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Transversal homoclinic points and hyperbolic sets 
for non-autonomous maps I 

By Daniel Stoffer, Seminar ffir Angewandte Mathematik, ETH Zfirich 

The aim of this paper is to generalize the concept of hyperbolic sets and 
transversal homoclinic points to non-autonomous systems. We treat maps 
rather than differential equations. The background is as follows: Consider a 
planar autonomous system of ODE's with a hyperbolic equilibrium and a 
homoclinic solution. Consider time dependent perturbation of such systems, the 
perturbation not necessarily being periodic in time. As in the periodic case we 
investigate the time-one map which, however, is no longer autonomous. Thus we 
consider maps f :  Z x R 2 ~ Z X R 2 with f (n, z) = (n + 1, f ,  (z)) where the maps 
f ,  (z) depend on time n. 

In Paragraph 1 we develop the concept of transversal homoclinic orbits and 
hyperbolic sets for these non-autonomous system. We consider the case of a map 
with a hyperbolic orbit which admits infinitely many homoclinic orbits. More- 
over, we present a construction of a hyperbolic set for such maps. This construc- 
tion does neither need the theory of invariant manifolds (Kirchgraber [2]) nor the 
notion of exponential dichotomies (Palmer [7, 8]). 

In Paragraph 2 we prove the Shadowing Lemma for non-autonomous maps 
admitting a hyperbolic set. 

In Paragraph 3 we introduce symbolic dynamics for time dependent maps. 
Then we prove that a system containing a hyperbolic set admits the "time shift" 
as a subsystem. This generalizes a result of Smale to non-autonomous systems. 

In a second part, also to appear in this volume (see Stoffer [13]) we shall 
adapt the method of Melnikov to construct transversal homoclinic orbits to 
the non-autonomous situation. To guarantee the existence of hyperbolic sets 
one has to assume that the so-called Melnikov function has infinitely many 
simple zeroes with derivatives bounded away from zero. We shall show that the 
Melnikov function coincides with the well known Melnikov integral if the 
map is the time-one map of a differential equation. Furthermore we shall show 
that the Melnikov function can be interpretated as an approximation of the 
distance between the stable and the unstable invariant manifold of the hyperbol- 
ic orbit. Finally we shall apply the theory developed to almost periodically 
perturbed sytems. We shall show that under certain conditions there exists an m 
such that the time-m map restricted to time values m Z  admits the "time shift" 
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as a subsystem. This generalizes results of Scheurle [10] and brings some kind of 
order into the system. 

This paper is an extract from the author's thesis [12]. 

1. Construction of hyperbolic sets 

To motivate the assumptions we shall make we keep in mind the following 
example. We consider the differential equation 

.~ ---~ ~ ( t , X , / / )  = ~O(x) -'}-" //  ffl (t, X, //) X C R  2. (l) 

Let this differential equation have a hyperbolic equilibrium solution z o for/~ = 0. 
Thus for small/~ there is a hyperbolic solution z (t) which stays near z 0. Further 
we assume that for/z = 0 Eq. (1) has a homoclinic solution x (t), i.e. a solution 
x (t) + z (t) with ix (t) - z (t) l ~  0 for t --. _ oo. We shall not  assume that g is 
periodic in time. We shall consider maps rather than differential equations. The 
map we discuss, however, may be the Poincar6 return map of Eq. (1). We restrict 
ourselves to integer values of the time t. For  n e Z, x s R 2 there is a unique 
solution ~o (t; n, x, #) of Eq. (1) with ~a (n; n, x,/~) = x. The time-one map takes the 
point (n, x) e Z x e 2 to the point (n + 1, ~o (n + 1 ; n, x,/~)) e Z x R 2. We formu- 
late our hypotheses in the language of maps. We consider the discrete dynamical 
system 

5 , + l = f ( ~ , ) ,  with ~ , e Z x R  2. (2) 

A set X" = {5, 15, = (n, x,) ~ Z x R 2} is called an orbit  if for each n ~ Z f (n, x,) 
= (n + 1, x, + 1) holds. Let us make the following assumptions motivated by the 
preceeding differential equation example: 

AI) The function f :  Z x R 2 ~ Z x R 2, (n, x) w-~ f ( n ,  x) = (n + l , f , (x))  is an 
invertible Cl-map. 

A2) For all n e Z ,  x ~ R 2 the matrix D f , ( x )  is invertible. For technical 
reasons we assume that 

f ,  (x + y) = f ,  (x) + Df,  (x) y + f ,  (x, y) 

Dr,  (x + y) = Df,  (x) + D 2 f ,  (x, y) 

holds (D2 denotes the derivative with respect to the second argument) with the 
following estimates 

IOf.(x)l < c ,  [ f , , (x ,y) l  < e l y [  z, [O2f.(x,y)l < e l y [  

for some constant c. Let analogous estimates hold for the inverse maps f . -  1 (x). 
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A3) *Eq. (2) has a hyperbolic orbit Z = {(,}, i.e. the set 

Z =  {( , l~n=(n,z , )  for n ~ Z }  

is an orbit  and there are unit  vectors E,  + and E,;- e R 2 and numbers A~ + and A~- 
such that  the equations 

Df.  (z,) E + = A + E++I 

and the inequalities 

IA+[ < A + < 1 < A -  < IA2I 

hold for n e Z. 

A4) There exists a homoclinic orbit  

X -- {~nl ~, = (n, x,) for n e Z} to Z = {(,}, 

i.e. X is an orbit different from Z and 13, - ~[ ~ 0 holds for n --* + ~ .  Every 
point  of X is called a homoclinic point. 

The aim of this paragraph is to show how the hyperbolic structure of Z 
carries over to homoclinic orbits. In Proposi t ion 1.1 we treat the case where we 
consider one single homoclinic orbit of Z. The result leads us to the definition 
of transversal homoclinic points and hyperbolic sets. Finally Theorem 1.10 
treats the general case where there are infinitely many  transversal homoclinic 
orbits of Z. 

Proposition 1.1. Let Assumptions A1)-A4) be satisfied. Then for all n ~ Z 
there exist unit  vectors e, + , e~- and numbers t,  + , t~- all uniquely determined up 
to a factor + 1 satisfying 

1 
i) + e~-+l = ~ f  Df~ (xn) e, +- for n s Z 

ii) lim [e~ + - E ~ + [ = 0  and t i m  l e ~ - - E ~ - [ = 0 .  
r t  ----~ OO n - -  

Moreover,  if in addi t ion the vectors e~- and e o are linearly independent  then the 
factors __+ 1 can be chosen such that  

iii) lira le, + -- E~+I = 0  and J i m  le~- -- E / [ - - 0  

iv) there are constants N e N ,  0 e ( 0 ,  1) and r > 1 such that  for all In[ > N 

1_< it+[ < 0 < 1 
77 

1 
" r > l t 2 l > - >  1. 

0 
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Before we prove this proposition we develop a tool to describe directions of 
vectors. We define the direction of the vector v 4= 0 as the set 

R(v) :=  {x[x  = c~v, e e R  - {0}}. 

The direction of a vector v can be described by any vector v' ~ R (v). We represent 
with b 4  =0 by the point the direction of each vector v = a E + + b E] 

v' = a_ E+ + E2 of the straight line 
b 

G.:= { x l x  =I~E.  + + E 2 , I ~ R } .  

Figure 1.1 

V ~ 

E + 
n 

We define the map 

~a.: g2  _ {x lx  = ~ E + , ~  R} --, G, 

by 
1 a 

v = a E .  + + b E ; ~ v ' =  ( o . ( v ) = ~ v = ~ E .  + + E ;  

which associates to a vector v point of G. representing its direction. We want to 
study the change of the direction of a vector under the map Df. (z.). We first 
remark that A3) implies that Df.  (z.) takes the direction of E + to the direction 
of E~+~, i.e. R(DL(z . )E+)=R(E~+I) .  For n ~ Z  we define the map 
F.: G. ~ G.+ 1 by 

F , : =  ~0.+1 oDL(z.) 

