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Abstract. The nature of convective instability in a slender magnetic flux tube is explored. A sufficient 
condition for stability is derived for the case of an arbitrary temperature  profile in the external medium. 
The discussion allows for the possibility of a temperature  difference between the interior and exterior of 
the tube. Special cases of our sufficiency condition reduce to Schwarzschild's criterion and its generalisa- 
tion by Gough and Tayler (1966). 

The  distribution of stable and unstable eigenvalues, for the particular case of a linear temperature  
profile, is discussed in detail. 

For a tube of infinite depth,  with a uniform temperature  gradient A ~ inside the tube equal to that in the 
ambient  medium, a necessary and sufficient condition for convective stability to occur inside the tube is 

4 . ( 3 , - l + a , o ~ ( y _ + @ ~ + ( X + ~ 2 > O  
y(A'o) 2\ 3' / ' \ 2  VA / \ 2Ao]  ' 

where Co and VA are the sound and Alfv~n speeds inside the tube, and 3' is the ratio of specific heats. The 
stable modes form a continuous spectrum ; the unstable modes are discrete and infinite in number .  

In a tube of finite depth d, with a linear temperature  profile, a necessary and sufficient condition for 
convective stability is derived. There exists a critical depth d* such that tubes of depth d are stable if and 
only if d < d*. In a finite tube, only discrete eigenvalues occur. 

The critical depth d* is determined for a wide range of conditions, and the results applied to the Sun. 
Under  the assumptions of the present  model, intense flux tubes are convectively stable if sufficiently 
shallow (with depths 1-2 • 10 3 km or less). Tubes that extend deeper into the solar convection zone are 
potentially (convectively) unstable, but may be stabilised for sufficiently strong magnetic fields (typically 
greater than about a kilogauss). The  observed downdrafts inside intense flux tubes, if a manifestation of 
convective instability, are thus likely to be a transient phenomenon  in which the field inside the tube is 
further intensified until hydrostatic equilibrium obtains. Convective instability in a flux tube is thus a 
possible means of achieving kilogauss field strengths. 

1. Introduction 

It is now generally agreed (see reviews by Stenflo, 1976; Harvey, 1977) that the 
magnetic field of the quiet regions of the photosphere is made up of intense flux 
tubes, located in the boundaries of supergranules. The field in these flux tubes is 
estimated to be in the range 1-2 kG, their diameters 100-300 km. 

Why the Sun seems to arrange preferentially the general field at its surface into 
slender flux tubes, in opposition to the powerful expansive pressure of the confined 
magnetic field, is not completely clear. Of course, the simple kinematical effect of the 
supergranular flow, tending to concentrate the magnetic field in the corners and 
boundaries of supergranules, is well understood (Parker, 1963; Weiss, 1964; Clark, 
1966). But some other means is required for compressing fields to the very high 
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pressures of kilogauss fields. One suggestion is that the gas inside the flux tubes is 
cooler than the surroundings, being actively refrigerated by the generation and 

emission of overstable Alfv6n waves (Parker, 1976; Roberts, 1976a). More recently, 
Parker (1978) has suggested, as an alternative explanation, that the reduced heat 
transport in the kinematically compressed magnetic field (of a few hundred gauss) 
leads to an almost adiabatic temperature gradient inside the tube, so that the 
temperature inside the thermally insulated tube is cooler than its surroundings. This 
then leads to an enhancement of the already existing downdraft in the tube and, as a 
result, the field is further compressed to eventually reach observed kilogauss values. 
A third possibility has been suggested by Galloway et al. (1977), who have shown 
that convection in a Boussinesq fluid can compress magnetic fields to strengths 
beyond equipartition values. 

By whatever means the Sun actually achieves the compression of magnetic fields 
into intense flux tubes, the fact remains that such fields exist. Given, then, the 
existence of such a slender kilogauss flux tube, what motions are likely to occur inside 
the tube? In an attempt to answer this question, Roberts and Webb (1978) developed 
a system of non-linear zeroth-order equations governing vertical motions in a slender 
tube. Their  theory allowed for a complete description of the effects of buoyancy, 
temperature stratification, and compressibility. The discussion in Roberts and Webb 
(1978) was primarily directed towards wave motions in the tube. 

In this paper we consider the nature of convectively unstable motions in a magnetic 
flux tube. We investigate the role of the magnetic field in preventing such instability, 
including the effect of the splaying of the field lines with height. We should note that 
distinct from the convective instability is the tendency for the surface of the flux tube 
to be unstable to fluting (interchange instability). This has recently been considered 
by Meyer  et al. (1977). 

It turns out that we are able to obtain sufficient conditions for stability against the 
tendency towards convection for a flux tube with an arbitrary temperature profile. In 
the special case of a linear profile we are able to describe in detail both the velocity 
field and its instability boundaries. Finally, we argue that convective instability may 
be a means of achieving intense fields. 

2. The Equilibrium State in a Slender Flux Tube 

The equilibrium configuration of an intense magnetic flux tube is sketched in 
Figure 1. The internal pressure po(z) and density po(z) are related by the barometric 
relation 

dpo 
= - o 0 g ;  (1) 

dz 

while the ideal gas equation determines the internal temperature To(z): 

k 
po( z )  = =- o o ( z ) g o ( z ) ,  (2) 

m 
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Fig. 1. 
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The equilibrium configuration of an intense magnetic flux tube. 

where k is Boltzmann's  constant, rh is the mean particle mass and g is the 

acceleration due to gravity. Lateral  pressure balance demands that the external 

confining gas pressure pe(Z) satisfy 

B~(z) 
p o ( Z  )-~ - -  - -  p e ( Z  ) , (3)  

2~ 

where Bo(z)s is the zeroth-order (induction) field of the flux tube. The external 

a tmosphere is also in hydrostatic equilibrium, and so 

dpe 
- - =  --Peg, (4) 
dz 

where pe(Z) is the density in the exterior region. 
From (3) it follows that 

dz 2~ /=g(P~ (5) 

Introduce the scale-heights Ao =- kTo(z)/rhg and Ae ~ kTe(z)/rhg, of the internal 
and external atmospheres,  and write 

Ao(Z)+A(z)=Ae(Z), (6) 

where A (z) is a measure of the temperature  difference between the two regions. Then 



252 A . R .  W E B B  A N D  B. R O B E R T S  

(5) may be combined with (2) and the corresponding equation for the exterior region 
to give 

d (B2(z )~  = 1 (BZo(Z) A(z) 

d z  / Ao(z)  ( " 
(7) 

Now, in the presence of a strong magnetic field, we may expect a temperatura 
difference to exist between the interior and the exterior of the tube, despite the 
natural tendency for thermal conduction to smooth out such a difference. There are 
strong theoretical reasons (Parker, 1955, 1976, 1978; Roberts, 1976a, b) for  believ- 
ing this conjecture; indeed, if the flux tube is not cooler than its surroundings it is 
difficult to imagine how such intense fields occur. The observational evidence is 
presently inconclusive; in fact, the tubes appear as bright dots (Frazier, 1970) against 
the surrounding photosphere.  They appear bright because they are less dense than 
their surroundings, so that one sees deeper  into the Sun where the ambient 
temperature is higher than at the surface (Spruit, 1977). 

