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Transversal homoclinic points and hyperbolic sets
for non-autonomous maps I

By Daniel Stoffer, Seminar fiir Angewandte Mathematik, ETH Zirich

The aim of this paper is to generalize the concept of hyperbolic sets and
transversal homoclinic points to non-autonomous systems. We treat maps
rather than differential equations. The background is as follows: Consider a
planar autonomous system of ODE’s with a hyperbolic equilibrium and a
homoclinic solution. Consider time dependent perturbation of such systems, the
perturbation not necessarily being periodic in time. As in the periodic case we
investigate the time-one map which, however, is no longer autonomous. Thus we
consider maps f: Z x R? - Z x R? with f(n, z) = (n + 1, f,(z)) where the maps
f.(2z) depend on time n.

In Paragraph 1 we develop the concept of transversal homoclinic orbits and
hyperbolic sets for these non-autonomous system. We consider the case of a map
with a hyperbolic orbit which admits infinitely many homoclinic orbits. More-
over, we present a construction of a hyperbolic set for such maps. This construc-
tion does neither need the theory of invariant manifolds (Kirchgraber [2]) nor the
notion of exponential dichotomies (Palmer [7, 8]).

In Paragraph 2 we prove the Shadowing Lemma for non-autonomous maps
admitting a hyperbolic set.

In Paragraph 3 we introduce symbolic dynamics for time dependent maps.
Then we prove that a system containing a hyperbolic set admits the “time shift”
as a subsystem. This generalizes a result of Smale to non-autonomous systems.

In a second part, also to appear in this volume (see Stoffer [13]) we shall
adapt the method of Melnikov to construct transversal homoclinic orbits to
the non-autonomous situation. To guarantee the existence of hyperbolic sets
one has to assume that the so-called Melnikov function has infinitely many
simple zeroes with derivatives bounded away from zero. We shall show that the
Melnikov function coincides with the well known Melnikov integral if the
map is the time-one map of a differential equation. Furthermore we shall show
that the Melnikov function can be interpretated as an approximation of the
distance between the stable and the unstable invariant manifold of the hyperbol-
ic orbit. Finally we shall apply the theory developed to almost periodically
perturbed sytems. We shall show that under certain conditions there exists an m
such that the time-m map restricted to time values mZ admits the “time shift”
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as a subsystem. This generalizes results of Scheurle [10] and brings some kind of
order into the system.

This paper is an extract from the author’s thesis [12].

1. Construction of hyperbolic sets

To motivate the assumptions we shall make we keep in mind the following
example. We consider the differential equation

x=gt,x,pn=9°x)+ug"t,x,n xecR?. a)

Let this differential equation have a hyperbolic equilibrium solution z, for u = 0.
Thus for small 4 there is a hyperbolic solution z () which stays near z,. Further
we assume that for u = 0 Eq. (1) has a homoclinic solution x(t), i.e. a solution
x(t) # z(t) with [x(¢) — z(t)] > O for t » + co. We shall not assume that g is
periodic in time. We shall consider maps rather than differential equations. The
map we discuss, however, may be the Poincaré return map of Eq. (1). We restrict
ourselves to integer values of the time t. For ne Z, x € R? there is a unique
solution ¢ (t; n, x, ) of Eq. (1) with ¢ (n; n, x, g) = x. The time-one map takes the
point (n, x) € Z x R* to the point (n + 1, ¢ (n + 1;n, x, x)) € Z x R*. We formu-
late our hypotheses in the language of maps. We consider the discrete dynamical
system

Ser =S(&), with & eZxR®. (2)

Aset X:={¢ |, = (n,x,) € Z x R*} is called an orbit if for each ne Z f (n, x,)
=(n + 1, x,,,4) holds. Let us make the following assumptions motivated by the
preceeding differential equation example:

A1) The function f: ZxR* > ZxR?, (n,x)—~ f(n,x) = (n + 1, f,(x)) is an
invertible C'-map.

A2) For all ne Z, x e R* the matrix Df,(x) is invertible. For technical
reasons we assume that

L+ y) = £,(x) + D () y + [, (x, )
Df,(x + y) = Df,(x) + D, f,(x, y)

holds (D, denotes the derivative with respect to the second argument) with the
following estimates

DA, Se, e SclylP, DSk ) Sclyl

for some constant c. Let analogous estimates hold for the inverse maps f,~ ! (x).
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A3) *Eq. (2) has a hyperbolic orbit Z = {{ }, i.e. the set
Z = {14 =z, for neZ}

is an orbit and there are unit vectors E; and E, € R? and numbers 4, and A,
such that the equations

Df, ) Ef = A B,
and the inequalities
AT <A <1 <A™ < |4, ]
hold for ne Z.
A4) There exists a homoclinic orbit
X ={&1& = (nx,) for neZ} to Z=1{(},

i.e. X is an orbit different from Z and |£, — {,| — O holds for n - + oco. Every
point of X is called a homoclinic point.