_ A + 

x -- t~E + + E  Z ~--,F.(x)= ~o.+ 1 ~uA + E++I + A ] E . +  13 =/~ A~  E"*+I + E . + I  

which describes the change of direction under the map Df.  (z.). F. maps every 
interval G.(s ) '={x]x  = t~E + + E ; ,  ]#] < s} of the straight line G. into the 
interval G.+1(s ). The map F. is a contraction with contraction factor 

q" = A~- < 1. Setting P~(") =/~ E + + E~- e G. one has 

A .  + 
F.(p(.)) = p(.+l)~ where fi = ~-~-/~. 
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To make the proof  of Proposi t ion 1.1 more comprehensive we present the 
+ and e2, are prescribed then main idea of the proof. If  for given m the vectors % 

by proper ty  i) the vectors e, + and e2 and the numbers t, + and t2 are uniquely 
determined (up to a factor _+ 1) for all n e Z. Hence one has to choose the vectors 

+ and e m such that  proper ty  ii) holds. It suffices to determine the directions of em 
§ is done + and e2, We show how to construct  e~, The construction of % e m . 

analogously. The prel iminary idea is the following. Consider the backward 
iterates Xm- 1, x,,_ 2 , . - . ,  Xm- k of X m. Since we want  lim [ e2 -- E2 ] = 0 to hold 

n ---~ - - o 0  

em_~ is approximatively equal to Em_ k for large k. Thus one can take ET,-k as 
an approximat ion  of e~,-k. I terat ing the direction of E~,_ k forward under the 
maps Dfm_j(Xm_j) j = k, k - 1 . . . .  ,1 one gets a direction Rkm for each k. One 
would expect that  these directions converge for k --, oo and therefore one could 
determine e,~ by putt ing R (e~,) = lim Rkm . 

k ~ o o  

Our construct ion is a slight modificat ion of this idea. Instead of associating 
to each point  Xm_ k the direction E,,_ k we associate to x,,_ k a whole sector of 
directions which contains the direction of era_ k we are looking for. We represent 
this sector of directions by an interval on the straight line G,,_k. The map Df, (x,) 
induces a map  F, (x,) which takes the direction of y to the direction of Df,  (x,) y. 
This induced map takes intervals of G, to intervals of G, + i. It  turns out  that  this 
map is contract ing if x,  is close enough to zn. The intersection of all iterates of 
such intervals consist of a single point  which represents the direction of e~-. 

Gn. 1 Gn 

Gn.2 

X n 

Figure 1.2 

Proof of Proposition 1.1. We prove the proposi t ion for e~- and t,- ; for e, + and 
t, + it can be done analogously.  

a) Z = {(n} = {(n, z,)} is the hyperbolic orbit and X = {~n} = {(n, Xn)} is the 
given homoclinic orbit of Z. We investigate the change of directions of vectors 
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under  the map D f,, (x,,) for large negative n, i.e. for x, close to z,. To this end we 
define the m a p / 7 :  G, ~ G, + 1 by 

f t . :=  G + I  oDf,,(x,,). 

According to Assumption A2) one gets 

F.: = ~.+~o (DL (~.) + D~ f.  (~., ~. - z.)). 

L e m m a  1.2. For  any s E (0, 1] there exist positive numbers  N (s) and q ~ (0, 1) 
such that  for all n __< - N (s) the following holds: 

i) F,,(G,,(s)) = G.+ l (s) 
ii) F, IG.(s) is contract ing with contract ion factor q. 

Proof. Since E~++ 1 and E~-+ 1 are linearly independent  there are coefficients al ") 
and b~ ") i = 1, 2 such that  

92 L (Xn, Xn -- zn) E l  = aT ) en++ l -t- ~ ( n ) g T -  u 2  ~ n + l  

o2 f .  (x,,, x .  - z.) E2  = b]")E2+ 1 + a(")~-  c" 2 a-~n+ 1 �9 

(3) 

Let T, + 1 be the matr ix consisting of the colomn vectors El+ 1 and E~-§ 2. Accord- 
ing to Assumptions A3) we have (see Fig. 1.3) 

- + + 
A -- A + =< IAn-+l E~+2 _+ An+lEn+21 =< ]Df.+, (z.+0l IE2+1 +_ E+.+11 

< c IE2+l + E++ll 

and thus 

IE2+1 + E2+11 _-> 
A -  - - A  + 

Figure 1.3 

L1E~+2 
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Claim. The following estimate holds 

2r  
I r.;~l _-< 

A -  - A  + " 

(This estimate holds for the Euclidean vectornorm and the induced matrix norm; 
for other norms one might have to multiply the r. h. s. by a norm factor). 

Proof  The induced matrix norm is defined by 

I TI = max 2i (T  r T) ,  (the maximum eigen value of T r T) .  

For the norm of the inverse we get 

IT-*I = max 2i((TT) -1 T -1) - 
1 1 

min 2i(T TT) min 2 i(T T T) " 

Since T is a two dimensional matrix we have 

max 2 i (T r T) .  min 2i (T  r T) = Det (T r T) = Det (T)  2 

and thus 

I T - ' I -  Ir l  < ,,/2 
IDet (T)I - IDet (T)] 

[Det(T)l is the area of the parallelogram 
be the smaller of the two angles between 

c~ c( 
[Det(T)] = 2sin ~ cos ~ holds and by assumption 

spanned by E++, and E~-+ ,. Let 
E++I and E~-+I. Then 

[ E + I  -- Es ] = 2 sin~ > 
A -  - A  + 

~ ~ 1 
Since 0 < ~ < ~ holds one has cos ~ > x/~ 

2 c  
Ir- l l=< 

A -  - A  + " 

and therefore 

We solve Eq. (3) for the coefficients a! ") and b! ") 
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and  b y  A s s u m p t i o n  A2) we get  the es t imates  

la!">i = < 
2 c  

C [Xn - -  Znl A -  - - A  + 

2c 
clx,-z.I.  

A -  - A  + 
I bl")l = < 

A s s u m p t i o n  A4) implies  tha t  there  is an  N (s) such tha t  for n < - N (s) 

,x _ z., < A - - A +  ( - A+ ) 2 c z s min  I A - - 1 
= 3 ' 3 " 

This  implies 

l a l . ) , = < m i n ( 1 - A  + 3 _  . A - - 1 ) 3 -  

I bl ")] < s m i n  3~ ' 

F o r  P.(') = /~  E .  + + E~- we have  

F. (P(')) = (o. +,o (Df.  (z.) + Dr.  (x., x .  -- z.)) (P(~')) 

= ~0.+ 1 ((~(A.  + + a(1 ")) + b(l"))E++l + (A2 + b(2 ") + l~a('))E2+t) 
--  p (n+ l )  

where  

/~ = b(1 ") + / ~  (A + + a(~ ")) _ .  ~. (r 

A 2  + b(2 ") + / t  a~ ) "ft. ~ ) "  

To p rove  i) we s h o w  that  I/zl < s implies  Ifil < s . q  with q - 
2 + A  + 

2 + A -  

Ib]')l 
- -  + A + + [a(,")[ 

S 

[fi[ < s A -  - I b ~ " ) l -  ]a(2")[ < s 

I - A  + ] - A  + 
- - + A  + + - -  

3 3 2 + A  + 

A -  - 1  2 + A -  
A - - 2 -  

3 

< i :  

~ S .  

To p r o v e  ii) we  s h o w  tha t  eft2 - f i , [  ~ q I/z2 - / z l [ :  

= ~ ( " 2 )  ~ ( u 2 )  + (I'2) ~ ( & )  

__< I~. ( u 9  - ~,  (&)  I 
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to i)Iic~.(pl) < s  < 1 holds and therefore According 
I B.(~I) 

A + + la]~)l + la(z")l 2 + A + 
1~2 - -  /~11 "~ 1]12 - -  ] /1[ < - - J ] / 2  - -  ]/1[" 

= IB.(]/2)I = 2 + A -  

b) To each x.  with n < - N (s) we associate a sequence of sectors of direc- 
tions. Each sector of directions is represented by a segment G~. k) (s) k = 0, 1, 2 . . . .  
on the straight line G.. We define by induct ion with respect to k 

G~~ G~(s) = { x l x  = ] /g~ + E ; ,  I]/I ~ s} 

G~) ( s ) := /~ . - l t  . - i  , , , "  

Figure 1.4 

Gn.k Gn-k+l 

/(/ / / / /Gn_ic ~ - ' f /  "n-k+l 
/ Xn-k~ Xn-k+l~ 

a n 

L e m m a  1.3. For  all s e (0, 1), k > 0 and n <= - N(s)  the following holds: 

i) G~ k) (s) is compac t  and non-empty.  
ii) G(f+l)(s) c G(,k)(s). 

iii) For  the length of G(f ) (s) the estimate I G~ ) (s)[ _-< 2 qks holds with q < 1. 
iv) If  s < s' then G~ ) (s) ~ G7 ) (s'). 

Proo f  The proof ' is  by induction. The assertions are true for k = 0: 

i) By definition G~ ) (s) -- G,(s) is compac t  and non-empty.  
ii) GI, 1) (s) :=  ft,_ 1 (G,_l  (s)) c G. (s) = : G(. ~ (s) holds by L e m m a  1.2. 

iii) Length of G, (s) = 2 s. 
iv) G(. ~ (s) = G. (s) c G. (s') = G (~ (s') for s < s'. 