Now the effect of a magnetic field upon the energetics of the basic-state is not well 
understood, so it is necessary to model the likely behaviour of the field in creating a 
temperature difference. There are clearly several possibilities. For example, it is 
reasonable to suppose that the stronger/t~e field (relative to the confining pressure), 
the larger the temperature difference the field creates. 

Introduce 

A e ( z ) - A o ( z )  
~(z) = , (8) 

a e ( z )  

the ratio of the temperature difference between the internal and external media to 
the external temperature.  Then, to model the behaviour of the magnetic field, we 
may suppose that .r(z) is proportional to the ratio of the magnetic pressure to the 
external gas pressure, and write 

z (z )=  v ~ ) ,  (9) 

where 0 is a constant of proportionality. It is assumed that 8 is less than or equal to 
one; also, for a cool interior 0 is positive. 

With the above form of ~'(z), Equation (7) gives 

1 dBo (1-0)  
-- (10) 

Bo dz 2Ao(z) " 

Combined with (1) and (2) this gives 

B ~ o ( Z )  ~ ( p o ( Z ) )  1 - ~  . (11) 
�9 �9 , 2 Flux conservation implies that ro (z)Bo(z)  = r 2 (0)B0(0), where ro(z ) is the radius of 

the tube at the height z above the arbitrary reference level z = 0  (chosen to 
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correspond to optical depth rsooo = 1 in the solar atmosphere). Thus 

ro(z ) ~ (po(z )) -�88176 (12) 

Much of the subsequent discussion will be given in terms of the function 
2 2 Co(Z)/VA(Z), where Co(Z)=(ypo(z)/po(z)) 1/2 is the sound speed and VA(Z) = 

= Bo(z)/(IZpo(Z)) a/2 is the Alfv6n speed inside the flux tube. (y is the ratio of specific 
heats, which may be a function of z.) 

2 2 It may be noted that the parameter  CO/VA is related to the plasma b~ta inside the 
tube by 

c o(z) 
( z )  - 

where/30(z) = 2t.tp0(z)/B 2 (z). 
The densities inside and outside the tube are related by 

Pe(Z)- .~  1 "]- (1 --  0 ) (  1 ~ e )  
oo(z ) 

where/3e = 2~pe(Z)/BZ(z), (/3e < 1). 
2 2 Now the parameter  Co/V,~ satisfies (from (1), (2), and (10)) the equation 

d ( c 2 ] =  - 0  (13) 
Vc; dz " ~ A /  Ao(z)' 

2 2 and so (for 0 > 0) CO/yVA increases with depth ( - z )  in a cool tube in such a way that 

c~(z) (po(z))O (14) 

In particular, if 0 = 0 (so that the temperatures inside and outside the tube are 
equal), then 

y 

and 

B~(z)-po(z) ,  ro(z)--pol/4(z). (15) 

The relation in (15) was first given by Parker (1955) in his discussion of magnetic 
buoyancy and the formation of sunspots. 

3. Vert ical  Mot ions  in a Slender Flux Tube  

The equations governing motions of a perfectly conducting, inviscid, ideal gas 
embedded in a magnetic field have been presented in Roberts and Webb  (1978) 
(hereinafter to be termed Paper I). In a cylindrical coordinate (r, 0, z)  system, in 
which there is no azimuthal dependence, each of the physical variables is expanded in 
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its Maclaurin series about r = 0. Retaining the zeroth-order (r ~ 0) terms leads to the 
following set of non-linear equations, describing vertical adiabatic motions: 

Or Or) 3p 

~ + V o z  p \3t 

- -  + = 0 ,  
3t 

(16) 

(17) 

(18) 

where p(z, t) is the density, p(z, t) the pressure, v(z, t) the vertical (zeroth-order) 
velocity inside the flux tube of vertical (zeroth-order) field B(z, t). The details of the 
derivation of these equations are given in Paper I. Here  we shall discuss the linear 
perturbations from the equilibrium state described in Section 2 by use of Equations 
(16)-(18). 

The linear equations describing perturbations about the basic-state described in 
Section-2 follows immediately from (16)-(18): 

3v Op 
p0(z) ~- = -~z-pg, (19) 

~+p'o(z)v.=c2(z)(~t+ p'o(z)v) , (20) 

Op , .  OB 
Bo(z ) -~-potz  ) -~  + (Bo(z )p'o(z ) -  B'o(z )po(z ))v + po(z )Bo(z ) r = 0 ,  

(21) 

where v, p, p, and B now refer to the perturbations (so, for example, the total density 
is P0 + P), and a dash denotes differentiation with respect to the vertical coordinate z. 

The flux tube is related to its surroundings by assuming that the pressure 
perturbation in the exterior region is negligible. Then the radial component  of the 
momentum equation gives 

p + 1Bo(z)B = 0 .  ( 2 2 )  
/z 

It should be noted that the use of (22) has recently been criticised by Wilson 
(1979), who argues that its use leads to a degenerate solution. His criticism is 
discussed in detail in Roberts (1979), and is shown to be without foundation. 

Assuming a t ime-dependence of the form e i~ (19)-(22) may be combined to give 
a second order differential equation for the velocity amplitude t3(z), defined by 
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v = ~ ( z )  ,o,, e , namely 

d2 A 2/ t v [CT_T Bo 
Bo 

+ [ w 2 - N g  

L car 

where 

- - +  
dz 

' [ B o  g \ [ C T  N o \ ]  d ,___~_~ o_e._,/Bg+e\ ' 2, 2 

dz \Bo cg/-t o+Z)k -Y)J (23) 

2 2 
2 C O D A  

cT : (co~ + v~,)"  

The Brunt-V~iisiil~i frequency, No(z), and the density scale-height, Ho(z), are defined 
by 

1 p'o(Z) N 2 (z)  g g2 
Ho(z) po(z)' Ho(z) C2o(Z) " 

Note that in deriving Equation (23), we have made use of Equation (1) only in the 
basic-state. The temperatures inside and outside the tube may be unequal. However,  
for the special case To(z ) = Te (z) the equilibrium state is completely characterized by 
the scale-height Ao(z): 

2 , . .ao(z )  Ao(z) 
cg(z) = rgAo(z), v2(z)= VAtU) A~ ~ , car(z) = car(0) Ao(0) ' 

1 _ l + A ; ( z )  N 2 ( Z ) = A ~ ) ( Y - I + A ; ( z ) ) .  (24) 
Ho(z ) ao(z ) ' 3' 

Equation (23), for To = Te and I /assumed constant, then reduces to 

d2~ 1 d~ ( o g - N 2 ( z )  ( 1 - ~ )  c ~ ) v : O .  (23)' 
dz 2 2Ao(z) dz t- \ c2(z ) + Y N2 (z)'~ A 

Equation (23)' is Equation (31) of Paper I. 

