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1. Introduction 

The construction of a vector field from its gradient poses a problem if only some 
"part"  of the gradient is known. 

Let y be a vector field and let the tensor 

K = y |  (1.1) 

be its gradient. Very often, the known "part"  of the gradient is a symmetric tensor A 
that is a combination of K. Two important examples are: the linear combination, 

1 
AL = ~ (K + K r) (1.2) 

and the nonlinear combination, 

AN = (KTK)'/2. (1.3) 

We treat here the construction of y using the nonlinear tensor (1.3). 
Consider the kinematics of a deformed body, where y is the position vector of a 

body point which we can treat in terms of either a Lagrangian or Eulerian description. 
Here we let AL and A N be symmetric strain tensors either for small, linear relation (1.2), 
or for finite, nonlinear relation (1.3), deformation (see Truesdell [1]). The problem can 
then be formulated in mechanical terms: first, how can the displacement field y be 
calculated from the strain tensor A and, secondly, what are the necessary restrictions on 
the tensor field A - - t h e  so-called "compatibility equat ion"-- for  this calculation to yield 
a unique vector field. 

The problem with a linear tensor defined by A L by (1.2) was solved by Cesfiro [2] 
(see also Sokolnikoff [3]). Cesfiro represented the displacement field by quadrature in 
terms of the strain tensor for the three-dimensional case. He also obtained the previously 
known compatibility conditions. 

In nonlinear mechanics the compatibility conditions have been written in different 
forms by many authors (see, for example, the review in Truesdell and Toupin [4]). The 
reconstruction of the displacement field via (nonlinear) quadrature of the strain tensor 
for finite deformation is discussed by Shield [5], where two approaches using AN as 
well as A ~v are discussed. It was shown that in the two-dimensional case the quadrature 
can be written explicitly using the tensor A ~v and two angles of rotation of two initially 
orthogonal material elements. The approach of using angles of the material elements to 
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the axes of the coordinate system is discussed also by Slepyan [6]. Slepyan uses a tensor 
AN and introduces 18 angles to treat the three-dimensional case. Using the resulting 
relations, after very complex calculations the quadrature for the two-dimensional case 
was constructed. However the compatibility equation was not presented. 

The reconstruction of the displacement field using polar decomposition of the 
gradient K by the rotation tensor and by the symmetrical stretch tensor AN is discussed 
by Shield [5], starting from the three-dimensional case. It was shown that in the 
two-dimensional case the quadrature can be written. The results were presented in a very 
complicated form and no simplification was performed for this case. Thus the very 
simple relation between the rotation angle gradient and the tensor AN as well as the very 
simple form of the compatibility equation remained obscured. 

Reconstruction of a displacement field in the three-dimensional case was discussed, 
among others, by Shamina [7]* and Lurie [8]. In Shamina's article the rotation vector is 
used while Lurie's [8] approach is very similar to one of differential geometry: using a 
representation of Christoffel symbols via A ~z, Lurie reduces the problem to solving an 
auxiliary linear partial derivative tensor equation with variable space coefficients. A 
discussion connected to the existence of a global solution (and additional references) is 
given in Ciarlet [9]. 

In this article we discuss only the plane problem and construct a quadrature for the 
displacement field. This quadrature is different from that of Shield [5] and Slepyan [6] 
where the tensor AN is used and it is significantly simpler than Shield's representation 
using the tensor AN. We use the polar decomposition of the gradient K; i.e. K is 
represented in the well-known form of multiplication of a rotation tensor by a symmet- 
rical stretch tensor AN. Only one angle of rotation is necessary to describe the rotation 
tensor in the plane problem, which is required to determine K and to find the displace- 
ment field by direct integration. The determination of the angle of rotation is signifi- 
cantly simplified by the commutativity of plane rotations. 

Additionally, the compatibility equation, obtained by using AN instead of the 
commonly used A 2, is written in a very brief new form. 

