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1. Introduction 

We usej~ k and C~k to denote the kth positive zeros of the Bessel function J~ (x) 
and of the general Bessel function 

C~(x) = J~(x)cos c~ - Y,(x)sin 0~, 0 ~< c~ < re, (1.1) 

where Y, (x) is the Bessel function of second kind. 
Similarly we denote with J~k and C',k the kth positive zeros of the derivative 

with respect to x of J ,  (x) and C~ (x) respectively. As for cvk, the dependence of 
c'vk on 0~ is usually omitted. 

Recently many results have been obtained on the monotonicity, concavity 
and convexity with respect to v of irk and more generally of C~k. For example R. 
McCann in [9] and J. T. Lewis and M. E. Muldoon in [6] showed independently 
that j~k/V decreases as v increases provided v > 0. 

Later E. Makai [8] proved this property with an ingenious application of the 
Sturm comparison theorem, and in [5] the authors obtained similar more strin- 
gent properties for C~k with k = 2,3, . . . .  The corresponding properties can be 

rc 
extended to k = 1, but only for 0 ~< 0~ ~< ~. 

Further properties concerning the concavity and convexity ofj~k or, more 
generally of c~k, have been discussed in [1], [2], [3], [4], [5]. 

We observe that the results cited above were motivated by some physical 
problems concerning the explanation for the origin of the vortex lines which are 
produced in superfluid helium where its container is rotated [6, p. 171]. 

The principal tool used by the authors in several works mentioned above is 
the following Watson's integral formula [10, p. 508] 

d 
dv Cvk = 2 Cvk i K~ (2 C~k sinh t) e -  2~ dr. (1.2) 

*) Work sponsored by the Consiglio Nazionale delle Ricerche - Italy. 
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where Ko (x) is the modified Bessel function of order zero. Since for C'~k there is 
an integral formula similar to (1.2), we hope that we can prove analogues of 
concavity (convexity) results for the zeros C'~k of C'v (x). However we observe that 

the integral formula for ~ C',k corresponding to (1.2) (see (2.1) in the next section) 

is more complicated, so in general it is not easy to obtain the corresponding 
properties for C'~k. 

In this work we are concerned with the concavity of C',k with respect to v in 
the c a s e  Ctvk >lvl. 

2. Preliminaries 

In this section we recall some results which will be useful in the sequel. The 
first one is Watson's formula for the derivative ofc'vk with respect to v [10, p. 510] 

- -  t t 2 ! " d 2C~k (Cvk c0sh 2 r -- v2)Ko(2c~ksmhOe-2~'dt  (2.1) dv Cvk - ,2 Cvk - -  V2 0 

where K o (x) is the modified Bessel function of order zero. 
Concerning the function K o (x) we need the following integrals [10, p. 388] 

arc cos a 

K o (x) e-"X dx = A (a) =. 1 
o 

arc cosh a 

x//-a5 _ 1 , 

~ K  o(x) x d x = l .  
o 

[ a [ < l  

a = l  

a > l  

(2.2) 

(2.3) 

Moreover we recall the inequality [10, p. 487] 

J ; . l > x / v ( v + 2 ) ,  v > 0 .  (2.4) 

For our purposes we need an upper estimate for the integral (2.2). This is 
given by the following result. 

Lemma 2.1. For a > 1 the inequality 

a rccosha  22 3 2 

- -  <i?--ga +i a2 
holds. 

(2.5) 

Proof. Since arc cosha = log(a + w / ~  + 1) we have to show that the 
function 

/'22 3 2 2"] 
f ( a ) =  ~/a  ~ -- l~ - j -~- -~a  + - f ~ a )  - l o g ( a  + ~ - -  1) 
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is positive. Sincef(I)  = 0, it is sufficient to prove t h a t f '  (a) > 0 for a > 1. We get 

2 (a - 1) 3 which clearly is positive for a > 1. ~ / a :  -- 1 f '  (a) = 

3. The function j'~ and its monotonic properties 

Let us denote the kth positive zero of C" (x) by c'vk where C v (x) is the same 

as in (1.1). Now let ~c = k ~ and let the function j ~  be defined by 
7"C 

j$~ - C'~k (V > 0) where tc is considered to be parameter.  H e n c e j ~  is a solution of 
the integrodifferential equat ion (2.1). I t  is not  difficult to show that  the right hand 
side of (2.1) is Lipschitzian with respect to C;k, provided c'vk > 0 and c'~k # Iv[, so 
we have the uniqueness of the solutions of the initial value problem at least on 
the domain  c > [v]. We suspect that  this uniqueness cannot  be extended to the 
line c = [ v ]. We hope that  we can return to the case 0 < c' < [ v [ in a subsequent 
paper. 