The aim of this paragraph is to show how the hyperbolic structure of Z
carries over to homoclinic orbits. In Proposition 1.1 we treat the case where we
consider one single homoclinic orbit of Z. The result leads us to the definition
of transversal homoclinic points and hyperbolic sets. Finally Theorem 1.10
treats the general case where there are infinitely many transversal homoclinic
orbits of Z.

Proposition 1.1. Let Assumptions A1)—A4) be satisfied. Then for all ne Z
there exist unit vectors e, , e, and numbers ¢, , ¢, all uniquely determined up
to a factor + 1 satisfying

1
) ef, =t—iJDf,‘(xn)e,,i for neZ

n

i) lim|e; —ES|=0and lim |e; —E,|=0.

Moreover, if in addition the vectors eg and e, are linearly independent then the
factors + 1 can be chosen such that

iii) lim |e; —E/|=0 and lim le, —E, {=0

iv) there are constants N e N, 6 € (0, 1) and 7 > 1 such that for all [n| > N

%<|t,,+l<0<1

T>|t,,_|>1>1.
0
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Before we prove this proposition we develop a tool to describe directions of
vectors. We define the direction of the vector v + 0 as the set

R{):={x|x=av,ae R — {0}}.

The direction of a vector v can be described by any vector v” € R (v). We represent
the direction of each vector v=aE +bE,; with b+ 0 by the point

v = gE,,* + E; of the straight line

G,:={x|x=uE; +E ,ucR}.

Figure 1.1 n

We define the map
¢n:R2 - {x’x =ﬂE:,‘uER} - Gn
by

1
v=aE; +bE, o1 = (,/),,(v)=-v=gE,:r +E;

b b
which associates to a vector v point of G, representing its direction. We want to
study the change of the direction of a vector under the map Df,(z,). We first
remark that A3) implies that Df, (z,) takes the direction of EX to the direction
of Ey,y, i.e. R(Df,(z,)Ef)=R(EL ). For neZ we define the map
Fn: Gn - Gn+1 by

E1:= (Dn-i-l ODf;t(Zn)
+

_ —oe A, -
x=pE +E —F(x)= g0 (uA] Ef  +4; En-i—l)::uAl_E;—'Fl_i_En—l—l
which describes the change of direction under the map Df,(z,). F, maps every
interval G,(s):={x|x =puE; + E;,|u| < s} of the straight line G, into the
interval G,,,(s). The map F, is a contraction with contraction factor
+

n

4,

q, = <1. Setting P” = uE,; + E, € G, one has

4

A
E,(PM) = PITD where 4= A” U

n
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To make the proof of Proposition 1.1 more comprehensive we present the
main idea of the proof. If for given m the vectors e, and e,, are prescribed then
by property i) the vectors e, and e, and the numbers ¢,/ and ¢, are uniquely
determined (up to a factor + 1) for all n € Z. Hence one has to choose the vectors
e, and e, such that property ii) holds. It suffices to determine the directions of
e, and e, . We show how to construct e, . The construction of e is done

analogously. The preliminary idea is the following. Consider the backward
iterates X,,_ 1, Xpu—2s - -5 Xm—x Of X,,. Since we want lim |e, — E, | = 0 to hold
B2 —
e, 1s approximatively equal to E,,_, for large k. Thus one can take E,_, as
an approximation of e, _,. Iterating the direction of E,,_, forward under the
maps Df,,_;(x,_)j=kk—1,...,1 one gets a direction R% for each k. One
would expect that these directions converge for k — oo and therefore one could
determine ¢, by putting R{e, ) = lim R,
k-

Our construction is a slight modification of this idea. Instead of associating
to each point x,,_, the direction E,,_, we associate to x,,_, a whole sector of
directions which contains the direction of e,,_, we are looking for. We represent
this sector of directions by an interval on the straight line G,, _;. The map Df, (x,)
induces a map F, (x,) which takes the direction of y to the direction of Df, (x,) y.
This induced map takes intervals of G, to intervals of G, , ,. It turns out that this
map is contracting if x, is close enough to z,. The intersection of all iterates of
such intervals consist of a single point which represents the direction of e, .