4. Sufficient Condit ions  for Convect ive  Stability 

In order to discuss the stability of a s lender flux tube,  it is conven ient  to write 

Equation (23) in the canonical Sturm-Liouville form: 

d / d~ \ 
clz\={ o-(z ) dz-z) + [w2r(z ) -  q(z )]9 = O, (25) 

where 

and 

oo(Z )C ~(Z ) oo(Z ) 
o '(z)  - , r ( z )  = 

Bo(z  ) Bo(z ) ' 

2 2 t I 2t , . poCT [No  d ( ~ _  [B'o+g'~(cr  N_ 2 
12J 0 C o ~  121 0 C o ~  C T  g / J  
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Together  with boundary conditions of the general type 

a l  B(O) + a2B'(O) = 0 ] 
(26) } b r ~ ( . d ) +  b2z3'(-d) = 0 

(for constants a t ,  a2, bl, and b2), imposed at levels z = 0 and z = - d ,  Equation (25) 
constitutes the standard form of the Sturm-Liouville boundary-value problem (see, 

for general theory, Ince (1944); and, in the context of a stratified fluid, Yih (1965)). 

(Particular forms of these boundary  conditions will be considered in Section 6, 
with reference to the special case treated there.) 

It follows from the general Sturm-Liouville theory that eigenvalues ~o 2 are real 
and, provided d is finite, these eigenvalues form an infinite sequence that may be 
ordered in increasing magnitude; thus 

oJ12<w2< . . .  < o j 2 <  . . . .  

Furthermore,  w 2 -+ co as n -+ oo (Ince, 1944, Chapter  X). 

Thus, under the boundary  conditions (26), with d finite, there are an infinite 
number  of eigenmodes with eigenfrequencies o~i( j = 1, 2,3 . . . .  ). If w~ > 0, then the 
j th mode  is stable. If oJ 2 < 0, then the / ' th  mode is unstable. Thus, in particular, the 

basic-state is unstable if w 2 < 0 and (since w 2 < w 2, i > 1) this will be the mode  of 
maximum growthrate.  Unfortunately,  Sturm-Liouville theory does not provide us 
with a direct calculation of w 2. However ,  we may elicit further information on w 2 (in 
particular the sign of w 2) by obtaining a first integral of Equation (25). 

Multiplying (25) by 6", the complex conjugate of 23, and integrating by parts, it 
follows that 

2 [o_~ (q(z)[~]2+~(z)[~,[2) dz-[(r(z)~3*~3']~ 
(27) w = I~ r(z)lv[ 2 dz 

It is clear from the form of (27) that our earlier restriction that d be finite is now no 
longer necessary. Thus, in the subsequent discussion d may be infinite. 

Suppose, now, that the boundary conditions are such that 

D(z)~*v']~ 0 

(as are the special cases of (26) examined in subsequent sections). Then it follows 
f rom (27), on noting that o-(z) > 0 and r ( z ) >  0, that a sufficient condition for w 2 to be 
positive, and thus a sufficient condition for stability, is 

q ( z ) > 0  for all z, - d < - z  <-0. 

Thus, under such boundary conditions, a sufficient condition for stability is 

2 r 2 

2 , \ n  2, + + N~ (28) 
e T CIZ ZS 0 CO~ g r 

throughout  - d < - z  <-0. 
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It is of interest to examine the sufficiency condition (28), under the assumption that 
the interior of the flux tube is cooler than its surroundings, and 3' constant. In terms of 
the function r(z), introduced in Equation (8), (28) may be written in the form 

cg(z)) x 

2 > -A 'o(Z)-  (29) x 

to be satisfied throughout - d  -< z -< 0. 
In terms of the parameter  0, introduced in (9), the sufficient condition for stability, 

inequality (29), becomes 

\--T-7--~ , 0 > - A 'o(Z ) -  (30) 
(2/3")(cg/v2)+ ( 1 -  0) Co 'I-./)A/ 

to be satisfied throughout the atmosphere. 
There are two special cases of (30) of immediate interest. In the extreme 

circumstances where thermal conduction is so efficient as to remove the temperature 
difference, so that r = 0 = 0, (30) reduces to 

Thus, a sufficient condition for stability in a slender tube, which is in temperature 
balance with its surroundings (i.e. A0 = Ae), is that 

N ~ ( z ) > 0  throughout -d<-z<-O. (31) 

This is the usual condition for convective stability in the absence of a magnetic field 
(Schwarzschild, 1906). 

In the special case for which 0 = 1, and r ( z ) =  Bg(z)/21~pe(Z), it follows from 
Equation (10) that B'o(z)~O and 00=pe. Thus, the case 0 = 1 corresponds to a 
uniform (vertical) column of magnetic field; in this case, a sufficient condition for 
stability to convection in a uniform slender flux tube is 

BZllz 
> - A ~ ) - ( ~  -~)  throughout -d<-z<-O 

Bg/  + 3"po(z) 

This is in fact the sufficient condition for stability in the presence of a uniform, 
laterally unbounded, magnetic field, originally derived by Gough and Tayler (1966) 
using the energy principle of Bernstein et al. (1958). Our analysis shows that the 
above condition also holds in a slender flux tube, provided the magnetic field is 
uniform. 

Returning to the general sufficiency condition (30), we sketch in Figure 2 the 
2 2 t condition (30), plott ing Co/VA against Ao for various values of 0 in the range 

0 -- 0 -< 1, and for 3" = 1.2. It is clear from the figure that the cooler the interior of the 
tube (i.e., the larger the value of 0), the more likely that the sufficient condition for 
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Fig. 2. Sufficient condition (Equation (30)) for stability in a flux tube with a cool interior. Stability is to 
the left of the curves. The larger the value of the parameter 0, the cooler the interior of the tube. 

s tabi l i ty  is sat isf ied,  for a fixed magne t i c  field. It may  be  no ted  (see E q u a t i o n  (13)) 
2 2 

that  Co/VA increases  with dep th  for  0 > 0  (cool  in ter ior) ,  and  so for  0 = 1 the  

sufficient cond i t ion  is s imply  

2 2 > - A o  - , 
Co(-d)+VA(-d)  

where  d is the  d e p t h  of the  layer .  