Incidentally we observe that  our  nota t ion permits to obtain easily an inter- 
esting property  concerning the behaviour of the zeros C'~k with respect to a where 
the dependence on c~ is omitted. Our  result complements a similar result ob- 
tained by Lorch and Newman for the positive zeros c~k of C~ (x) [7]. Precisely we 
show t h a t j ~  increases as Jc increases (~ = (k - re) z0. To this end first we consider 

the case v,= 1/2; then C1/2(x ) = ( 2  ~1/2 
= ~,(K) =J~/2.~ satisfies the relation @-~]  sin(x + ~) and the function 

tan F = 2 y (3.1) 

1 
where F = F 0 c ) = y + ( k - - t c ) r c .  Let us observe tha t  if 7 = ~  then 

3 1 
~c = K o = ~ + ~ = 0.90915 . . . .  Differentiating (3.1) with respect to x we obtain 

7 t(1 - -  2COS 2 F )  = ~ .  

1 
We shall consider only the case 7(K) > ~. Then by (3.t) then F > I, hence 

1 
cos 2 F < ~ and ,;' > 0 if K > x o. This means that  J'1/2.,, strictly increases as ~c 

increases. Now let o" = a (v) be a solution of the differential equat ion 

d 2 (7 
(o "2 cosh 2 t - v z) K 0 (2 cr sinh t) e-  2v, dt (3.2) 

d-~ a = a2 _ v------ 5 o 

/1\  
with the initial c o n d i t i o n  a ~ )  = ~(tc)for x > ~c o. I f ~ ( K) >  1/2 then the unique- 

\ / 

ness of the solutions of this initial value problem yields that  tr (v) = j '~ and 

J~l  <J ,~:  if zco < zq <~c Z and  J'v,~ > Ivf. 
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Since c~ = (k - to) rc we obtain that the kth positive zero c'~k of C; (x) decreases 
as c~ increases and 0 < ~ < n, as long as c;k > I v[. 

4. Basic results 

First we have to compute the second derivative ofj'~ with respect to v. The 
formula (3.2) can be rewritten in the form 

do- o 0  

2 ! f(t, a, v) K o (2 o. sinh t) dr 
dv 

where 
o. 

f(t, a, v) = o.2 _ v 5 ( ~ cosh 2 t - v 2) e -  2,t. 

The differentiation with respect to v gives 

d 2 o. 
- 2 ~ [f~o.' +fv]Ko(2asinht)dt  

dv 2 o (4.1) 

+ 2 ~ fK'o (2 ~ sinh t) 2 o.' sinh t dt 
o 

where f~ __~f, f ,  ~f  do- 8o. ~ and o. '= . = = dvv An integration by parts of the second 

integral in (4.1) shows that this is equivalent to 

i I cos ,Si"  ; sin  cos  
(4.2) 

I f  @ )1~ ~ d { @  } = t a n h t K  o(2o.sinht - K o(2o.sinht)~-~ f tanht  dt, 
o o 

where the term in the brackets is equal to zero due to the asymptotic relations 

K0(x)=  0 ( l o g l ) ,  x > 0 ,  x ~ 0  

0 (e-X),  x ~ ~ .  

Concerning the integral on the right hand side in (4.2) we have 

d-t f t a n h t  =f~tanht  + fcosh2  t '  

therefore we get 

d2o. @ o.' o.'fl_l____~Ko(2o.sinht)d t 
dv 2 - 2 i o.' + f "  - --ft tanh t - 

6 o. c o s h  2 t /  
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By s t r a i g h t f o r w a r d  ca l cu l a t i ons  we o b t a i n  

d z o" _ 2 t a n h  ~ t + 2 v - -  t a n h  t - 2 t 
dv 2 o k o" a 

4 0 -2 sinh 2 t (v - tr a ' )  -]j 
+ (0 -2 - v 2) (a 2 cosh  2 t - -  v 2) 

�9 f K o ( 2 a s i n h t ) d t ,  a # Iv]. 

N o w  we p r o v e  the  fo l lowing  two  L e m m a s .  