Figure 1.2

Proof of Proposition 1.1. We prove the proposition for e, and ¢,
t} it can be done analogously.

a) Z = {{,} = {(n, z,)} is the hyperbolic orbit and X = {£,} = {(n, x,)} is the
given homoclinic orbit of Z. We investigate the change of directions of vectors

;fore,” and
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under the map Df, (x,) for large negative n, i.e. for x, close to z,. To this end we
define the map F,: G, » G, by

Fy= 9,010 DS, (x,).

According to Assumption A2) one gets

F;1:: Pt O(Dfn(zn) + DZf;x(xnﬂ Xpy — Zn))'

Lemma 1.2. For any s € (0, 1] there exist positive numbers N (s)and g € (0, 1)
such that for all » £ — N (s} the following holds:

F(G,) = G,y (9)
b, |, 18 contracting with contraction factor g.

i)
ii)

Proof. Since E;, | and E,, ; are linearly independent there are coefficients a(™
and b i = 1, 2 such that

7 + + -
szn(xm Xp = Zn)En = a(ln)En+1 + a(Zn)En+1

N 3)
DZ];:(XM xn - Zn)En_ = b(ln)E:%—l + b(Zn)En_-{-l ‘

Let T, ., be the matrix consisting of the colomn vectors E,|, , and E, ;. Accord-
ing to Assumptions A3) we have (see Fig. 1.3)

A" = AT A By £ AL BT S1Df, 0 (Zae DN Esy + EJy
SclEy + Efyy]
and thus
A7 — A

|En_+liE:+llg c

+ +
AIH-l En+2

>

A;1+1 En+2

Figure 1.3
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Claim. The following estimate holds

2¢

T E—.
I n+1|__A____A+

(This estimate holds for the Euclidean vectornorm and the induced matrix norm;
for other norms one might have to multiply the r.h.s. by a norm factor).
Proof. The induced matrix norm is defined by
|T|=max A4,(TTT), (the maximum eigen value of TT T).

For the norm of the inverse we get

1 1
-1 _ ) TT -1 ’1"_1 = = '
| T~ = max 4;((T") ) min 4,(TTT)  min A4,(TT T)

Since T is a two dimensional matrix we have
max A;(TT T) - min A,(TT T) = Det (TT T) = Det (T)*

and thus

P L) NV

[Det (T)| — |Det (T)]

[Det (T)| is the area of the parallelogram spanned by E,,, and E,,,. Let
o be the smaller of the two angles between E.,, and E,.,. Then

|Det(T)| = 2sin % cos;— holds and by assumption

B Lo AT —Aa7

|EJ+ 1 En+1|—251n§2 -

o« T o 1
Since 0 < - < — holds one has cos — 2 —— and therefore
274 2 2
2c
T < ——.
| I_A__A+

We solve Eq. (3) for the coefficients a® and b{"

()

a; -1 7 +

<a(n)> =T szn(xn: Xy — Zn) E,
2

h _ . .
(b(ln)) = 1,31 Dy fu(ns X — 2,) Ey
2
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and by Assumption A2) we get the estimates

laf”] = ¢ lx, = z,|

A A

c
|b{"] §X_‘_:FC

|xn - Zn|'

Assumption A4) implies that there is an N (s) such that for n < — N (s)

A- — A7 o f1—at 47 —1
Ixn—z,,ngsmm , .

3 3
This implies

1—A" A= —
la”| = min( 4 1)

373
1—A+A"~1)

b™| < smi
b = s 1n< 7T 3
For P = uE} + E,; we have

F(P") = @, °(Df,(z,) + D, (x,, x, — 2,)) (P™)
= @1 (A, + a0+ DY ES ) + (A, + b + naPE; L)

— p(n+1)
_Pﬂ(+
where
P R VA
A, + b9 +pal’ B
: o : 24+ 47
To prove 1) we show that |u| < s implies || < s g with g = e <1:
b 1—4a 1—4%
|—1]+A;+|a§"’[ + A7 +
A< s s < 3 3 2+A+<
=0 AT e = e = A -1 T Caya %
A- =2 3

To prove 11) we show that |z, — 4| < q lu, — 14 :

&y (ﬂz)*o‘n (.ul) + &y (lul)_an (;ul)
ﬁn (,le) ﬁn (IuZ) ﬂn (/"2) ﬂn (lul)

<o) —a () | e ()| 1B () — B (o) |
N B (112)] B () B (2)1 '

A

i, — Ay <
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According to i) M <s £1 holds and therefore
ﬂn(ﬁul)
S + |aP] + ad’| 2447
— < -0, QO
14, ﬂli_ 1. ()] [14, i_2+A_lﬂ2 N

b) To each x, with n £ — N (s) we associate a sequence of sectors of direc-
tions. Each sector of directions is represented by a segment G¥ (s)k = 0,1, 2, ...
on the straight line G,. We define by induction with respect to k

G“”(S)i= G,(s) = {x|x = puE; +E;,|ul <s}
G (s):=F,-1 (G (5).