F inal ly ,  r e tu rn ing  to (29), we m a y  no te  that  for  the  special  case r ( z ) =  r0, a 

cons tan t ,  cons ide red  in P a r k e r  (1976) and  R o b e r t s  (1976b),  the  sufficient cond i t ion  

for  s tabi l i ty  reduces  to 

2 

c~ +v 2 r o > - A ' o -  

to  be sat isf ied t h r o u g h o u t  the  a t m o s p h e r e .  

The  sufficiency cond i t ions  de r i ved  above  p rov ide  useful  i n fo rma t ion  as to the  

p r even t i on  of ins tabi l i ty  in the  tube .  H o w e v e r ,  the  cr i te r ia  a re  c lear ly  of s o m e w h a t  

l imi ted  value ,  s imply  by be ing  only  sufficient condi t ions :  the  cond i t ions  m a y  be  

v io la ted  at some  d e p t h  or  i ndeed  for  all dep ths ,  and  yet  the  tube  be s table .  Thus,  in 

o r d e r  to ob ta in  a m o r e  prec i se  cond i t ion  for  s tabi l i ty ,  we shall  cons ider ,  in Sec t ion  6, 

the  specia l  case of a linear t e m p e r a t u r e  prof i le  inside the  flux tube .  W e  shall  fu r ther  

assume,  for  the  sake  of s implic i ty ,  that  t e m p e r a t u r e s  inside and ou t s ide  the  tube  are  
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equal, so that r = 0. If the temperatures  are different, then the tube is likely (as we 

have seen f rom the above sufficiency conditions) to be even more stable that the 
analysis in Section 6 reveals. 

5. The Local Approximation 

Before discussing, in the next section, an exact solution to the velocity equation 
(23)', ~ we shall consider the so-called 'local '  approximation.  This serves to illustrate 
many of the features of the more general analysis without the at tendant complexity. 

We suppose that the coefficients of the velocity and its derivatives in Equation (23)' 
do not vary greatly with depth and, by way of illustration, we look for solutions 
satisfying the simple boundary conditions: 

and 

o r  

z3=O at z = O ;  (32) 

~3=0 at z = - d ,  (33a) 

t~-+O as z - + - o o .  (33b) 

Of course, such a t reatment  is not directly applicable to the Sun. But the results are 
indicative of the more general case, and so serve to give a qualitative guide to the 
expected behaviour in the solar convection zone. 

We may write Equation (23)' in the form 

where 

e , , _ l  e ,+ l (o ,2_a2 )e  = 0 
2Ao CT 

(34) 

a2(z)=u C iZ+c   
co\2 v~J (35) 

Note that /22 has the same sign as N~, and so may be positive or negative. 

Assuming a locally constant atmosphere,  the general solution of (34), satisfying 
the boundary condition (32), is 

t3 = A l ( e  x lz  - eX2Z), (36) 

where hi,  A2 are the roots of the quadratic 

1 w 2 /22` 

and A1 is an arbitrary constant. To discuss (36) further, it is convenient to consider 
the cases of finite and infinite depth separately. 
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Consider first the case of f in i te  depth,  for which the solution 13 of (36) satisfies the 
lower boundary condition (33a). This condition implies that 

(3.2 -A  1)d = 2nTri,  (38) 

for integer n. 
Now, since (36) may be rewritten in the form 

= A 1  e~(Al+x2)Z{e '~(xl-x2)z - e-~(al-~2)~}, 

and from (37) we have 

1 
A x + A 2 - 2 A  ~ , 

the solution for the velocity is 

�9 [ n ~ ' z \  = A e z/nA~ sm ~---~] , 

where A is an arbitrary constant. 
Now, solving (37) gives 

1 (09 - 02) /  
( a l - - a 2 )  2 4 

/ 1 ~ o  ~ 7 ~  , '  

which, when combined with (38), determines the eigenvalues to2: 

�9 2 2 ] , 
2 .-,~2+[ n ~" + X 2 (39) 

w ~ d 16A0} " 

Note that if 

2 

16Ao ' 

i.e. if 

y /16  > _ A ~  _ ( Z _ ~ )  
(r/2)+(c~/v~) 

then all modes are stable,  and we have an inf ini te  sequence of positive eigen- 
values to 2. 

2 2 2 However,  if - 0  < c ~-/16A o, then uns tab le  modes are permissible; but as d--> 0 
Equation (39) implies that 

2 2 2 
2 n ~ C T  

09 ~ - - 2  
a 

and so there exists a critical value d* of the depth d, below which the basic-state is 
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always stable. From (39), this critical depth d* is given by 

2 2 
- n  7r (40) 

d .2 = ( .02/c2)+ (1/16A2) " 

Thus, if d < d*, there are no unstable modes. Note that the depth d* is a function 
of n, the minimum value of which occurs for n = 1. Then d* = d* -= d*, say, where- 

2 
d ,  2 = --rr 

(.02/c~r)+(1/16A2o). (41) 

Finally, we should note that there are no modes for which 

2 
2 C T  

tO < . 0 2 _ }  
16A  

For then Ai and A2 are real, and so cannot satisfy condition (38), i.e. t~ is non-zero 
everywhere,  except at z = 0. 

Consider now the case of infinite depth, for which the solutions of the velocity 
Equation (34) are subject to the boundary conditions (32) and (33b). The solution 
(36) may now be written in the form 

( 1 ..[.02-(.02"~1/2 "] 
e = A e  z/4A~ ~ c~- } z j ,  

satisfying the condition ~ = 0 at z = 0. 
If (c~/16A~)+`02-w2<O, then condition (33b) is satisfied for all to 2, i.e. for 

2 w > . 0 2 +  (c~/16A~) the spectrum of eigenvalues w 2 is continuous (i.e. no discrete 

eigenvalues exist). 
For (c~/16AZ)+.02-w2>O, ~ 0  as z ~ - ~  provided w2>.02.  Therefore,  if 

w2>.02,  we again have a continuous spectrum; while if w2<  .02, then there is no 

solution satisfying the boundary conditions. 
The above illustration shows that for a finite depth, there is an infinite number  of 

positive eigenvalues. There  may exist a finite number  of unstable modes provided `02 

is sufficiently negative; however,  if the depth d is sufficiently small, no unstable 

modes exist. Qualitatively, these results agree with those to be presented in the 
following sections. However ,  we should note that differences do arise for the case of a 
flux tube of infinite depth, in that, in the 'local '  approximation,  we find a continuous 
spectrum for oJ2>.02; whereas for the case to be presented in the next section, we 

find a continuous spectrum for o~ 2 > 0 and an infinite number,of discrete eigenvalues 
for oJ2< 0. 

6. The Linear Temperature Profile 

Here  we shall consider the special case of the linear profile 

Ao(z ) = a0(0) + zA 'o (0), (42) 
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for which A6 is a constant. In order that the tempera ture  and density increase 
monotonically with depth (see Equation (24)) it is necessary that the scale-height 

gradient, A 6, satisfy 

r <  - l < A 0  0 .  