Let the lemma be proven up to k - 1. Then 

i) c~ ~k) (s) = i e _  1 , , . ( k -  1) - ,  t ' - ' . -  1 (s)) is the image of a compact ,  non-empty  set and thus 
is compac t  and non-empty.  
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ii) G~k+ ~)(s) = f ,_~ (G~k)_ 1 (S) ~ Fn_ 1 (G(,k_-~)(s)) = G(,k)(s). 
iii) By L e m m a  1.2 we have: 

length of G~ ) (s) __< q- length of  G~_-) ) (s) <= q. 2 qk- 1 s. 
iv) a(~k)(s) = F,-1 (G~211)(s)) = F,-1 (a~k--J!)(s')) = a~))(s') �9 [] 

oO 

c) By L e m m a  1.3 the sets {P, (s )} '=  0 G(, k) (s) are compac t  and consist of 
one single point  P,(s). k=o 

L e m m a  1.4. i) If n < rain ( -  N (s), - N (s')) then P, (s) = P, (s'). 

ii) If n < - N (s) then P. (s) = b~._ 1 (P.-1 (s)). 

Proof i) is a consequence of L e m m a  1.3 assertion iv). 

ii) By definition of G(, k) (s) we have 

= ( ~  ~k) ( s ) )~  ~ ] ~  ~ k )  (S)) ffJn-l(Pn-l(S)) Fn-1 "-'n-1 n-l~,'-'n-1 
k = O  k = O  

= (~ _,G(k+I)(S)= {P,(s)}. 'Z 
k = 0  

d) We prove i) and ii) of Propos i t ion  1.1. To this end we define for 
n < - N(1) 

P.(l) 
[P~(l)l 

where the vectors P,(1) are defined in section c). To satisfy- claim i) of Proposi-  
tion 1.1 the vectors e~- are uniquely determined for n > - N(1) (up to a factor 
_+ 1) in an obvious  way. We now check i) for n < - N(1). It suffices to show that 
Df,_  ~ (x,,_ 1) takes the direction of e~-_ 1 to the direction of e~-. This is equivalent  
to 

o r  

~o,(e~) = ~o,(Df,_l (Xn-1) e~-l) 

P,(I) = f , _ l  (Po_~ (1)). 

By L e m m a  1.4 this is true for n < -- N(1)  what  proves i) of Propos i t ion  1.1. 
To show ii) we choose a monoton ique ly  decreasing sequence (s j) with s i ~ 0 
for j ~ oo. According to L e m m a  1.2 there is a sequence (N(@) with 
N(sO <= N(s2) < N(s3) =< -, .  and by L e m m a  1.4 for n N -- N(sj) 

~0, (e~) ---- Pn(1) = Pn(sj) E G,(sj) 
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Figure 1.5 
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G 
n 

Pn 

sj 

holds. Let e be the angle between e~- and E~-. Then sin e __< sj and (see Fig. 1.5) 

x /  X/~ sin2~ < x / 2 s i n ~ < x / 2 " s j  [e2 - E 2  [ < 2 sin ~ = 2 (1 - cos e) = 1 + cos 

for n < - N (s)  proving ii) of Propos i t ion  1.1. It remains to show the uniqueness 
ofe~- (up to a factor +_ 1). Assume that for all n e Z there are given vectors 8, such 
that  the assertion i) and ii) hold and that for some m we have ~,~ + _+ e~. By i) 
we have 8, 4: +_ e2 for all n e Z, in part icular for n = - N(1). By definition ore  2 
there is a k such that 

 0-N(1) r 

By definition of the sets G~ ) (1) we conclude 

~(k-~) ~1~ for i = 1, 2, k 1 ~O-N(1)- i (e-N(1)- i )  ~- U - N ( 1 ) - i t •  . . . ,  -- 

and finally for i -- k 

~0- No)-  k (e-  ~(1)- k) r G(~ N(1)- k t(l~J = G-  N O)- k (1) �9 

L e m m a  1.2 implies that  (0, (~,) ~ G,(1) holds for all n < - N ( I )  - k. This contra-  
dicts ii) which implies uniqueness. 

For  e + assertions i) and ii) are proven analogously.  

e) We prove assertion iii) for e, +, i.e. we again treat the case n ~ - oe. We 
have to show that e~- 4= • e o implies lira l e, + - E , + I =  O. We consider the 

n --~ - o 0  

segments H.  (s) " = { x [ x = E +~ + # E~ , I t~l < s} of the straight lines H." = H. (oe) 
and the corresponding maps  

Nn: R 2 --  ( x l x  = p E  2 ,  # e  R}  ~ H~ 

1 b 
- v = E 2  + E 2  v = a E  2 + b E 2  ~ , , ( V ) = a  a " 
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The c o m p o s e d  m a p  

Fn:= ~u n_ a o DfnL ] (x.): H.  (s) -~ Hn - 1  (S) 

has ana logous  proper t ies  as the m a p  fin. 

L e m m a  1.5. For  any s E (0, 1] there exist numbers /V(s )  and  ci~(O, 1) such 
that  for all n _<_ - N(s)  the following holds:  

i) Fn (Hn (s)) ~ H n _ l  (s) 
ii) P. IH.(~)is cont rac t ing  with cont rac t ion  factor 4. 

Proof The p roo f  is similar to the p roo f  of L e m m a  1.2. 

To prove iii) we show that  for any given s > 0 the inclusion ~u,, (e, +) ~ H n (s) 
holds  p rov ided  n is a sufficiently large negative number .  By assumpt ion  
e, + 4: +_ e2 holds for all n ~ Z, in par t icular  for n --- - N (1). In  section d) we have 
shown that  there is a k such that  (on (e,, +) ~ Gn(1 ) holds for n __< - N(1) - k. This 
implies ~.(e +) E/4.(1). 

Let M : =  max  ( N ( 2 ) ,  N(1) 

of p o i n t s Q ,  e , ~ by 

0 . - 1 =  fo(o~ 

+ k) .  Fo r  n _<__ - M we define a sequence (Q.) 

Figure 1.6 

H~I) 

E + n 

gn(e~r 

En 

11) 

% (e~ 
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+ 
L e m m a  1.5 implies Q, e H ,  for all n < - M. Since ~_M(e_M) H_M(/)  we 

have [~t_M(e++_~ -- Q-M)I < / and L e m m a  1.5 implies I~ -M- j ( e2M- j )  -- Q-M- j [  

< C~ j for a l l j  >__ 0. We choose m so large that  0 m <_ s holds. The for n < - M - m 
we have - 2 

I qJ. ( e .  +)  - E .  + I < I ~u. ( e .  +)  - Q ,  I + I Q ,  - E .  + I < s 

or ~,(e.  +) e H. (s) which proves assertion iii) 

f) Now we prove iv). E .  + and E~- being linearly independent  we put  
e~- = u. E.  + + v. E~-. F r o m  (ii), (iii) follows that  there is an No such that  

~o. (es = P.(1) = _1 e2 = _u" E+ + E2 ~ G ( I )  
v. v. 

holds for all n with i nl > No. On one hand  i) implies 

1 v. DL(x . )  P.(1) v,+l P,+I (1) = e.-+ 1 = - ~ D f , ( x . )  e~ = 

and on the other we have from P,+I (1) = P. (P. (1)) and section a) 

n.+l (1) = (DL(x.) n,o)) 

1 
= A~ + b~ ") + t~a~ "] Df , (x , )  P,(I)  

Compar ing  these two last formulas one gets 

U n 
where /~ = - -  ~ [ - 1 , 1 ] .  

v. 

t2 = (A2 + b(z ") + It a~ ")) v, 
vn+ l 

and according to section a) 

2 + A 2 
< I A2  + bg'> + ~ a(2 "l] < [A-I  + ~ I A -  - 1 < Co 

3 = = 

holds for I nl > No and some constant  Co (Note that  the considerations of sec- 
t ion a) apply not  only for n < - N o but  for n > N o as well). Now we choose 
6 e (0, 1) such that  

3 1 + 5  
0 : = 2 +  A -  1 _ 6  < 1 .  