2. Generalized formulation 

If the tensor K, 

K = y |  (2.1) 

is a plane gradient of some plane vector field y, then the field y can be determined by 
integration 

y(B) =y(A) + f ;  K dl (2.2) 

uniquely (in a simply-connected domain) if and only if 

K x V = 0 .  (2.3) 

* We should note that the author refers in [7] to a previously derived quadrature for the plane case and 
states that such quadrature was also derived independently by Novozflov. However no references are 
given nor is a quadrature presented in [7]. 
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We suppose this statement to be well-known. Attention now is focused on the "inte- 
grability" condition, (2.3). Using the polar decomposition we can represent K as 

K = QA,  (2.4) 

where Q is the plane rotation tensor, determined by an angle of  rotation 0, and A is a 
symmetric tensor, A = A T. 

We show that the integrability condition (2.3) leads to a restriction on the symmet- 
rical tensor field A - - " t h e  compatibility e qua t i on" - - and  leads to a representation of  the 
angle of  rotation 0 via A due to a quadrature. 

It is convenient to use a unit vector, k, orthogonal to the plane. Then Q can be 
written as 

Q(O) = cos 01 + sin Ok x 1, (2.5) 

where ! is a plane unit tensor. 
Substituting (2.4) into (2.3) we have 

(b ,Q)A x e~ + Q(A x V) = 0, (2.6) 

where V = Q~e~ denotes the nabla-operator in plane Cartesian coordinates, and the 
symbol O~ denotes a partial derivative with respect to the corresponding Cartesian 
coordinate. According to (2.5) we obtain 

O~Q = (~O)k  x Q. (2.7) 

Substituting (2.7) into (2.6) and attaching 0~0 and e~ we arrive at 

k x QA x VO + Q(A x V ) = 0 .  (2.8) 

We note that due to (2.5) 

Q=/2 = k x 1, (2.9) 

where Q~/2 = Q(~/2). Using the commutative law for plane rotations, we have 

k • Q(O) = (k • 1)Q = Q=/2Q(O) = Q(O)Q=/2. 

Then (2.8) can be rewritten as 

Q(O)(Q=/2A x V0 + A  x V) = 0. (2.10) 

Since the Q(O) r 0, we obtain 

Q=/2A x VO + A x V = 0 ,  (2.11) 

which does not contain 0 by only V0. 
To simplify (2.10), we use the algebraical identity 

a • c = (c �9 Q~/2a)k = (a . Q~2c)k  (2.12) 

for any plane vectors a and c. Therefore, for any plane tensor A and any plane vector 
c we have 

A • c = A Q ~  2 c |  (2.13) 

It follows that (2.11) can be written as 

(Q~/2AQ~2(VO) + r = AQ=/2V) @ k  O, (2.14) 
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from which we arrive at the vector equation 

Q~/2AQ~2(VO) + AQ~2V = 0. (2.15) 

Since det K va0, then due to (2.4), A -1 exists. Therefore, (2.15) yields the relation for 
V0: 

V0 - i  r = O_.~/2A (Q~/zAQ=/zV), (2.16) 

where we have used Q~2 = -Q~/2. Due to (2.9) we also have 

V0 = - k  x A - l ( ( k  x A x k)V). (2.17) 

The condit ion of  integrability (2.16) is V x V0 = 0. Due to (2. I2) we can write it as 
V x V0 = (V.  Q~2VO)k = 0, and, therefore, using (2.15) we obtain 

V. (A - l( Q=/2 d Q ~2 V)) = O, (2.18) 

which can also be written as 

[ V . (A- ' ( (k  x A  • ] (2.19) 

The relation (2.19) plays the role of  the compatibi l i ty  equation for the tensor A. 
Thus if the tensor A satisfies (2.19), integration of (2.17) yields the angle of  rotat ion 0: 

O(C) = O(A) + VO. dl - O(A) + O(A, C). (2.20) 

The rotat ion tensor is then given by 

Q(O) = Q(O(A) + O(A, C)) = Q(O(A))Q(O(A, C)). (2.21) 

Here we have used the proper ty  that  Q represents plane rotations. Finally, due to (2.2) 
we obtain 

y(B) = y(A) + Q(O(A)) f ;  Q(O(A, C))A(C) dl c. (2.22) 

The resulting field y, reconstructed by means of  A, will represent both a deformation 
field and plane rigid body mot ion (where the latter is given by three unknown constants 
of  integration: y(A) and the angle O(A)). 