(4.3) 

L e m m a  4.1. Le t  a(v) be  a so lu t i on  o f  the  di f ferent ia l  e q u a t i o n  (3.2) in a 

n e i g h b o r h o o d  of  v = v o a n d  a (Vo) > Ivol. T h e n  

d tr (v) v=vo > 1. (4.4) 
dv 

Proof .  W e  m a k e  use o f  the  in tegra l  f o r m u l a  (2.2) for  a = 1 

oD 

K o ( x ) e - ~ ' d x  = 1. 
o 

By the  s u b s t i t u t i o n  x = 2 a s inh t in this in tegra l  we  o b t a i n  

0 9  

S K o  (2 a s inh t) e -  2 ~ sinht 2 0" cosh  t d t  = 1. 
o 

I n  o r d e r  to  p r o v e  the  i nequa l i t y  (4.4) b y  (3.2) it is suff icient  to  s h o w  t h a t  

(a 2 cosh  2 t - v2)e 2~ sintt t > ( 0 . 2  __  V 2 )  e 2 ~t 

wh ich  is c lear ly  t rue  because  a > I vl. 

C o r o l l a r y  4.1.  Le t  j~.o~ > Ivol , t hen  
. t  

J ' ~ > J v o ~ + V - V o ,  V > V o .  

P roo f .  T h e  resul t  fo l lows f r o m  the fact  t ha t  the  func t ion  J ~ k  - -  V inc reases  as 

v increases ,  b e c a u s e  by  L e m m a  4.1 wi th  a(v) = j ' , , ,  we o b t a i n  - ~ j ' ~  - 1 > 0 .  
(Iv 

L e m m a  4.2. I f  tr (v) stat isf ies the  s a m e  c o n d i t i o n s  of  L e m m a  4.1 a n d  add i -  

t iona l ly  

Vo d ,r (v) < a (vo), 
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t hen  

dv 2 a (v) 

On the zeros of derivatives of Bessel functions 

< 0 .  
v~vo  

779 

Proo f .  By  o u r  c o n d i t i o n s  we h a v e  

0-t O.t 
2 v o - - t a n h t -  2 t  < 2 1 % 1 - - t - -  2 t  < 0. 

o- 0- 

T h u s  b y  (4.3) it is suff icient  to  s h o w  tha t  

0-r 
g (t) -= - -  t a n h  z t + 

o- 

4 a 2 s inh 2 t 

(o.2 _ v 2) (0-2 cosh  2 t - v 2) (v - a a ' )  < O. 

Since o-' > 1 and  v - a a '  < 0 m o r e o v e r  

0-2 c o s h  2 t 

a 2 cosh  2 t - v 2 
> 1 / 2 ,  t>_-0 

we  o b t a i n  

g(t) 0-' 4 1 
- - < - - + 0 - 2  v~ (v - 0- a') = t a n h  2 t a - -  2 

2 v 0- - (0-z + v2) 
< < 0 .  

G (0-2 _ v2 )  

2 v a - a '  (0 -2 + •2) 
0- (0-2 _ v 2) 

This  gives the  c o n c l u s i o n  o f  the  L e m m a  4.2. 

5. The main result 

T h e  a i m  of  this sec t ion  is to  s t u d y  the  c o n c a v i t y  o f j ' ~  for  j ~  > Iv[ a n d  x ~> I. 
A c c o r d i n g  to  L e m m a s  4.1, 4.2 we h a v e  the  c o n c a v i t y  o f j ~  if v ~< 0. In  the  case  

v > 0 we need  a d d i t i o n a l  res t r i c t ions  for  j ' ,  to  e n s u r e  the c o n d i t i o n  v 0-' < a in 
L e m m a  4.2. These  res t r i c t ions  are  f o r m u l a t e d  in the  fo l lowing  result .  

Theorem 5.1. I f  

0-(v) > 
( v  + 1/2 

then  

d20- 
- - < 0 .  
dv 2 

fo r  O < v ~ <  1/2 

v I> 1/2 
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Proof. For the proof  it is convenient to consider two cases: 

a) 0 <  v~< 1/2 

b) v > 1/2. 