Since lim v, = 1 holds there is an N > No such that  Iv, - 11 < 5 holds for 
t l--* -t-<30 

I nl > N. This implies the estimate to be proven 

1 2 + A -  1 - 5  1 + 6  
- = �9 < I t 2 [  < = Co - ' ~ .  1 < 0  3 1 + 6  = 1 - 5  
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Analogously one shows that 

1 
- ~  21t:l ~ 0 < 1 
T 

for [nl > N, N sufficiently large. 
This completes the proof of Proposition 1.1. [] 

Remark. In view of the considerations of infinitely many homoclinic orbits 
a slightly different formulation of the results in f) is needed. The estimates 

1 
r>= It21 >=~> 1 

U 

1 
- ~  It.+l ~ 0 < 1 
77 

hold if Ix, - z,,[, re2 - E~-[ and [e, + - E"+[ are sufficiently small. 
Next we modify the length of finitely many vectors e~ such that assertion 

iv) of Proposition 1.1 holds for all n e Z (with modified 0 and r). We show how 

to do it for e"+. Let Q (n) : -= l~I It/+ [ and N be the number of assertion iv). Then 
i=  - n  M 

there is an M > N such that Q(M) = [ I  It+l < Q(N). 0 2~-N) < 1. Choose 
i = - M  

0 + such that (0+) 2M+1 = Q(M). We define the numbers d, + by 

d"+ := l  for n < - M  and for n > M  

d L  ~ : = t.+ d.+ 
O+ for - - M < n < M  

and the vectors h, + by 

h + : =  d2 e + for  n e Z 

i) of Proposition 1.1 implies 

1 
h,++l = ~+ Dr, (x,) h, + where 

and it easy to verify that 

2. + =t.+ for I n l > M  

2.+ = 0  + for In J < M  

2+ := t + d + 
d"++~ 

holds. The scaling can be done analogously for the vectors e~-. Summarizing the 
above statements we get the following temma: 
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Lemma 1.6. There are ~, f > 0 such that 

1 

T 

1 
_-< e 

holds for all n e Z. 
Now we introduce local coordinates. To each point ~. = (n, x.) we associate 

the matrix T. with the column vectors h + and hs For the points ~ = (n, x) 
and f (4) = (n + 1, f .  (x)) we introduce local coordinates (n, u.) and (n + 1, u.+ 1) 
by 

x = x . +  T~u., L ( x ) = x . + a  + T.+lu.+ i .  

By Assumption A2) we can write for f ,  

f .(x) = f . (x.)  + D f . ( x . ) T . u .  + O(IGI 2) 

leading to 

u.+ t = T~+tl Dfn(x.) T.u,, + 0 (lu.12). 

By i) of Proposition 1.1 and Lemma 1.6 we conclude that 

T , - + ] D f , ( x , ) T . = ( 2  0 

is a diagonal matrix with 

5 
1 

12+1 =< 0 < 1 < 0 < [2,-[. This shows that if the 

vectors e, + and e2 are linearly independent the homoclinic orbit X = {(n, x,)} 
carries a hyperbolic structure. Our considerations suggest the following defini- 
tions: 

Definition 1.7. A homoclinic point ~,, = (n, x~) is called transversal if e~ + and 
e~ are linearly independent. A homoclinic orbit X -- {~, I ~  = (n, x,), n e Z}  is 
called transversal if its elements are transversal homoclinic points. 

Definition 1.8. A set A c Z x g 2 is called hyperbolic if there are constants 
0 e (0, 1) and z > 1  and if for everypoint  ~ = (n, x) e A there is a regular matrix 
T(~) = T(n, x) such that 

H1) A = f (A) is invariant. 
H2) The sections A. :-- {(k, x) [(k, x) e A, k = n} are compact for all n e Z. 
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H3) The matrices A ( ~ ) : =  Tf f l ) - l  D f . ( x )  T(~) with tl = f ( ~ )  are diagonal with 
diagonal elements 2 + (~), 2 -  (~) where 

1 
- -_< a '~+ (~)1 _-< 0 
77 

I 
< < T ~ =  = 

holds. 

H4) T(~) and T(d)-1  are bounded by v. 
H5) The map ~ ~ A ~ T(~)-a e GL(2, 2) is uniformly continuous, i.e. there is 

a function fi(e) with f i ( e ) ~ O  for e ~ O  such that [ ~ . - r l l < e  implies 
I T (~)  - 1 _ T ( r l ) -  1 [ < fi (e).  

It is easy to check that the hyperbol ic  orbi t  Z = ((~.)) and the union 
Z • X = ((~.)} w {(~.)} of the hyperbol ic  orbit  Z with the transversal homoclin-  
ic orbit  X are hyperbol ic  sets. As the following paragraphs  will show the concept  
of hyperbol ic  sets becomes  interesting if the considered set contains infinitely 
many  transversal  homoclinic  orbits. 

We want  to find other equivalent formulat ions for the transversali ty condi- 
tion of Definition 1.7 which will be easier to verify. To this end we introduce the 
space X of bou n d ed  sequences x = (x.) where n ~ Z. Endowing  X the norm 

[I x [[ = sup Ix. I 
n ~ Z  

where Ix. ] is just  any norm in R 2 (e. g. the Euclidean norm) the space X becomes 
a Banach space. Let F: X ~ X be the map  defined by 

(F (x)). : = x .  +1 -- f .  (x.).  

It is obvious  that  the set X = {(n, x.)] n ~ Z} is a bounded  orbit  iff x = (x.) ~ X 
and F (x) = 0 holds. 

Proposit ion 1.9. If X = {(n, x.)} is a homoclinic orbit  to the hyperbolic  orbit  
Z = {(n, z.)} then the following statements  are equivalent. 

i) X is a transversal homoclinic  orbit. 
ii) The difference equat ion  u.+ 1 = D f . ( x . ) u .  has no non-trivial bounded  

solution. 
iii) The opera tor  L:  X ~ X defined by (Lu). : = u. + 1 - Df .  (x.) u. is invertible. 

Proof i) ~ ii). As we have shown so far one can diagonalize the matrices 
Df.  (x.) by the t ransformations u. = T.v..  The difference equat ion in assertion ii) 

becomes v.+ 1 = A . v .  where A. = diag (2+, 2~ -) with 12+1 < 0 < 1 < _1 < ]2~- [. 

= one gets Is.[ > for n > 0 and ]r.l > 0" ]r o ] for With the Ansatz  v. s. = 
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n < 0. Thus if the sequence (v,) is bounded  then r o = So = 0 holds and therefore 
v, = 0 for all n E Z. 

ii) => i). We prove the contraposit ion.  Assume that  X is not  transversal. 
Then e~ = + e o .  Put t ing Uo:= e~ we get by Proposi t ion 1.1 that  

Un = (nfil t+) for n > 0  

u" = + ( ~ (ti-)- l)  for n < 0  

is a solution of the difference equat ion ii). To see that  (u.) is a bounded solution 
we notice that  there is an N such that  

It+[<=O<l for n > N  

1 
I t ~ - [ > ~ > l  for n < - N  

holds. If e~- and eo were linearly independent  the above estimates would follow 
from Proposi t ion 1.1 part  iv). The weaker s tatement needed above holds even 

+ and e o are linearly dependent,  in view of Proposi t ion 1.1 ii) and since if e o 
Ix. -- z.[ ~ 0 for In[ ~ ~ .  

ii) => iii). By ii) the equat ion Lu = 0 implies u = 0. Since L is linear this 
implies that  L is injective. Again by the t ransformat ion u. = T.v. we get 
v.+ 1 = A.v.  where A. = diag (2~ +, 2~-). L is invertible iff the t ransformed opera- 
tor E is invertible. E is given by 

(gv),  = v,+ l -- A,v,  = w, = \w. } 

For  any w ~ X one simply computes the solution v = (v,) = 
be 

+ + + + 
r n = w + _ l  -t- 2 n _ l W n _ 2  -~- , ~ n - 1 2 n - 2 W n + - 3  71- " ' "  

1 1 
s .  - )~2 w 2  - -  w . +  l 

1 

2n 2n+l 2n /~n+l ~"n+2 W n + 2  . . . .  " 

Thus E is surjective and 

1 
IIL-iwll < - - I w l  

= 1 - 0  

((,)), of  wto 

holds implying that  L-1 is bounded.  

iii) ~ ii) is trivial. [] 
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Now we consider the case where there are infinitely many transversal homo- 
clinic orbits to the hyperbolic orbit. 

Theorem 1.10. Let  Assumptions A1), A2) and A3) hold. I f  for  every j e Z there 
is a number my and a homoclinic orbit 

x(J):(r I ~ )  = (n, x(,J)), n ~ Z}  to Z = {~, I ~, = (n, z,), n e Z} 

such that 

a) For every a > 0 there is a c5 > 0 such that x(,,~ U~(z") implies 
Ix(, i) - x~ j) ] > 3 for  every j e Z  - {i}. Uo(z,) denotes the a-neighborhood of  z,. 

b) For all a > 0 there exists a number N (a) such that ~lx(J), - z,  I < a holds for  
all n with Jn - mj] > N (a). (Note that N (a) is independent o f  j). 

c) The linear operators Lj: X ~ X defined by 

(Ly u), = u, + 1 - -  Df ,  (x~ ~) u, 

are invertible and there exists a constant c o with 11 L] 1 [[ __< Co . 