Gn—k Gn-k+1 Gn
1
G(O) G M ®

n-k n-k+1 G

/ *nk *nk+1 *

Lemma 1.3. For all se(0, 1), k = 0 and n < — N (s) the following holds:

B

Figure 1.4

i) G®(s) is compact and non-empty.

i) GE+V(s) < GP(s).
iiiy For the length of G¥ (s) the estimate |G% (s)| < 2 ¢*s holds with g < 1.
iv) If s < s’ then G¥(5) = GP (¥).

Proof. The proof is by induction. The assertions are true for k = 0:

i) By definition G (s) = G,(s) is compact and non-empty.

i) GV(s):=F,_1(G,—,(s)) = G,(s) =: G (s) holds by Lemma 1.2.
iii) Length of G,(s) =
iv) GO(s) = G,(s) = G,(5) = G (5) for s < 5",

Let the lemma be proven up to k — 1. Then

i) G¥(s)=F,_,(G* ) (s)) is the image of a compact, non-empty set and thus
is compact and non-empty.
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i) G V(s)=F - (G¥(s) = F,_; (GI () = GPs).
iii) By Lemma 1.2 we have:
length of G (s) < q - length of G¥" V() < g 24" 's.
iv) GP(s)=F,_(Gi" V() = K1 (GE V() = GP(). O

¢) By Lemma 1.3 the sets {P,(s)}:= (1} G¥(s) are compact and consist of
one single point P,(s). k=0

Lemma 1.4, 1) If n £ min (- N(s), — N(s)) then P, (s} = P,(s").
il) Ifn<— N(s)then P,(s} = F,_(P,_,(5)

Proof. 1) is a consequence of Lemma 1.3 assertion iv),

ii) By definition of G¥ (s) we have

vl(Pn—1(S))=F;1 (ﬂ G(k)1(3)) ﬁ Fn—1(G§nkl1(S)>

k=0 k=0

- 6+ e =(BE). O
k=0

d) We prove i) and ii) of Proposition 1.1. To this end we define for
ns—N(1)
-._ k@
e, 1=
A

where the vectors F, (1) are defined in section c¢). To satisfy claim i) of Proposi-
tion 1.1 the vectors e, are uniquely determined for n > — N (1) (up to a factor
+ 1) in an obvious way. We now check i) for n £ — N (1). It suffices to show that
Df,_;(x,_,) takes the direction of e,”_, to the direction of ¢, . This is equivalent
to

(pn(e )_ ¢n(Df;l 1( )en 1)
or

P,()=F,_(B,_,(1).

By Lemma 1.4 this is true for n < — N (1) what proves i) of Proposition 1.1.
To show ii) we choose a monotoniquely decreasing sequence (s;) with s; —» 0
for j— o0. According to Lemma 1.2 there is a sequence (N (s;)) with
N(s;) £ N(s;) S N(s;) < --- and by Lemma 1.4 for n < — N(s))

wn(err) = Pn(l) = Pn(Sj)e Gn(Sj)
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Figure 1.5

holds. Let « be the angle between e, and E, . Then sin a < s; and (see Fig. 1.5)

sin?a
le, [<2s1n— J2(1 —cosa) = 2sina £ /2 5;

1 +cosoz

for n < — N (s;) proving ii) of Proposition 1.1. It remains to show the uniqueness
of e, (uptoafactor + 1). Assume that for all n € Z there are given vectors é, such
that the assertion i) and ii) hold and that for some m we have é,, &= + ¢, . By i)
we have é, & + ¢, for all n € Z, in particular for n = — N (1). By definition of e,
there is a k such that

(P—Nu)(é—N(l)) ¢ G(E)N(l)(l)-
By definition of the sets G¥ (1) we conclude
P-nay-il_nay-0) & G(fﬁ?l)_i(l) for i=1,2,...,k—1
and finally for i = k
P-ny-k€-nw)-1) € C% 1y (D) = G_yay- (D).