The relation (2.19) can be written in brief form 

div(A -~ div A • = 0, (2.23) 

where the tensor 

A • = - k  x A x k. (2.24) 

It is of  interest to note that the tensor A • has a very simple representation in the 
principal axes e~ and e2 of the symmetric tensor A = 2 1 e  I @ e  I + 22e2 |  namely 

A • = )~2#1 |  + )qe2 | (2.25) 

We observe that the principal values of  A and A • are permuted. 
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3. The Lagrange and Eulerian description 

To apply the results obtained in Section 2 to continuum mechanics, we first relate 
the notation introduced above to the standard notations which describes the kinematics 
of  a deformed body. 

Let x and X be the position vectors of  a body-point  in the current and in the 
reference configurations respectively. If  we use the Lagrange description, then we assume 
x = x(X) and the deformation gradient F is introduced as the derivative of  x with respect 
to X 

0x~ 
F = x |  F=~ = 0 X  B. (3.1) 

Using polar decomposition, F is represented (see, for example, Truesdell [4]) as 

F = RU, (3.2) 

where R is an orthogonal tensor called the rotation tensor and U is the symmetric 
positive definite tensor called right stretch tensor. Clearly, the relation between this 
notation and that introduced in Section 2 is 

x - ' y ,  F - ' K ,  U ~ A ,  R(O) -'Q(O), (3.3) 

and V is the nabla-operator  in the reference configuration space. Therefore, the right 
stretch tensor U must satisfy the compatibility equation (2.19) 

V.  (U ~((k • U • k)V)) = 0, (3.4) 

which is, in fact, the integrability condition for the angle of  rotation 0. The relation 
(2.17) has form 

V0 = - k  x U l((k x U • k)V) (3.5) 

and upon carrying out the integration in the reference configuration, we determine 0; 
therefore, we can reconstruct the deformation gradient F. 

In an analogous way, if we use the Eulerian description, then we assume X = X(x) 
and the deformation gradient is given by 

OX., (3.6) G = X | V, G~/~ = ~xb 

with a polar decomposition 

G = PW,  (3.7) 

where P is a proper orthogonal tensor and W is a symmetric positive definite tensor. 
Comparing (2.1), (2.4) with (3.6), (3.7) we obtain the following relations between the 
notations 

X - , y ,  G --,K, W ~ A ,  P(O) ~ Q(0), (3.8) 

and V is nabla-operator  in the current configuration space. 
Commonly,  the tensor W is not used but instead the left stretch tensor V, which is 

introduced by (see, for example, Truesdell [1]) 

F = VR. (3.9) 

Using the property that F and G are the inverse of  each other, we obtain 

P = R  r, W =  V 1, (3.10) 
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a n d  the re fo re  we can  wri te  G as 

G = P V  i. 

W e  thus  o b t a i n  the  compa t ib i l i t y  e q u a t i o n  

v .  (V((k • V - '  • k) V)) = 0, 

a n d  the  r e l a t ion  for  V0 o f  the  f o r m  

VO = - k  x V((k x V -~ x k)V).  

817 

(3.11) 

(3.4) 

(3.5) 
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Abstract 

Using a new representation for the gradient of the rotation angle, the construction of a displace- 
ment field via the stretch tensor is reduced to quadrature for plane finite deformations. The compatibility 
equation is written in a very brief new form. 
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