Further,  we shall suppose, for simplicity, that z ( z ) = - 0 ( i . e ,  the temperatures  inside 

and outside the tube are equal) and that y is a constant. (Note that for z = 0 the ratio 
c 2 ( z ) / v  2 ( z )  is a constant.) Thus, as we have seen in Section 3, a sufficient condition 

for stability to convective motions is Ng > 0. In particular, the isothermal atmos- 
phere  (A ~ ~ 0) is always stable. 

Under  these assumptions, the governing equation for the velocity perturbat ion 
is Equat ion (23)', for which an exact solution is known (Equation (45) of Paper  I). 

We use this solution here in order to investigate in detail the nature of motions in a 
linear tempera ture  profile. To find the eigenvalues co 2 using this solution we must, of 

course, specify appropriate  boundary conditions on the velocity. 

6.1. B O U N D A R Y  CONDITIONS 

We have considered two alternative forms of the lower boundary condition, namely 

~ 0  as z ~ - ~ ;  (43a) 

9 = 0  at z = - d .  (43b) 

Thus, we are requiring that the velocity ~3 tend to zero at a depth d, which may be 
infinite. It is necessary to consider the two cases separately, as the discussion in 
Section 5 indicates. We shall concentrate on the former  condition, leaving the 

discussion of the case of finite depth to the end of this section. 

In addition to the lower boundary condition (43a), we must specify the flow at (say) 
z = 0. We shall write this boundary condition in the general form 

ax~(0) + a2tY(0)= 0 ,  (44) 

where a i ~ 0 and a2 -> 0. Thus, with a 1 = 0 and a2 = 1, we allow for the possibility that 
the vertical velocity is a maximum (or minimum) at the observed level z -- 0; with 
a l  - ~  1 and a2 = 0, condition (44) imposes a top on the flux tube at z = 0, beyond 
which no flow penetrates.  In fact, our results are not sensitive to the precise form of 
the constants a l  and a2. However ,  it should be noted that our results are sensitive to 
the alternative cases of the tube 's  depth being finite or infinite. 

6.2. T H E  E X A C T  S O L U T I O N  O F  T H E  V E L O C I T Y  E Q U A T I O N  

Consider the case of equal temperatures  (To = Te), for which Equation (23)' is 
applicable. We shall employ the boundary conditions (43a) and (44). 
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To find the solutions of (23)' it is convenient to introduce in place of z the new 

independent variable x, where 

2A1/2(0) 
~'o Al l2(z) '  x > 0  (45) 

x cr(0) 

Then (23)' becomes 

d2t3 ( ~ _ )  1 d r + (  [S2 - - ( l+  1/2A~)2]) 
d x  2 1 + -x dx • 1 x g ,3 = 0 , (46) 

where the + sign applies to stable solutions (o)2>0), and the - sign to unstable 
solutions (o)2< 0). The constant s 2 is defined by 

2 1 )2 4 , " 

(47) 
3"(A ; )  2 3' J , z  VA/ 

Note that s 2 may be positive or negative, but is positive if N g > 0. 
In terms of the x variable, the boundary condition (43a) becomes 

~3-+0 as x - + m ;  (43a)' 

whilst condition (44) becomes 

alE3 1 , dr3 +~Aoa2xd---~=O at X=Xo, (44)' 

where 

2A0(0) k 
x0(o))- cr(0) 

It is convenient to discuss the stable and unstable cases of (46) separately. 

6.2.1. Stable Solutions 

Consider the velocity equation (46) under the assumption that o) 2 is positive (so that 
the plus sign applies). The solutions of (46) are (see Section 5.4 of Paper I) 

~XI+I/2AaJs(X ) and xl+l/2A~ (48) 

where Js and Ys are Bessel functions of the first and second kind (Abramowitz and 
Stegun, 1967). Note that s may be real or imaginary. 

Now both of these solutions tend to zero as x -+ oo, provided - 1  < A ~) < 0. Thus, 
since this condition on A;  is satisfied, both solutions (48) satisfy the lower boundary 
condition (43a)'. Furthermore,  the upper boundary condition (44)' can be satisfied 
for any value of x0 simply by choosing a suitable linear combination of the two 
independent solutions (48). Thus, the boundary conditions no longer determine 
a discrete set of eigenvalues o)2> 0 (in contrast to the results found in Section 5 for 
a finite domain, - d  --- z --- 0). Hence, for the infinite domain z --- 0, there exists a 
continuous spectrum of eigenvalues o)2> 0, whether s 2 is positive or negative. 
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6.2.2. Unstable Solutions 

Suppose, now, that to 2 is negative, so that the minus sign applies in the velocity 
Equation (46). The solutions of (46) are now 

~xI+X/2A; I s (x )  and xl+l/2a;Ks(x), (49) 

where Is(x) and Ks(x) are modified Bessel functions (of the first and second kind) of 
order s (which may be real or imaginary). 

In order to satisfy the lower boundary condition (43a) we must reject the solution 
involving the modified Bessel function of the first kind, since it is unbounded as 
x ~ co. So consider the second solution XI+I/2A~Ks(X). It is convenient to discuss the 
two cases s 2 -> 0 and s 2 < 0 separately. 

(a) s2->0. 

For this case Ks(x) is a real positive, monotonically decreasing function of x. Also, 
we may show from (47) that (for s 2-> 0) we have 

o >  a ' o > - 3  + ( Z / v )  1/2 . 

l + l / 2 A ' o r 7  / \ Therefore,  for 3' in the range 1 < 7 - < 5 / 3 ,  1 + 1 / 2 A ~ < 0  and x ~s tx )  is 

monotonically decreasing; so the boundary condition (44)' is not satisfied for any 
value of (o2<0,  i.e. no unstable solutions exist for s2->0. Hence,  subject to the 

boundary conditions (43a)' and (44)', the fluid is stable if s2->0. Note  that this is 

consistent with the sufficiency condition for stability obtained in Section 4. 

(b) sZ <O. 
Writing s 2 = - u  z, where v is real and positive, the solution for the velocity is 

~ x l+l/2a;K,~(x). (50) 

The velocity 13 as a function of x is sketched for various A ~ in Figure 3. For purposes 

of illustration, we have taken Co = VA and 3' = 1.2. 

