for the scale height A.(z)), and take a mean value of the ratio of
specific heats, y. We use Spruit’s model of the solar convection zone (Spruit, 1974),
and take z =0 to correspond to optical depth 75000 =1 (in the surrounding pho-
tosphere). In fact, Spruit’s model gives — A sharply peaked at about 40 km below
Tsp00 = 1. Also y varies rapidly over the first 100 km or so below 75000 = 1, (Spruit,
1977). However, below a depth of about 100 km, and down to about 4000 km Aj
and y are effectively constant. Thus, our assumption of a linear temperature profile is
a reasonable one over this range.

The precise choice of values for A4 and y in our model is uncertain. However, if we
take y=1.15 and Ay in the range —0.2= A, =—0.3, then the perturbation is
unstable in a medium of infinite depth, for all values of ¢5/v4. Now the ratio of the
sound speed to the Alfvén speed is determined by its value at z =0 (i.e. at observed
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levels), where it is roughly unity. Thus, taking c5/v% = 1, and the above values of Af
and vy, we find that a tube of infinite depth is unstable. However, a tube of finite depth
is stable provided its depth does not exceed about 1-2 X 10> km.

If, on the other hand, we choose to apply our boundary condition at a prescribed
depth, say z =—2000 km (Roberts, 1976b), and take mean values of —0.25 for the
scale-height gradient and 1.2 for the ratio of specific heats, over the range z =0 to
z =—2000 km, we find (using the upper boundary condition ¢’ =0 at z = 0) that the
perturbation is stable for ¢5/v3 < 1.2, i.e. the perturbation is stable for Bo(0)>
> 1040 G. Applying the lower boundary condition at a shallower depth would give a
greater value of c5/v4 ; that is, a lower value of the field strength would be required
for stability to convection.

In Table I we give the critical value of cg/ v4, where it exists, and the corresponding
value of the field at z =0, for various tube depths. The depths chosen correspond to
the granular scale (10° km), the overstable cooling depth (2x 10> km; Roberts,
1976a), the superadiabatic depth (3 X 10” km; Parker, 1978), the supergranular scale
(1.5% 10* km), and finally the depth scale of the convection zone (~10° km).

Table II gives the growth-rate of the instability, when present, for the above depths
and ¢§/vi =1. For example, with Ay =—0.3, a tube of depth 2000 km has a
growth-rate of 5.3x107>s™" (that is, the instability grows on an e-folding time of

TABLE 1

The critical field strength (in gauss) at z = 0 necessary for convective stability in a
flux tube of given depth d and scale-height gradient A, for y=1.2 and
p.(0)=1.3x10° dynes cm >

Depth d(km)

Af 10° 2x10° 3% 10° 1.5x10*  10°

-0.15 stable stable stable stable stable

-0.2 490 670 770 1080 1280

—0.25 760 1040 1200 1750 unstable

—-0.3 940 1290 1500 unstable unstable
TABLE II

The growth-rate (in s™), —iw;, of the most unstable mode for various depths 4 and
scale-height gradients A, for cg=1v4, ¥y =1.2 and A(0)=152 km

Depth d(km)

Ab 10° 2x10° 3x10° 1.5x10* 10°
—-0.15 stable stable stable stable stable
-0.2 stable stable stable stable 1.2%x1073
—0.25  stable stable 3.2x1073 4.8x1072 4.8x107°

-0.3 stable 53%x107° 6.7x1077 7.2%x107° 7.2%1073
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190 s); whereas, for a depth 1.5 % 10* km, the growth-rate is 7.2x 10> s * (with an
e-folding time of 140s). Taking a smaller value of vy, for example y=1.1, the
growth-rate increases to 9.7x 10> s™" for a depth of 2000 km.

Given that convective instability occurs in the tube, what are its consequences?
The instability may result in either a downflow or an upflow, which, unfortunately,
linear analysis cannot discriminate between. Parker (1978) has shown that a steady
downdraft (in the basic-state of a flux tube) leads to a temperature difference
between the interior of the tube and the surrounding photosphere, and subsequently
to field intensification.

In a flux tube that is in unstable equilibrium, either because its field strength is low
or because it is deeply rooted, instability (as we have seen in this paper) may manifest
itself as a downflow, the consequence of which is to lead to an increase in field
strength* and thus eventually to a possibly stable equilibrium. An upflow would
presumably result in the magnetic field being dispersed™ at the surface by the
diverging flow and enhanced temperature of the rising gas (Parker, 1978; Spruit,
1978).

Thus we suggest that the downdraft observed in intense flux tubes (Stenflo, 1976,
Harvey, 1977) cannot be due to convective instability if the tubes are shallow. If the
depths of the flux tubes are greater than about 2000 km, then the downflow, if
resulting from convective instability, is likely to be a transient phenomenon, taking
place as the field strength intensifies and the flux tube moves to a state of hydrostatic
equilibrium with an increased field strength. Of course, this does not exclude the
possibility of other mechanisms giving rise to a downdraft in the tube.

Consider, then, in summary, a possible scenario for the life of an intense flux tube.
If the flux tube is a shallow phenomenon, then motions driven by convective forces
are unlikely, and an equilibrium state presumably rules. If, however, the flux tube
extends somewhat deeper (several thousand kilometers, say) into the Sun, then a flux
tube of moderate field strength (of several hundred gauss, say) is convectively
unstable. The result of this instability is to lead either to the dissolution of the tube,
with the field being dispersed; or to an increase in field strength, driven by a
downdraft in the tube, until an equilibrium, with kilogauss field strengths, is once
more possible. Independently, overstable Alfvén waves will tend to cool the interior
of the tube, and thus further intensify the field (Parker, 1976; Roberts, 1976a). There
are, of course, uncertainties in this global description of field intensification: only a
more detailed, presumably non-linear, analysis can further clarify such points.

It should be noted that both Spruit (1978) and Unno and Ando (1978) have also,
and independently, made similar suggestions to the above, whilst Parker (1978) has
described the effect of a steady downdraft on achieving field intensification. The
convective instability we have investigated generates such a downdraft (though not
necessarily a steady one).

* A downflow brings (to alocation z) lighter and cooler fluid and so leads to a decrease in gas pressure, and
consequently to an increase in field strength (as the field collapses inward under the exterior pressure). An
upflow brings heavier and warmer fluid to the location z, and so weakens the magnetic field.
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Finally, we note that we have neglected the effect of dissipation in our analysis.
When dissipation is taken into account, overstability may arise, even when our
conditions for stability are satisfied (Cowling, 1976). Dissipative processes may also
relate to the possibility of cooling and field intensification (Parker, 1976; Roberts,
1976a). The effect of dissipation is clearly complicated and will in fact be the subject
of a further paper in this series (Webb and Roberts, 1978).
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