Case a). By Lemma 4.2 it is sufficient to prove that a' < _a. The substitution 
v 

u = 2 a sinh t in the integral (3.2) for o-' gives 

2 
1 + s 2 

d ~ 1 _~_~)21/v\ 

d--v a = ! (s + x//-ff + X)ZV~-~Ko(u)du" / (5.1) 

U V 2 V 
where s = 2--aa" F rom the inequality a >~ q / ~  it follows ~ ~< ~ and we have 

to consider the inequality 
2 

1 + - - s ;  
Y 

1 - -  
v d  v ~  2 

~  Ko (u) du. 
6 o ( S + % / ~  + 1) 2v 

Now we are going to show that 

2 
1 + - - s  2 

v 
1 - -  2 1 - v - v  2 

< 1 + 2 s ,  (5.2) 
(s + x / ~  + 1)2v x / ~  + 1 1 _ _  v 

2 

for s > 0 and 0 < v ~< 1/2, or equivalently 

~o(v) l o g ( l + 2  1 - v - v 2  ) ~1 = s + 2 v l o g ( s + x / / s  2 + 1 ) +  log(s 2 + 1 )  
v 

1 - - -  
2 

- l o g  l + - - s  2 > 0 .  
Y 

1 - - -  
2 

First we show 
1 

F ( s ) = ~ o ( O ) = l o g ( 2 s + l ) + ~ l o g ( s  2 + l ) - l o g ( 2 s  2 + 1 ) > 0  for s > 0 .  

This inequality can be proved directly. We should prove that 

(2s + 1 ) x / ~  + 1 > 2s 2 + 1 
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or equivalently 

(2S -b 1)2(S 2 + 1) - ( 2 s  2 + 1) 2 = 4 s  3 + s 2 -+- 4s  > 0 

which is clearly true. 
Moreover  we have 

d t~  (1 + 4v  - y2) S 

dvv q~tv) = - (1 - v/2)[1 - v/2 + 2(1 - v - v2)s] 

S 2 

(1 -- v/2)(1 -- v/2 + 2s  2) 

+ 2 log(s + x / ~  + 1) 

d 
and it is easy to see that  dv q~ (v) decreases as v increases on [0, 1/2]. Hence ~o (v) 

is concave, therefore, rain q~ (v) = rain {q~ (0), ~0 (1/2)}. Hence  we should check 
0~<v~<1/2 

the inequali ty ~o (1/2) > O. So we have to prove that 

-+-ss ( s + ~ + I ) . ~ S  z +  1 

exp ((o (1/2) = > 1, 
1 + ~ s  2 

that  is 

1 + 8 s 2  
2 5 

= - > o. (5.3) g(s) 1 + 5 s  ( s + , , / ~ + l ) ( s 2 + l )  

For  s t> 0 a simple calculation shows that 

8 s2 
1 + 5  4 

- - < 5 '  (s + , / 7  + 1) , /~ + 1 

and this inequality permits us to prove  the (5.3) in the case s ~> 1/2. In fact we 
have 

2 4 2 
9 ( s ) > l  + s s - 5 = 5 ( s - 1 / 2 )  l>0 ,  s~>1/2.  

On the interval 0 ~< s < 1/2 we have the estimates (s + x/-s ~ + 1) ~ + 1 > s + 1 
and 2s( _s) 2 1 + 5  

g(s)> l + s s  - - -  > 0  
s + l  s + l  ' 

which completes the p roof  of  the (5.2). 
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we obtain / 

v d ~v I~n 

dT~ 17< 

Since a / >  , f ~  

Now we use (5.2) in (5.1). Then by the integral formula (2.2) at a = 0 and (2.3) 

1 - - v - v 2 1  t + = h(v ,17) .  
v 

1 2 

n ~__ 1 - - v - - v  21 
h(v,a) <~ h(v,x//-~) = 2"~ 2 + 2" v 

2 
Let u = and 

p(u) = [1 - h(v, x / ~ ) l ( 2  - v) = 4u  4 + rcu 3 - nu  + 1, 0 ~< u ~ 1/2. 

Clearly the function p (u) is convex for u /> 0, hence 

p (u)/> p (1/3) + p '  (1/3) (u - 1/3), 

where p ( ~ ) =  0.4500.. .  a n d p ' ( ~ ) = - 1 . 5 0 i 8  . . . .  This gives 

p ( u ) > p ( 1 / 3 ) + p ' ( 1 / 3 , ( ~ - ~ ) > O ,  0~<u~<1 /2  

and by the definition of p (u) we have h (v, 17) < 1 and, consequently 

v d17 
- - - - <  1. 
17 dv 

Case b). For  v >i 1/2 we use the inequality sinh t > t, (t > 0), in (3.2) and the 
property  that  K o (x) decreases as x increases. We have 

do- ~ 0 .2 cosh 2 t - v 2 
d---v < 217 - - ~ v ~  e-2V~ Ko(2~rt)dt 

o 

172 cosh x _ v2 
17 - ~  

0 172 _ v 2 e K 0 (x) dx. 