-004- I-0B 
I 

0.02 

0 

- 002] 

- DOZ. 1 

xa+~:l Ki,(x) 

/ / / "  1.0 1.5 21 x 

-025 

Fig. 3. The function xl+X/2a6Ki~(x) for 3,=I.2, Co=VA and two values of A~. For 0>A~>  
> "�89 (A~ < -�89 the function oscillates infinitely with increasing (decreasing) amplitude as x + 0. 
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It may be noted that ~3 may be expressed in terms of the Whittaker function W0,i~ 

by observing that 

1/2 

(Gradshteyn and Ryzhik, 1965, p. 1063). 
Now the zeros of the Whittaker function I, Vt,,, (x) have been investigated by Dyson 

(1960), in relation to the stability of an idealized atmosphere with constant shear flow 
and exponentially decreasing density (see also Case, 1960). Dyson found that for l 
real and m purely imaginary there are no complex zeros, and that there are an infinite 
number of simple zeros, on the positive real axis, which are bounded and have a point 
of accumulation at x = 0. In our problem, l-= 0, and m = iv is purely imaginary. 

Therefore,  with boundary conditions (43a) and (44), there are an infinite number 
2 �9 of (negative) eigenvalues oJ n, with the property that 

w2 <oJ~ < ' '  " < o ) 2 <  ' '  - < 0 ;  (52) 

furthermore, 

2 
C-On -+ 0 a s  n ~ o O ,  

and w 2 is finite. 
Thus there are unstable (o)2<0) solutions, satisfying the boundary conditions 

(43a)' and (44)', if and only if s2<0 ,  i.e. if and only if 

, T Co 4 Y-l+Aol(-g+c-~-~ 1+ 
y(A~))2 < 0 .  ~1 / \ L  13A/ 

Hence, a necessary and sufficient condition for the tube to be (convectively) stable is 

4 1+ 
( 3 ' - A ~ )  �89 + ( 1 +  > 0 .  (53) 

~ , ( a ; )  2 ~, VAJ 

2 2 The line s 2 = 0 is sketched in Figure 4 as a function of the parameters Co/VA and 
A~. From (53) we see that a sufficient condition for s2 >0 ,  and hence a sufficient 
condition for stability, is N 2 > 0 ,  in agreement with the results obtained earlier 
(Equation (31)). 

F o r - ~ +  (2/y)a/2> A~ > - 1 ,  unstable solutions exist for all values ofc~/V2A. Note 

that c 2o/V ~ -+ 0 does not imply Bo ~ co, if Pe (Z) is fixed, because the magnetic pressure 

C 0 / V A  "-> 0 in the tube cannot exceed the confining external pressure. Thus, the limit 2 2 
is achieved by allowing (see (3)) Bo(z)--> (2/xpe (z))1/2, for which po(z) and po(z) both 
tend to zero (and thus the tube is evacuated by the magnetic field). 

For 

_ ( Y @ )  , 3 / 2 \  1'2 
> A o > - ~ + ~ )  , 
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d 

Sz<O 

no S2~utions~ solutions 

for i~<o ~ 

-FF) 3+,2  
-~  t r )  

for ua~< 0 

& - 1:o 

2 2 t Fig. 4. The line s 2 = 0 (see Equation (47)), shown schematically in the (Co/VA)--Ao plane, dividing the 
region with unstable modes (s 2 < 0) from that with only stable modes (s 2 > 0). The dashed line, No 2 = 0, is 

2 2 the asymptote for s 2= 0 as CO/VA ~o0. 

2 2 there  is a critical value of Co/VA, given by 

~ A  ,] crit 4(a~  + ( y -  1 ) / y )  ,3 , /  , (54) 

below which the solution is stable. So, provided  the field is sufficiently strong, the gas 
in the flux tube is stable to convect ion.  

Also,  it may  be noted  f rom Figure 4, that  the effect of increasing the ratio of 

specific heats,  y, is that  the line s 2 = 0 is moved  to the right, giving a greater  region for 
2 2 stability. Thus,  for certain values of CO/VA and A0, increasing 3' may  stabilise the 

per turbat ion.  

Consider  now the fastest growing eigenvalue w 2, the existence of which for s 2 < 0 is 

guaran teed  by (52). The  values of  oJ 2 have been de te rmined  numerical ly for a range 
of values of the parameters  C2/V2A and A~.  For  convenience,  it was found  simpler to 

use the form (50) for the velocity, and to solve numeri'cally Bessel 's  equat ion for 

Ki~(x), matching the numerical  solution to the known asymptot ic  forms as x --> 0 and 
X ---~ O0. 

2 2 Figure 5 shows a plot of w~ (suitably non-dimensional ised)  against CO/VA for 
various A ~. For  the sake of illustration, we have taken the upper  bounda ry  condit ion 
as t~' = 0 at z = 0. (The results are similar for the general  boundary  condit ion (44).) 
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o 3 t -O4 

015 

0,1 

0-05 

0-5 1.0/9,2 1.5 2'0 
,vA) 

Fig. 5. T h e  n o n - d i m e n s i o n a l  g r o w t h r a t e ,  (-o~2Ao(O)/g) 1/2, of the  fas tes t  g r o w i n g  m o d e  as a func t ion  of  
2 2 CO/VA for  s eve ra l  va lues  of  A~. W e  h a v e  t aken  3' = 1.2 and  the  u p p e r  b o u n d a r y  cond i t ion  as l)' = 0 at z = 0. 

2 �84 2 Now, a s  C0/1) A --) O0, /.' ----> (3(3 ; and we may show (by considering the asymptotic form 
of K.,(x) as v--> oo) that 

2 
CO w~~N~(O) as --~--~oo. 

/3A 

2 2 Thus the behaviour of w~ at large CO/VA indicated in Figure 5. 
2 2 For A;  < - 3 +  (2/y)  1/2, the mode is unstable for all values of CO/VA, and 

p2 2 
oa2 ygAo ~2 Co 

---->4ao(O).~max as --~-~O,vA 

where Xmax is the largest value of x, for which the boundary condition (44)' is 
satisfied, with 

1 , (A~ + 3 + ( 2 )  1/2) 

For 

2 2 2 2 2 2 there is no unstable solution for (Co/VA)< given by ( C o / D A ) c r i t  , where (colVA)crit is 
(54). Figure 5 also shows that w~ is a monotonically increasing function of Co/VA2 2 ," 
thus, the weaker the magnetic field, the faster the growthrate of the instability. 
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t �9 2 2 In Figure 6 we have plotted w~ against A 0 for various values of Co/VA. We see that 
2 2 there is no solution for any value of CO/VA if 

i.e. if No2> 0; and that (for a given c2o/v~) there is a minimum value of A ; ,  given by 

2 2 A' 3 2 ~ + _ [ ( l + ~ ' ~ ( _ + c g ' ~  1/2 

for which the solution is stable if 0 > A, > ~ ,  I 1 0  J l  0 c r i  t �9 
2 2 t We also find that, for given Co/VA and Ao, the growth-rate of the fastest-growing 

mode is a decreasing function of y. 