Then the set A :=  Z w Q) X (j) is hyperbolic. 
j ~ Z  

Remarks. 1) Condition a) means that the only limit point of {x] ) tJ ~ Z} is z,. 
2) Condition b) means that the orbits X (j) stay a-close to the hyperbolic 

orbit Z with 2 N (a) + 1 exceptional points. 
3) Condition c) implies by means of Proposition 1.9 that the homoclinic 

orbits X (j) are transversal. 
4) In the case where f is 1-periodic in time, i.e. all f ,  are identical, the 

theorem follows immediately from Proposition 1.1, Proposition 1.9 and Lem- 
ma 1.6. 

Proof'. According to Proposition 1.1 for every orbit X (y) = {(n, x(,J))} there are 
unit vectors e(, j) + and e~ )- and numbers t(] ~ + and t, ~ with the properties i)-iv) 
of Proposition 1.1. Now we want to rescale these vectors in a uniform manner 
such that Lemma 1.6 holds for all orbits X (j). As in the proof of Proposition 1.1, 
Sect. a), we consider the maps 

~ ( x , - ) : =  ~o.+~ o Dr.(x): Gn(1) --* Gn+ 1 

and analogously the maps 

F'. (x, . ) : =  ~u.+l o Dr. (x): Hn(1) -- ' /4.+1. 
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Figure 1.7 

H~I) 

e(J) ~ 
n 

/ 
E/ / 

By the estimates of Sect. a) in the proof of Proposition 1.1 we know that if x is 
sufficiently close to z, then the map f ,  (x, �9 ) is defined on the segment G, (1) and 
is contracting with contraction factor ~7< 1 and @ is independent of n. 
Analogously the map F, (x, .)  is defined on the segment H, (1) and is expanding 

1 
with expansion factor ~ > 1. By Proposition 1.1 we have 

t(n j) • o(J) • (J) (J) • = D f , ( x ,  )e ,  L'n+ 1 

By the remark following the proof of Proposition 1.1 the following holds: If 
[x~f - z,,i, [e~, j)+ - E+[ and [e(~ j)- - E2[ are sufficiently small then the estimates 

1 
: 5  It~)+l 5 0 <  1, 
T 

1 

hold. By assumption b) there is an N 1 such that for all orbits X (j) = {(n, x(~J))} the 
point x(f is a close to z, as we wish, provided [n - mj[ > N 1 holds. Now we prove 
the following lemma: 

Lemma 1.11. For every J > 0 there is an N2 such that for every j ~ Z and 
for every n with In - rnj[ > N 2 the estimates 

[e~ )+ --  E.+[ < d 

l e~ )- - E21 < 5 

hold. 

Proof. For w = (Wk) with 

{eoJ)+_+e~)- for k = n - 1  
Wk:= for k :# n -- 1 
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the equat ion  Lj  u = w has the solut ion u = (uk) with 

-1  
,(J) 

-I 
o(J )  -- 

- -  ' ~ n -  2 u. + 

- 1  
U n -  1 = + - -  e ( j )  - -  t O ) -  n -  1 

~'n-- 1 

U n ~ ~(n )) 
+ 

#An + 1 = t(n j) 
+ g)(J) + 

~ n +  1 

t(J) + t(J) + o(J) + Un n ~ n +  1 L ' n + 2  + 2 

Assumpt ion  c) yields 

le~)++ e ~ ) - I =  [wl > - - 1  = 1 1 
_ = ii g_~ 1N lul > -  lU, l c o  =--'Co 

This inequali ty shows that e7 ) + and + e ( f -  have a minimal distance independent  
of n and j. Construct ing e7 )- we have seen that o,(e}/)-) ~ G,(I) holds for all 
n __< mj - N 1 . Analogously  gt, (e(j)+) E H,(1) holds for all n > m i + N 1 . We show 
that there is an N'  > N t such that for a l l j ~ Z  and all n with In - m / >  N'  

e 6.(1) 

~u,(e(j)+) e H , ( l ) .  

Assume that m, (e(, j)-) ~ G,(1) for s o m e j  and n = mj + N 1 . q/,(e~ )+) and ~,(e~ )-)  
have a minimal distance independent  of n and j as follows from the previous 

estimate on Je(, i)+ + e(j)- I. F,(x~), . ) is expanding with expansion factor =1 for 
0 

n > mj + N 1. Thus there is an N ' >  Nj independent  of j such that for some 
k e [mj + N1, mj + N']  we have ~uk (e~)-) ~ HkO). By definition of H~ (1) and Gk(1) 
we therefore conclude ~0 k (e(k J)-) e G k (1) cf. Fig. 1.7. Since G, (1) is invariant under  
F, (x(j), �9 ) we have q~,,(e(j)-)e G,(1) for all n > k and in part icular  n > m r + N' .  
The claim for e~ )+ is proven analogously.  

Given 6 > 0  we show that there is an N " > N '  such that 
] (0, (e(j) -)  - E~- I < d holds for all n > m r + N". 

T h e r e i s a n N ( ~ ) s u c h t h a t f f , ( x ~ ) , ' ) m a p s G n ( ~ ) i n t o G , ( ~ ) f o r a l l j a n d a l l  
/ x \  ~ ~ o N \  

\ 2 /  \ \ 2 J  } 
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For every j we define a sequence of points Q~), n > m r + M by 

Q(J~ := ie~ (x~ ~, Q~J)) for n > m r + M.  n + l  ~--- 

It follows Q~)6G,,(~) for all n > m j + M .  For n = m j + M  we have 
\ / 

Ir (e~ 3-) - E ; I  < 1. Since ~, (x~), .) are contractions with contraction factor g 
c~ 

there is an N" independent of n and j such that ]~0, (el)-) - r j)] __< ~ for 
n > m r + N" and therefore 

1%(e~ )-) -- E~-[ < [ ~0.(e~ j)-) - Q~)I + [Q~J)- E~-] < 

Similarly one shows that I~0. (e~)-) - E~-[ < fi holds for all n < rn~ - N". Now 
the lemma follows immediatly from Fig. 1.5. [] 

Thus by the remark after the proof of Proposition 1.1 there is an N 2 such 
that the estimates 

1 I C  + 1 
= <  [_-<0<1 and f > ] t ( ,  j ) - ] > ~ > l  (4) 
T 

hold for In - mr[ > N 2. Now we build the products 

N 

Qf (N)'= Ivi I ~ ' m j + i  " 
i =  - N  

Since the derivatives o f f  and f - ' are bounded and regular there are bounds S 
and T independent of j such that the estimates 

1 1 
- < Q + ( N 2 ) < S  and T > Q T ( N 2 )  > 
T 

hold. According to Eq. (4) there is a number M > N 2 independent of j  such that 

1 1 
--  < Qf (M) < and T' T' 2 > Q; (M) > 2 

holds for some T'. 
Now we proceed as in the derivation of Lemma 1.6. We choose 0 ~j)-+ and 

"~J)-+ such that (g(j)+)ZM+ 1 = Qf (M) and put 

d~ )+-:=1 for n < m j - - M  and for n > m j + M  

t~)-+d("J)-+ for m j - - M _ _ < n < m j + M  d(j) + .+i  "-- 0(/)+ 
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and 

h~ )-+ "= d}/)-+ e~ )+- for n ~ Z .  

Fo r  the vectors h~ ;)+- the relations 

, ~ , + t  = D f , ( x ~  ) h ,  (5) 

hold with 2(~ j) -+ = t~ ) -+ d~  +- A(J)-+ " The estimates 
~ n +  i 

1 
-__< I~)+I <o 

(6) 
I 

T _>_ I~ j~-I > 

with 0 = max {0, 0} and r = max ~, are easy to verify. We now are at the 

point  where we can show that  A is a hyperbolic set. We define 

T (n, x~)): = (h~ ~ +, h~ ~-) 

to be the matr ix consisting of the column vectors h(~ )+ and h(n j)-. 

H1) A is invariant  since it is the union of invariant  sets. 
H2) The sections A, = {z,} w {x~ ) ]j ~ Z} are compact  since by assumption a) 

x,r ~ z. holds for j ~ _ Go. 
H3) According to Eq. (5) and Eq. (6) 

A (n, x~ )) = T (n + I, y ) - i  Dr,  (xr j)) T (n + 1, x~ )) = ~;/2~ + 2~ )_0 ) 

holds with the estimates 

1 
- < I;~J)+ I < 0 
"C 

1 
r > I,~(~ j ) - I  > - .  