If e is defined by cos e = - with 0 < a < = then 
ff 2 

d17 i~ I A ( C d v  2s  2 ~ 1 ) ( c  1 ) ]  sin < o s c ~ +  + A  o s e -  - c o t a n  2 e  , 

where we have used the integral formula A (a) in (2.2). Since A (a) is defined only 
1 v 1 

for a > - 1 ,  we must  have cos e . . . . . .  > - 1  or v + a > 1 which is 
17 17 17 
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satisfied because in the present case o- >/v + 1/2 >~ 1 and v + ~r ~> 3/2. In order  

da  a 1 
to apply L e m m a  2.1 we should prove the inequali ty ~vv < v - cos--'a that is the 

inequali ty 

A osc~+ + A  o s a  < O ( c  0, 0 < a < ~  

where 

(c0 2 sin z ~ a 
- + 2cos  2 a . . (5.4) 

COS ~ s i n  

By (2.2) it is clear that  the function A(a) is convex, hence the sum 

A (cos c~ + 1 )  + A (cos  ~ - 1 )  increases when o- decreases. 

N o w  a and v = a cos c~ satisfy the restrictions a >/v + 1/2 and v ~> 1/2, hence 

{ 1 1 }  
a 1> max 

0<0<=/2 2 (1 - -  cos e) '  2 c o s a  

consequent ly  

2 (1 -- cos ~) 
if 0 < e ~< re/3 

1 

2 c o s e '  rc /3~<a<Tz/2  

so we need to show the inequalities 

A (3 cos c~ -- 2) + A (2 -- cos a) < O (e) 

and 

if 0 < c~ ~< re/3 (5.5) 

A ( -  cos c 0 + A (3 cos ~) < O (a) if re/3 ~< ~ < re/2. (5.6) 

First  consider the case 0 < e ~ r~/3. Since 2 - cos e > 1, by (2.2) and (2.5) we 
have the est imate 

22 3 
(2 -- cos c 0 + 2 (2 -- cos c~) z = B (~), A (2 - cos ~) < 1-5 - 

where 
4 1 2 

S (c 0 = ~ + i 5  cos a + ]-~ cos 2 7. 

By 

(5.5) and (5.7) it is sufficient to show the relation 

(~) = [~ (e) - B (e)] sin fl - fl > 0, 0 < 0c ~< re/3. 

(5.7) 

Let the function fl = fl (a) be defined by cos fl = 3 cos a - 2 with fl (0) = 0. 

this definition we have 0 < fl (a) < ~ for 0 < e < -~ and 13 = ~ .  By 

(5.8) 
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where 

or 

sin fl fl' = 3 sin cq hence by (5.8) 

sin fl d ~ (c 0 = 3 sin ~ (1 - cos c~) 2 ( 6 - -  ~ COS c~ + 

6COS2(X + 6COSC~ -- 2 (1 
+ 6s in~(1  COS C~) 

1 + cos a 

68 2 ) 
15 c o s  ~ c~ 

~ c o s _ ~ ,  
sin 0~ / 

cos 2 a (1 + cos e) sin fl T '  (a) = C1 (a) + C 2 )l------~os ~ (1 (~ cos ~ c~ cos__~, 
(c0 = 3 sin c~ (1 - cos c~) ~- sin e / 

(6 6, ) 
C 1 ((~) = (1 + cos c0 - cos 3 0~ + ]-~ cos 2 ~ - 2 , 

C2 (~) = 2 cos ~ (6 cos 2 ~ + 6 cos ~ - 2). 

Since l im T(cO = 16 > 0 and  ~ P ( ~  < O i t i s  sufficient to show tha t  ~P(c~) 
a~+O 

strictly decreases. Since the funct ions  C1 (e), C2 (e) are clearly decreasing and  

C2 (00 > O, we need only to show tha t  

COS ~ (1 N COS ~ 
c3 (~) = 1 - co--s ~ s-~-n d / 

is also decreasing. To  prove this first consider  the der ivat ive of  log C 3 (e) 

C ;  (e) _ e sin e 1 + cos e + cos 2 

C3 (e) sin c~ - ~ cos e sin e cos 

and  prove  the s t a t emen t  C ,  (~) < 0 for 0 < e < n/2, where  

C~ (e) sin a (sin c~ - e cos e) 1 + cos o~ + cos 2 
C ,  ( ~ )  - - -  = ~ - t a n  

C 3 (~) 2 + cos a 2 + cos 

784 

Since T (0) = 0 and  

(3) T = -- e -- ~ > 0 (5.9) 

therefore it is sufficient to show tha t  the funct ion T(e)  is increasing on the 
interval  (0, %) and  decreasing on (Co, n/3) with some a o e (0, n/3). 