O-L 

0 3  

0 2  

0.1 

o o  

2 5  

o61 
g Jl 

0 - 0.2 - 0 L - 0.6 - 0-8 -1-0 

Fig. 6. The non-dimensional growthrate, (-og~Ao(O)/g) 1/2, of the fastest-growing mode as a function of 
A~ for various c2o/v 2. Again, for purposes of illustration, we have taken 3' = 1.2 and the upper boundary 

condition as ~' = 0 at z = 0. 

6.3. FINITE DEPTH 

Finally, in this subsection, we consider the effect of applying the lower boundary 

condition (43b), so that the tube has a finite depth d. 
The first important (though perhaps not suprising) point to emerge is that there no 

longer exists a continuous spectrum for w2>  0. This is because the velocity Equation 
(23)', together with the boundary conditions (43b) and (44), form a regular (Ince, 

1944, Chapter X) Sturm-Liouville system (see also Section 4), which, from the 
general theory, has discrete eigenvalues only. 
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Again, for a given depth, we have a necessary and sufficient condition for the 
existence of unstable solutions. We find unstable solutions exist if and only if 

e2e~/, < Ao(-d)  (56) 
Ao(0 )  ' 

where u = , / ( - s2 ) ,  and ~b depends on the coefficients a x  and a2 occurring in the 
boundary conditions (44). In general q5 satisfies 

rr->4~->tan-1 l + l ~ 2 A ;  " 

For the special case al  = 0 (for which the upper boundary condition is t~'(0) = 0), we 

find that 

b' 

4~ = tan-1 (1 + 172A~) ; 

whilst for a 2  ---- 0 (for which 9(0) = 0), d~ = rr. 
The condition (56) is sketched for various d/Ao(O) in Figure 7. In the region to the 

left of each curve, all the eigenvalues are positive; in the region to the right, there is at 
2 2 t least one negative eigenvalue. Thus, for values of Co/VA and A 0 lying to the right of 

the curve, there is an unstable mode of maximum growthrate. 
2 2 t Alternatively, from Figure 7, we see that for given Co/VA and A0 there exists a 

minimum depth d*, such that for d < d*, the perturbation is always stable. The 

10- 

8 

(~rll 
6 I/ 

-0.2 -0.4 -06 /~ -0.8 -1.0 

Fig. 7. Necessa ry  and  sufficient condi t ion  for ins tabi l i ty  in a tube  of finite depth ,  d, ske t ched  for var ious  

va lues  of d/Ao(O). For  a g iven  depth ,  to the left  of the curve  on ly  s tab le  m o d e s  exis t  and  to the r ight  the re  is 
at  leas t  one  uns tab le  mode .  The  u p p e r  b o u n d a r y  cond i t ion  has  been  t a k e n  as ~Y = 0 at  z = 0, and  3' = 1.2. 
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critical value d* is determined (from (56)) by 

ao ( - d* )  = a0(0) e 2'~/v. (57) 

The dependence of d* on A~ is sketched in Figure 8 for various values of the 
2 2 parameter  CO/V.A. 

The application of these results to th'e solar a tmosphere  is considered in the 
following section. 

15 

10 Co l K)=0 

25 
d~ 

2O 

9 -0.2 -O.& -0.6 A~ -0.8 -1.0 

2 2 Fig. 8. The critical depth for stability as a function of A~ for various CO/VA. 

7. Intense Flux Tubes in the Sun 

Before considering the application of the above analysis to the Sun, it is perhaps 

convenient to summarise the main results we have so far obtained. The discussion 
falls into two parts: (a) conditions for stability in an arbitrary tempera ture  gradient; 
and (b) instability in a uniform tempera ture  gradient. 

For an arbitrary t empera ture  profile (case (a)), we have shown that a sufficient 
condition for stability to convection is 

2 -  ' V2A (Z ) 

• (I_~.(Z)(C2o(Z)+V2A(Z)) 

to be satisfied throughout  the depth of the tube (see Equation (29)). If the internal 
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and external temperatures  are equal, so that ~-=0, then the above sufficiency 

condition is simply 

N Z ( z ) > 0 ,  (31) 

to be satisfied throughout  the depth of the tube. 
For a linear tempera ture  profile (case (b)), with internal and external temperatures  

equal, condition (31), of course, guarantees stability to convection. 
In a tube of infinite depth, with a linear temperature  profile, a necessary and 

sufficient condition for convective stability is that s 2 >  0, i.e. 

( 4 y - l + A  D + ~ / +  1+ > 0 .  
~'A; 2 y / z VAJ 

(See (53).) The stable (w 2 > 0) modes in a tube of infinite depth form a continuous 
spectrum; the unstable (w 2 < 0) modes, which occur if s 2 < 0, are discrete and infinite 
in number  (with a point of accumulation at w 2 = 0). 

In a tube of finite depth d, with a linear temperature  profile, a necessary and 
sufficient condition for stability to convection is 

e 2~/~ > ao(-d)/aa(o). 

(See inequality (56).) Thus, there exists a minimum depth d* below which (i.e. for a 

tube of depth d less than d*) only stable modes exist. The critical depth d* is given by 
Equation (57), and is sketched in Figure 8. The stable (o92> 0) modes, in a tube of 

finite depth, are discrete and infinite in number;  there is no continuous spectrum. If 
d>d*, then there exists at least one unstable (o92<0) mode; again, there is no 

continuous spectrum of eigenvalues. 
Consider now the application of these results to the solar atmosphere.  In applying 

our analysis to the Sun, we are, of course, supposing that the basic (static) state of a 
flux tube is as that described in Section 2, and that any motions in the tube are 

adequately described by the linear analysis of Section 3. We shall also assume that 
the flux tube is in temperature  balance with its surroundings. Further, we shall 
approximate  the convection zone by a linear temperature  profile (or, more precisely, 

a linear profile for the scale height Ae(z)), and take a mean value of the ratio of 

specific heats, 3'. We use Spruit 's model of the solar convection zone (Spruit, 1974), 
and take z = 0 to correspond to optical depth ~'5ooo = 1 (in the surrounding pho- 
tosphere). In fact, Spruit 's model gives -A~) sharply peaked at about 40 km below 

~'50o0 = 1. Also 3' varies rapidly over the first 100 km or so below rs0o0 = 1, (Spruit, 
1977). However ,  below a depth of about 100 km, and down to about 4000 km A ;  
and 3' are effectively constant. Thus, our assumption of a linear temperature  profile is 
a reasonable one over this range. 

The precise choice of values for A ;  and 7 in our model is uncertain. However ,  if we 
take y = 1 . 1 5  and A;  in the range - 0 . 2 - - > A ; - > - 0 . 3 ,  then the perturbation is 

2 2 unstable in a medium of infinite depth, for all values of Co/VA. Now the ratio of the 
sound speed to the Alfv4n speed is determined by its value at z = 0 (i.e. at observed 
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levels), where  it is roughly  unity.  Thus,  " 2 2 t a k i n g  Co~l) A ~- 1, and  the above values of A0 

and  % we find that  a tube  of infinite depth is unstable .  However ,  a tube  of finite depth 

is stable provided its depth  does not  exceed abou t  1-2  x 1 0  3 km. 