0 

H4) Since h(~ j)+ and h~ )-  are bounded  and bounded  away from zero and 
since the angle between them is bounded  from below the matrices T (n, x) and 
T (n, x)-  1 are bounded.  

H5) The angle between h(~ j)+ and h~ )- being bounded  from below it suffices 
to show that  the vectors h~ )-+ are uniformly continuous.  Since by Assump- 
tion A2) a ne ighbourhood  of z, (the width of which is independent  of n) is 
hyperbolic there is a c~ > 0 such that  x (j) - Zmj [ > fi holds for all j ~ Z. And mj 

therefore there is a fi' such that  [x(f - z. I > fi' holds for all n with [n - rnj[ =< M. 
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This means that  in the d ' -ne ighbourhood ofz ,  we have h(~ j)-+ = e~ )+. By Assump- 
tion a) the points outside these ne ighbourhoods  have a minimal distance inde- 
pendent  o f j  and n. Thus it suffices to show that the vectors e~ )+ are uniformly 
cont inuous,  i.e. that  for all e > 0 there exists a d > 0 such that Ix(, i) - x(,i)l < d 
implies [e~ ) + - e(, i)-+l < e. By Assumpt ion  a) it suffices to show that for all e > 0 
there is a d > 0 such that I x~ ) - z, I < J implies I e~, j) -+ - E+ I < e. One  can con- 
clude that  if Ix~ ) - z,I is small then In - mjl is large. Thus the last s tatement 
follows from the uniform contract ion proper ty  of/~, (x,.): G. (1) ~ G,+ 1 (1) and 
the uniform expansion proper ty  of F, (x,.): H,  (1) ---, H,+ ~ (1). [] 

2. Pseudo orbits and the shadowing lemma 

In this paragraph  we prove  that the Shadowing L e m m a  holds for maps 
admitt ing a time dependent  hyperbol ic  set. The p roof  follows essentially the 
ideas of Kirchgraber  [2] where the Shadowing Lemma is proved for au tonomous  
maps. N o w  we have to work  in the t - x space instead of the x-space only. All 
considerat ions can be carried over from one case to the other. Fo r  completeness 
we give the full p roof  of  the Shadowing L e m m a  for the new situation. 

We consider  a map  f :  Z x g 2 ~ Z • R 2 with f ( n , z )  = (n + 1,f,(z)) admit-  
ting a hyperbol ic  set A (see Definition 1.8). 

Definition 2.1. A set P = {(n, p,) [ n e Z, p ,  e g 2} is called orbit i fp ,  + 1 = f~ (P,) 
holds for  all n ~ Z .  

A set Q = {(n, q. ) ln  ~ Z,  q, ~ g 2} c A is called pseudo orbit. 
A set Q = {(n, q,)l n 6 Z, q, 6 R 2} = A is called e-pseudo orbit i fQ is apseudo 

orbit and if additionally ]%+1 - f , (q , ) l  < e holds for  all n ~ Z. 
A set P = {(n, p , ) l n  ~ Z,  p ,  ~ R 2} is called Q-shadowing orbit o f  the pseudo 

orbit Q if P is an orbit and if in addition [p, - q. I < 0 holds for all n ~ Z.  

We give the set 7 t of all pseudo orbits a topology.  To every pseudo orbit  
Q = {(n, q,)} we associate the unique sequence (q,)~ 17[ A,. For  the set 

n ~ Z  

~2 :=  1-[ Am we choose the p roduc t  topology.  The map  which takes the sequence 
n ~ Z  

(%) to the pseudo orbit  Q = {(n, q,)} induces our  desired topology  in gt. The sets 

1 for all n with lnl < L} BL := { Q ' =  {(n, q'~)} [ [q', - q,[ < ~L 

form a base of ne ighbourhoods  of Q = {(n, q,)}. 

Proposition 2.2. i) The set 7 t of the pseudo  orbits is compact .  

ii) The set ~ of the e-pseudo orbits is compact .  
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Proof i) As p roduc t  of compac t  sets the set f2 is compact .  Hence  the set 
is compac t  as well. 

ii) The subset  ~ of the compac t  space ~g is compac t  iff it is closed. We show 
that the complement  C ~ of ~ is open. We have q c C ~ iff there is an n c Z such 
that I qn + ~ - fn (q.)[ = d > e holds. Since f .  is cont inuous  there is a c~ > 0 such 
that 

[ q ; + l - - q n + ~ l < ~  and ]q ' , - -qn l<c~  (1) 

implies [q',,+l --f,(q'n)[ > e. The set of all pseudo orbits satisfying (1) form an 
open ne ighbourhood  of q which is conta ined in C ~ .  Thus  C ~ is open and 
therefore ~ is closed implying that ~ is compact .  [] 

Theorem 2.3: (Shadowing Lemma). Let assumptions A1) and A2) of Para- 
graph I be satisfied. I f  f admits a hyperbolic set A then there is a Qo such that for 
each ~ with 0 < ~ < go there is an e > 0 such that the following statement holds: 
For every e-pseudo orbit Q = {(n, q,)} there is exactly one o~-shadowing orbit 
P = {(n, p,)} of Q. 

Proof Let Q = {(n, q.)} be an e-pseudo orbit. Since (n, qn) c A holds there are 
matrices T(n, %) such that s tatements  H I ) - H 5 )  of Definition ~1.8 hold. To sim- 
plify the nota t ion  we int roduce the following abreviat ions:  

~ ] . + l : = f . ( q . )  T~:= r (n ,q . )  ~ + l : = r ( n + l , c ] . + l )  

A n : = A (n, qn) = L + ~ Dfn (qn) T~ = diag ( 2 2 , 2 2 ) .  

We in t roduce local coordinates  u n by p. = qn + Tn un" The set P = {(n, p.)} is a 
Q-shadowing orbit  of Q = {(n, q.)} iff for all n ~ Z 

[r~u~[=lpn-qn[<o~ and u . + ~ = A ,  un+o.(T~un) 

holds where 

g.(x) = T~21 (c]n+ 1 -- q .+t )  + (T . ; ]  -- L-+~)Df~(q,,)x + Tn-+]f.(q.,x ) 

and f .  has the same meaning as in Paragraph  1, i.e. 

f .  (x + y) = f,, (x) + Df .  (x) y + f .  (x, y). 

The functions gn (x) satisfy the following estimates 

I gn (X)I _--< ~ "  e + C~(e)" C'~O + ~ .  C" ~O 2 (2) 

I Dg.(x)l  < g(e)" c - z  + z 2" c .  

for all x with Ixl < ~. The constants  r, d(e) and c have the following meaning: 
z is an upper  bound  of T(n,%) and T(n,q.)  -1 and c~(e) is the modulus  of 
continui ty of  T(n, q . ) - i ,  c is the constant  of  Assumpt ion  A2). 
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Let X be the space of bounded sequences x = (x.), n ~ Z. X is given the 
sup-norm and this way it becomes a Banach space. Let us define the following 
operators in X: 

T: X ~ X, (Tu) . :=  T~u.. 

G:Bo'= {uEXl lT .u . I  < Q} ~ X,  (G(v)) . :=  g~(v~). 

L : X  ~ X ,  (Lu). : = U n +  1 - -  A n u  n . 

There exists a 

II Tu  II _-< ~ and 
L T  - 1 v = G (v). 

unique Q-shadowing orbit iff there is a unique u e X with 
L u  = G (Tu) or iff there is a unique v e X with II v [I < ~ and 

Proposition 2.4. Let (A,) be a sequence of 2 x 2-matrices with 

1 
A, = diag (2, +, 22), _1 =< 12+ I = < 0 and ~ =< 1~21 = < 

T 

for some constants 0 e (0, 1) and z > 1 and let 9n (x), n e Z be cont inuously 
differentiable functions which satisfy the following conditions: 

Ig~ (O)l ~ -  
T 

I D gn (x)l < c~ for all x with Ix[ < 

1 
where 0~ = ~ (1 - 0). Then there exists exactly one sequence v = (v,) X such 

that  

II v II ~ ~ and L T -  1 v = G (v) 

holds. 

Equat ion  (2) implies that  this proposi t ion applies. One first fixes ~ suitably 
and afterwards chooses e sufficiently small. Thus Theorem 2.3. is proven up to 
Proposi t ion 2.4. [] 

P r o o f  o f  Proposi t ion  2.4. We show that  L is invertible. F rom the structure 
of the matrices A, it follows that  the equat ion L u  = 0 only admits the trivial 
solution. We show that  L u  = w has a solution for all w e X. Put t ing 

\ u .  l kW.  / 
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we get the solution 

+ 
u 2 = w ,  + + ,~,+,-~wL~ + ~ L ~ , ~ L ~ w , - ~  + . . .  