Different ia t ing O (~) we ob ta in  

~ ' ( ~ ) = 2  sin3~ (s  1 ) (  1 ~ c o s a ~  
- - + 2  i n e +  
cos 2 a sin a sin a / 

and  clearly ~k' (e) > 0 for 0 < c~ < n/2. 
Recall ing tha t  the func t ion  fl (~) is defined by cos fl = 3 cos :~ - 2,  we have  
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For C, (0) = O, we have to show C4 (~) < 0 for 0 < ~ < re/2 which is clearly 
true because 

sin 2 ~ (1 -- cos ~) cos 2 + 4 cos ~ + 2) 
cL( ) = 

COS 2 ~ (1 + COS ~)2 

is negative. Thus we have that q (7) is strictly decreasing, hence there is only one 
value % (0, re/3) with q such that q (%) = 0 and q (~) > 0 for 0 < c~ < ~o and 

(~) < 0 for ~o < c~ ~< z/3. Consequently the function 7 j (7) has a local maxi- 
mum at ~ = ~o and 

o 
i.e. the relation (5.8) holds, hence the inequality (5.5) is also true. 

To prove the inequality (5.6) we observe that the function Al(a ) 
1 

= A ( -  a) + A (3 a) is well defined and convex if - ~ < a < 1 and, by (5.10) the 
function 0 (~) is strictly increasing, hence 

max {A(-cos~)+A(3cos~)} max{A( -- + A ( ~ ) , 2 A ( 0 ) }  

and 

x/3 <~cr 

Therefore we should check the inequalities A ( - - ~ ) +  A ( ~ ) <  0 ( 3 ) a n d  

2 A (0) < ~, . The first is true because it is the inequality (5.5) at c~ = ~ which 

has been already proved. The second inequality is also true because by (2.2) 

(3) A (0) = ~ and by (5.4) r = 3.45 . . . .  The proof of Theorem 5.1 is complete. 

Corollary 5.1. For x ~> 1 and v >~ 0 the funct ionj~  is concave respect to v. 
The same is true for K >/1 and v < 0 under the additional restriction j ~  > I vl. 

ProoL If v ~> 0 the inequality (2.4) implies that j ;  1 satisfies the conditions of 
Theorem 5.1, hence j;, is concave. Clearly the same is true for j,~ with tr > 1, 
because by (3.3), j,~ > j~ .  Finally in the case of v ~< 0 the conclusion of Corollary 
5.1 is a consequence of Lemma 4.1 and 4.2. 
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Abstract 

In this paper we are interested in the behaviour respect to v of the kth positive zero C',k of the 
derivative of the general Bessel function 

C~ (x) = J~ (x) cos g - Y~ (x) sin a, 0 ~< a < re, 

where J~ (x) and Yv (x) indicate the Bessel functions of first and second kind respectively. It is well 
known that for c'vk > Iv I, c'vk increases as v increases. Here we prove several additional properties for 
C'~k. Our main result is that C'~k is concave as a function of v, when c;k > Ivl > 0. This implies the 

d concavity of C'~k for every k = 2, 3, . . . .  In the case of the zeros J~k of ~ J~ (x) we extend this property 
t o k =  1 for everyv/>0.  

Sommario 

In questo lavoro il nostro interesse ~ rivolto al comportamento, rispetto a v, del k-esimo zero 
C'vk della derivata della funzione cilindrica 

Cv (x) = J~ (x) cos ~ - Y~ (x) sin ~, 0 ~ ~ < n, 

dove Jv (x) e Yv (x) indicano le funzioni di Bessel rispettivamente di prima e seconda specie. E' ben 
noto che nel caso C'~k > IV I, C',k 6 una funzione crescente di v. 

Qui, proviamo parecchie ulteriori propriet/~ per la funzione c'~k. I1 principale risultato 6 che C'vk 
concava rispetto a v, per C'vk > I v I > 0. Questo implica la concavit~ di c'v~ per ogni k = 2, 3 , . . . .  Nel 

�9 .p d 
caso degli zen ./~k della funzione dx J~ (x) possiamo estendere questo propriet~ anche a k = 1, per 
ogni v > 0. 
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