If, on the o ther  hand,  we choose to apply our  b o u n d a r y  condi t ion  at a prescribed 
depth,  say z = - 2 0 0 0  km (Roberts ,  1976b),  and take m e a n  values of - 0 . 2 5  for the 

scale-height  gradient  and 1.2 for the ratio of specific heats, over  the range z = 0 to 

z = - 2 0 0 0  km, we find (using the upper  b o u n d a r y  condi t ion  t~' = 0 at z = 0) that  the 
2 2 

pe r tu rba t ion  is stable for Co/VA < 1.2, i.e. the pe r tu rba t ion  is stable for B0(0 )>  

> 1040 G. Apply ing  the lower b o u n d a r y  condi t ion  at a shallower depth would give a 
2 2 

greater  value of Co/VA ; that  is, a lower value of the field s t rength would be required  

for stability to convect ion.  
2 2 

In Table  I we give the critical value of Co/VA, where it exists, and  the cor responding  

value of the field at z = 0, for various t u b e  depths. The  depths  chosen cor respond  to 

the granular  s c a l e  ( 1 0  3 km), the overs table  cooling depth (2 x 1 0  3 km; Roberts ,  

1976a), the superad iaba t ic  depth (3 x 1 0  3 km; Parker ,  1978), the supergranu la r  scale 

(1.5 x 104 km), and  finally the depth scale of the convect ion  zone ( - 1 0 5  km). 

Table  II gives the growth-ra te  of the instabil i ty,  when  present ,  for the above depths  
and  2 2 Co/VA = 1. For  example,  with A0 = - 0 . 3 ,  a tube  of depth  2000 km has a 

growth-ra te  of 5.3 x 1 0  . 3  s - 1  (that is, the instabil i ty grows on an e-folding t ime of 

TABLE I 

The critical field strength (in gauss) at z = 0 necessary for convective stability in a 
flux tube of given depth d and scale-height gradient A~, for y=  1.2 and 

pc(0) = 1.3 x 10 5 dynes cm -2 

Depth d(km) 

A~ 103 2x103 3x103 1.5x104 10 s 

- 0 . 1 5  stable stable stable stable stable 
-0.2 490 670 770 1080 1280 
-0.25 760 1040 1200 1750 unstable 
-0.3 940 1290 1500 unstable unstable 

TABLE II 

The growth-rate (in s--l) ,  -itol, of the most unstable mode for various depths d and 
scale-height gradients A~), for Co = VA, Y = 1.2 and Ao(0) = 152 km 

Depth d(km) 

A~ 103 2 x 103 3 X 10 3 1.5 X 10 4 105 

-0.15 stable stable stable stable stable 
-0.2 stable stable stable stable 1.2 x 10 -3 
-0.25 stable stable 3.2 x 10 -3 4.8 x 10 -3 4.8 x 10 -3 
-0.3 stable 5.3x 10 -3 6.7x 10 -3 7.2x 10 3 7.2 x 10-3 
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190 s); whereas, for a depth 1.5 x 104 kin, the growth-rate is 7.2 x 10 -3 s -1 (with an 

e-folding time of 140 s). Taking a smaller value of y, for example y = 1.1, the 
growth-rate increases to 9.7 x 10 -3 s -1 for a depth of 2000 kin. 

Given that convective instability occurs in the tube, what are its consequences.'? 
The instability may result in either a downflow or an upflow, which, unfortunately, 

linear analysis cannot discriminate between. Parker (1978) has shown that a steady 
downdraft  (in the basic-state of a flux tube) leads to a tempera ture  difference 
between the interior of the tube and the surrounding photosphere,  and subsequently 
to field intensification. 

In a flux tube that is in unstable equilibrium, either because its field strength is low 
or because it is deeply rooted, instability (as we have seen in this paper)  may manifest 
itself as a downflow, the consequence of which is to lead to an increase in field 
strength* and thus eventually to a possibly stable equilibrium. An upflow w o u l d  
presumably result in the magnetic field being dispersed* at the surface by the 

diverging flow and enhanced temperature  of the rising gas (Parker, 1978; Spruit, 
1978). 

Thus we suggest that the downdraft  observed in intense flux tubes (Stenfio,.1976; 
Harvey,  1977) cannot be due to convective instability if the tubes are shallow. If the 
depths of the flux tubes are greater than about 2000 km, then the downflow, if 
resulting from convective instability, is likely to be a transient phenomenon,  taking 
place as the field strength intensifies and the flux tube moves to a state of hydrostatic 

equilibrium with an increased field strength. Of course, this does not exclude the 
possibility of other mechanisms giving rise to a downdraft  in the tube. 

Consider, then, in summary,  a possible scenario for the life of an intense flux tube. 
If the flux tube is a shallow phenomenon,  then motions driven by convective forces 
are unlikely, and an equilibrium state presumably rules. If, however, the flux tube 

extends somewhat  deeper  (several thousand kilometers, say) into the Sun, then aflux 
tube of moderate field strength (of several hundred gauss, say) is convectively 
unstable. The result of this instability is to lead either to the dissolution of the tube, 
with the field being dispersed; or to an increase in field strength, driven by a 
downdraft in the tube, until an equilibrium, with kilogauss field strengths, is once 

more possible. Independently,  overstable Alfv6n waves will tend to cool the interior 
of the tube, and thus further intensify the field (Parker, 1976; Roberts,  1976a). There  
are, of course, uncertainties in this global description of field intensification: only a 

more detailed, presumably non-linear, analysis can further clarify such points. 
It should be noted that both Spruit (1978) and Unno and Ando (1978) have also, 

and independently,  made similar suggestions to the above, whilst Parker  (1978) has 

described the effect o f  a steady downdraft  on achieving field intensification. The 
convective instability we have investigated generates such a downdraft  (though 'not 
necessarily a steady one). 

* A downflow brings (to a location z )  lighter and cooler fluid and so leads to a decrease in gas pressure, and 
consequently to an increase in field strength (as the field collapses inward under the exterior pressure). An 
upflow brings heavier and warmer  fluid to the location z, and so weakens the magnetic field. 
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Finally, we note that we have neglected the effect of dissipation in our analysis. 
When dissipation is taken into account, overstability may arise, even when our 
conditions for stability are satisfied (Cowling, 1976). Dissipative processes may also 
relate to the possibility of cooling and field intensification (Parker, 1976; Roberts, 
1976a). The effect of dissipation is clearly complicated and will in fact be the subject 
of a further paper in this series (Webb and Roberts, 1978). 
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