1 1 1 
- -  _ _  W n +  2 2 -  )~n+ 1 },n+ 2 W n + 3  . . . .  . u2 2/- w , + l  22 2/-+ 

One verifies easily that the series converge (this follows from 

1 

1 
that u = (ui) solves the equation Lu  = w and that ]ul < O ~ ) l w [ ( l  - holds. Thus 

1 
L is invertible and L- 1 satisfies the estimate I L- 1 ] < (1 - 0~" By the assumptions 

of the proposition the map G has Lipschitz constant ~ and ] G (0) 1 < e~  holds. 
r 

It remains to show that the equation L T -  ~ v = G (v) has exactly one solution 
in B o. An equivalent equation is H(v) :=  TL-  ~ G ( v ) =  v. The function H is 

and for v ~ B o Lipschitz with Lipschitz constant 

Ig(v)l =< IN(O)[ + IN(v) - g(O)l =< ~ + ~ = ~o 

holds. Consequently H ( v ) ~  B~ holds. Now the proposition follows from the 
Banach Point Theorem. [] 

We derive a first application of the Shadowing Lemma. Let ~o and e be 
chosen according to the Shadowing Lemma. For every j e Z  the orbit 
P = {(n, p,)} is uniquely determined by the point (j, pj). The Shadowing Lemma 
says that for every e-pseudo orbit Q = {(n, q~)} there is exactly one pj with 
[Pj - qjI < ~ such that the orbit P = {(n, pn)} generated by (j, pj) is a ~-shadowing 
orbit of Q. We denote the map from the e-pseudo orbits to (j, pj) by nj. 

~j: % ~ z x R 2, (2 --, ~j(Q) = (j, pj). 

In other words: nj takes the e-pseudo orbit Q to the point (j, pj) which generates 
the uniquely determined ~o-shadowing orbit of Q. 

Proposition 2.5. For every j ~ Z the map nj is continuous. 

Proof. Since in ~ every point has a countable base of neighbourhoods it 
suffices to show that for every sequence (Q(k)) of e-pseudo orbits which converges 
to Q the sequence (nj(Q(k)))= ((j,p}k))) converges to n j (Q)= (j, pj). For every 
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N e N there is a ko such that k > k o implies [q}k) _ qjl ----< 1 for a l l j  with IJ[ < N. 
N 

For  the 0-shadowing orbit  p(k) of Q(k) every p}k) lies in the 0-ne ighbourhood of 
1 

q}k) and therefore in the 0 + - - -n e ig h b o u rh ood  ofqj  i fk  > ko and ]jl < N holds. 
N 

Thus for j = 0 the sequence (p(ok)), k ~ N, is bounded  and therefore it suffices to 
show that Po is the only limit point  of that  sequence. Let/~0 be any limit point  
of (p~)), k ~ N. Then there is a subsequence (p~')) which converges to rio. We 
consider the 0-shadowing orbits p(k , )=  ((n,p(k,))} of the e-pseudo orbits 
Q(k,) = {(n, q~0)}. Since f ,  and f , -  1 are cont inuous  one concludes by induct ion 

that (k~)_ with respect to n p .  converges to some/~n as k i ~ oo and that f (ft.) = p. + 1 
holds. Thus the s e t / 3 : =  {(n, fi.)} is an orbit. Moreove r  

I1~,, - ,t,,I < Ifi,, -P(, ,k') l  + IP~ k') - -  q~k')l + I q~ k') - -  q .  [ 
~ 0  <=~ ~ 0  

holds for i---, oe. Since the 1.h.s. doesn ' t  depend on k~ one concludes 
I/~, - q,[ < 0- That  means that  /~ is a 0-shadowing orbit  of Q. Since by the 
Shadowing L e m m a  the 0-shadowing orbit  is uniquely determined the o rb i t s / s  
and P = ((n, p,)} coincide and/~, = p, holds for all n e Z. Thus Po is the only limit 
point  of the sequence (p(ok)), k e Z. [] 

3. The shift map as a subsystem for non-autonomous maps 

We consider the following situation. Let Assumptions  A I ) - A 3 )  of Para-  
graph 1 be satisfied, i.e. the differentiable map  f :  Z x R 2 ~  Z • R 2 with 
f (n, x) = (n + 1, fn (x)) admits  a hyperbol ic  orbit  Z = {n, z,)}. Moreover  we as- 
sume that there are infinitely many  homoclinic orbits X (J) = {(n, x(,J))} which 
together with Z form a hyperbol ic  set A. We make  an addit ional  assumpt ion on 
these homoclinic  orbits: There are infinitely many  points x(, j) on the local stable 
manifold M,+~ of z, as well as on the local unstable manifold M ~ .  By this 
s ta tement  we mean  the following: in any ne ighbourhood  of z, there are infinitely 
many  indices j for which 

x(J) - Z,+k] < qk I X~) _ Z,I for k ~ N and some q ~ (0, 1) n+k 

holds, 

x(J) - -  Z n -  k I < qk ] X(nj) __ Zn [ for k e N, respectively. n - k  ~- 

We prove a theorem of Smale for non -au tonomous  systems for which the map  
f admits a hyperbol ic  set. To this end we have to extend the symbolic sequences 
to the t-s-space. Let A : =  {0, 1, . . . ,  N -- I} be the set of symbols  called alphabeth 
(N > 2). Let S : =  { s i s  = ( . . . ,  s_  l ; so, s l ,  . . . ) ,  s i E A }  = A z be the usual set of 
symbol  sequences and a: 22 ~ S the (Bernoulli) shift map  (or (s)), = s ,+ l .  A is 
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given the discrete topology and N = A z the product  topology. We consider the 
extended shift space 

2 : = Z x Z  

and the extended shift map 

~:2-~ 2 

defined by 

(n, s) : = (n + 1, ~(s)) .  

Definition 3.1. For an infinite set T = {. . . ,  t - l ,  to, t l , . . . }  ~ Z of  integer 
time values ti with ti < t~+ ~ we define the generalized PoincarO map 

Pr:  T x R 2  ~ T x R 2  

by 

Pr(ti, X):= ( t i+l , f ( , ,+l_l )~  . . . . .  f(t,+ t)~ f~i (X)) " 

Remark.  Pr is the return map o f f  with respect to the set T x R  2. If 
X = ((n, x,)} is an orbit o f f  then the map  Pr takes (ti, x t )  to (ti+ 1, xt~+l). The 
map Pr describes the change of the state of an orbit X ~ Z x R 2 on its reduction 
to the set Tx R 2. 

Theorem 3.2. Let  Assumptions A1)-A3)  (see Paragraph 1) be satisfied and let 
there be infinitely many transversal homoclinic points on the local stable and on the 
local unstable manifold. Le t  the union of  all homoclinic orbits together with the 
hyperbolic orbit form a hyperbolic set. Then there is a set T of  integer time values 
ti such that the following holds: 

i) The generalized Poincar~ map Pr admits the shift map ~ as a subsystem, 
i.e. there is a homeomorphism ~: X ~ (o(~) c T x R 2 such that the follow- 
ing diagram commutes: 

r ( Z ) ~  T •  ~ ~ (~  ~) ~ T x R  2 

(ii) I f  So = O, So = 1 respectively, then i r (n, s) - zt. [ < ~o, [r (n, s) - zt~ I > 2 ~ re- 
spectively. 

(iii) I f  so = 0 and sl = 0 and if P = {(k,&)} is the orbit generated by r(n, s) then 

[pk -- Zk[ ~ O for  k E [tn, tn+ l]. 
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P r o o f  We prove the theorem for the case where A = {0, 1}. (Note that  for 
every N there is a generalized Poincar6 map of the shift of two symbols which 
admits the shift of N symbols as a subsystem). In the first part  we determine time 
values r~ and t~ for i 6  Z. In the second part  we associate to every element 
g = (n, s) ~ X an e-pseudo orbit  Q = {(j, qj)}. According to the Shadowing Lem- 
ma  we apply the map rot, (see Proposi t ion 2.5) to Q. Finally we show that  the 
composed map  is the homeomorph i sm we are looking for. 

By Assumption A2), A3) there exists a ~o > 0 such that  for every orbit 
X ~j~ = {(n, x~))} different from the hyperbolic orbit Z = {(n, z,)} there is a time 

1 value m such that  [x~ ~ - zm [ > ~o holds. We fix ~ < 5 ~o and e < Q according to 
the Shadowing L e m m a  and define the time values r~ and the set T of time values 
tz as follows: We put  r o = 0 and choose a transversal homoclinic point  x~ ~ on 

the local unstable manifold M ~  with f x~ ~ - Zol < e .  We consider the images 
2 

x(* j~ = fo (x~~ x~ ~ = f l  ~ fo (x(d ~ . . . . .  x~ j~ = f k - 1  ~ fk  - 2 . . . . .  f l  ~ fo  (X{d~ �9 At 
the beginning as k increases the distance I x~ j~ - Zkl gets larger and larger and 
there is a time value t o > ro such that  ,'(J~ - z~ o I > 0o holds. But since x~ ~ is a 

homoclinic point  there is a r 1 > to such that  I~c(J~ - zr, l < e 0~ ~. Again there is a 

transversal homoclinic point  ~c(J~) on the local unstable manifold M~r with 

x(J') - z~ [ < e The distance between x~ j~ = f k -  1 ~ f k -  2 . . . . .  f ~  (X~ ~) and z k is 

increasing for k slightly larger than  r 1 and for some t~ > r t the estimate 

x (J~ - z , I  > ~0 holds. There is a r 2 > t t such that  [x~{ ~ - z~ I < e_ holds since 
" 2 

xtJ~) is a homoclinic point. Going on in the same manner  one gets the time values 
J ' l  

ro, rx, r2 , . . ,  and to, t~, t 2 , . . . .  The time values r_~, r - E , . . ,  and t_~, t - 2 , . . ,  are 
constructed analogously.  One  takes the map f - 1 instead of the map f and the 
homoclinic points are to be chosen on the local stable manifold M~+or i.e. the 
local unstable manifold of f -  1. Finally the following holds: 

1) 

2) 

3) 

Now we define 

For  all i e Z there are time values r~ and t~ and a transversal homoclinic 
point  x t j~ with the following properties: 

�9 - .  < r _  1 < t _  1 < r 0 < t o < r 1 < t I < . . .  

x(Ji) I~ ] x(Jl ) ~, r,  - z r ,  I < ~ a n d  ri+, - z~,+, l  < 

x(JO 
ti - -  Zti] > ~0"  

the following finite sections of orbits 

Q~o"~ : = {(k, x)  I r .  __< k < r . +  1, x = zk} 

Q ~ : =  ((k, x)lr,  =< k < r , + l ,  x = x~J"~}. 
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We associate to every element g = (n, s) ~ Z an e-pseudo orbit  in the following 
way: 

e:  2 - - ,  ~U. 

= (n, s) ~ ~ (s3"= ~ )  Q(n+i)  ( n - l )  O ( n + l )  U " ' "  ~, . . . .  w Q s _ ,  uQ~"o) U ~  ~ 

Proper ty  2) guarantees that  p(s~ indeed is an e-pseudo orbit. We define 
r: S - .  Z x R 2 by 

z(n, s ) :=  re, o (0(n, s) 

where ~j denotes  the map  defined in Pa ragraph  2 which takes the e-pseudo orbit  
Q to the point  (j, xj) generating the 0-shadowing orbit  of Q. 

We show that v is the homeomorph i sm we are looking for. First we show 
that the diagram commutes .  By definition of (Z we have ~0 (g) = r (6 (~). Thus the 
shadowing orbits {(k, pk)} of ~ (~ and of ~ (6 (~)  are the same and hence 

r o 6(n,  s) = T(n + 1, a(s))  = (t ,+l,pt~ = P T ( t n , p t . )  = PT ~ r(n,  S) 

holds. N o w  we show that  z is one to one. Let  g = (n, s) @ g' = (n', s') be given. If  
n @ n' then r (~ = (t,, p,,) + (t,,, p,,,) = v (g') since t, @ t,,. Therefore it suffices to 
show that s @ s' implies r (n, s) 4= r (n, s'). If  s :t: s' then there is an index k with 
sk + s~ and hence ~O ("+k~ + Q~+k). Thus by proper ty  1) and 3) the e-pseudo orbits 
cp(n, s) = {(], qj)} and ~0(n, s') = {(j, q))} are different and for the index m : =  t,+ k 

Iq~ - q;,I _-> 90 _-> 39  

holds. N o w  the estimate 

IPm-P',,,I >= [qm - -  q'm[ - [P,, -- q,,] - - Iqm --P',,] >= 3~ -- 2e  >= O~ 

follows implying p,, :4: p~, or z (n, s) 4: r (n, s'). It remains to show that r and r -  ~ 
are continuous,  r is cont inuous  since it is the composi t ion  of two cont inuous  
maps. The continui ty of z -~ follows from the following L e m m a  the p roof  of  
which can be found in G. Preuss [9]. 

L e m m a  3.3. Let f :  X ~ Y be a bijective map  from a compact  topological  
space onto  a Hausdor f f  space. Then f is a homeomorph i sm i f f f  is continuous.  

This completes  the p roof  of (i). 
Let r(n,  s ) =  ~t.(cp(n, s ) ) =  ( t , ,pt , )  with (0(n, s ) =  Q. In the time interval 

[r,, r ,+ l )  we have Q = ~o~ Thus if So = 0 then by the Shadowing L e m m a  
IPt. - z,,I < 9 holds and if s o = I then [q~, - zt, f > 9o holds implying 

IP,~ - z,.[ ~ Iq,~ - zt.l - IP,~ - q,,I ~ 39 - e ~ 29 .  

This proves (ii). 
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To prove (iii) we note that s o = s t = 0 implies qi = z~ for i t  [r,, r,+2) con- 
taining the interval [t,, t ,+l]. Now the assertion follows from the Shadowing 
Lemma. [] 

In analogy to the notion of Li-Yorke chaos (see Li and Yorke [4]) one can 
conclude from Theorem 3.2: 

Corollary 3.4. Let the assumptions of Theorem 3.2 be satisfied. Then there is 
an uncountable set M and a constant Q with the following properties: 

(i) f (M) = M. 

(ii) lira inf If" (k, x) - f "  (k, Y) I = 0 
n--+ -I-o9 

(iii) lim sup If" (k, x) - f "  (k, y) l > ~ > 0 
n~_+oe 

for all k ~ Z, (k, x) e M,  (k, y) ~ M.  

for alI k e Z, (k, x) e M,  (k, y) e M, 

x + - y .  

Sketch of  theproof In Stoffer [12] it is proven that the shift space Zis  chaotic 
in the sense of Li and Yorke. Thus there is a uncountable subset M x of Z with 
the above properties. Now put M : = Z  x M z and define M e ' =  r(2~r). From 
Theorem 3.2 assertion (i) it follows that Me is invariant under the Poincar6 map 
PT" NOW let (tk, X)~ Mp and (t k, y)~ Me with x # y. There are sequences u, 
v ~ M~ such that z(k, u )= (tk, X) and ~:(k, v ) =  (tk, y). Since M z is Li-Yorke 
chaotic with respect to the shift map a there are infinitely many indices i with 
ui 4- vi. Property (ii) of Theorem 3.2 implies 

IPr( tk+i ,x)--  PT(tk+i, y)] > ]q~k+, -- Ztk+~l --]Ptk+~ -- qt~.~[ > 3~ -- e > 2~ 

and thus assertion (iii) holds for the Poincar6 map PT" In Stoffer [12] it is proven 
that there are intervals I of arbitrary length with u i = vl = 0. By property (iii) of 
Theorem 3.2 it follows that the orbits stay simultaneously ~-close to the Hyper- 
bolic orbit for arbitrary long time. Thus they are arbitrary close together for 
a certain time value. Hence the set M e satisfies (i), (ii) and (iii) for the Poincar6 
map Pr. Now extend the set Mp c T x g  2 to the space Z x R E, i.e. put 

M : =  U f i  (Mp) and the corollary follows immediately. [] 
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Abstract 

A concept of generalized hyperbolic sets for non-autonomous maps is developed. Starting 
from transversal homoclinic orbits such generalized hyperbolic sets are constructed. The Shadowing 
Lemma is proven for maps admitting a generalized hyperbolic set. Time dependent symbolic 
dynamics is introduced and related to non-autonomous maps. 

Zusammenfassung 

Das Konzept von verallgemeinerten hyperbolischen Mengen ffir nicht-autonome Abbildungen 
wird entwickelt. Ausgehend yon transversalen homoklinen Bahnen werden solche verallgemeinerte 
hyperbolische Mengen konstruiert. Das Shadowing Lemma wird f/ir Abbildungen bewiesen, welche 
eine verallgemeinerte hyperbolische Menge haben. Es wird zeitabh~ingige symbolische Dynamik 
eingefiihrt und der Zusammenhang mit nicht-autonomen Abbildungen dargestellt. 
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