Lemma 1.2 implies that ¢,(é,) ¢ G,(1) holds for all n < — N (1) — k. This contra-
dicts ii) which implies uniqueness.
For e, assertions i) and ii) are proven analogously.

e) We prove assertion iii) for e, i.e. we again treat the case n —» — oo. We
have to show that eq =+ + e, implies lim |e; — E; | =0. We consider the

segments H,(s):= {x|x = E] + pE;,|u| £ s} of the straight lines H,:= H, (o)
and the corresponding maps
Yot R® - {x|x=pE,;, ueR} - H,

v=aE +bE, —y,(v)= *U——E++bE_
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The composed map
I:—;:: l//n‘lonn:ll(xn):Hn(S)_} n—1(s)

has analogous properties as the map F,.

Lemma 1.5. For any s € (0, 1] there exist numbers N (s) and §&(0, 1) such
that for all n < — N (s) the following holds:

) E(H,6) < H_ ()
i) F,lg, 18 contracting with contraction factor 4.

Proof. The proof is similar to the proof of Lemma 1.2. [

To prove iii) we show that for any given s > 0 the inclusion y, (e, ) € H,(s)
holds provided n is a sufficiently large negative number. By assumption
el + + e, holds for all n € Z, in particular for n = — N (1). In section d) we have
shown that there is a k such that g¢,(e;) ¢ G,(1) holds for n < — N(1) — k. This
implies w, (e, ) € H,(1).

Let M:= max (N <§), N+ k>. For n £ — M we define a sequence (Q,)

of points Q, € H, (%) by

O_y=E', e H‘M@)
Qn—l L= Fn(Qn)

Il

¢n(e;)

HY(1) v, (e

G(1)

Figure 1.6
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Lemma 1.5 implies Q, € H, (%) for all n < — M. Since w_ (e’ ;) € H_, (1) we
have |y (eFy — Q_y)| £1and Lemma 1.5 implies [y _p-;(eXpr— ) — @ — 3l

< g/ for all j = 0. We choose m so large that §” < 3 holds. The for n <-M-m
we have 2

lwn(es) — ES 1 < [ynley) — Qul + 10, — EJ| S5
or y,(e) e H,(s) which proves assertion iii)

f) Now we prove iv). Ef and E, being linearly independent we put
e; =u,E} + v,E, . From (ii), (iii) follows that there is an N, such that

1
pule) = P(1) = e =~ El + E; €G,(1)

n n

holds for all n with |n] = N,. On one hand i) implies

_ 1 o,
Un+1Pn+1(1)=en+1=t_—Dfn(xn)en =FDf;t(xn)Pn(1)

H

and on the other we have from P, , (1) = F,(P,(1)) and section a)
Py 1 (1) = @piy (Df,(x,) P, (1))

1 ",

Comparing these two last formulas one gets

Y
ty =4y + b9 + pad’) —

nt+1
and according to section a)
24+ 47

2
<4, + b9+ paP| S147|+ 5147 — 1] S e

holds for |n] = N, and some constant ¢, (Note that the considerations of sec-
tion a) apply not only for n < — N, but for n > N, as well). Now we choose
d €(0, 1) such that

3 1+90
V=i 1=
Since lim w, = 1 holds there is an N > N, such that |0, — 1| £ J holds for
n—> tw
|n| = N. This implies the estimate to be proven
1<1_2—I—A‘_1—5 = c1+5_
- 3 1+s= T %1-6



Vol. 39, 1988 Transversal homoclinic points 531

Analogously one shows that
1 +
=2 s60<1
T

for |n| > N, N sufficiently large.
This completes the proof of Proposition 1.1. [

Remark. In view of the considerations of infinitely many homoclinic orbits
a slightly different formulation of the results in f) is needed. The estimates

leiri<o<t
T

hold if |x, — z,|, le, — E, | and |e,] — E,;| are sufficiently small.
Next we modify the length of finitely many vectors e such that assertion
iv) of Proposition 1.1 holds for all n € Z (with modified 6 and 7). We show how
todoitfore,. LetQ(n):= T |t | and N be the number of assertion iv). Then
i=—n M

there is an M > N such that Q(M) = T[] |t/ < Q(N) - 0*™~Y < 1. Choose
i=-M
6™ such that ()M *! = Q(M). We define the numbers d;' by

di =1 for n<—M and for n> M
. g
A= K for —Msn<M

and the vectors h, by
h:=d}el forneZ

1) of Proposition 1.1 implies

1 dr
i = i Df,(x)h, where 1 :=15 " )
n n+

and it easy to verify that
i =tF for |[n|>M
Jf =0% for |n| <M

holds. The scaling can be done analogously for the vectors e, . Summarizing the
above statements we get the following lemma:
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Lemma 1.6. There are 0, # > 0 such that

1 o
S= A=<t
T

1

P

holds for all n e Z.

Now we introduce local coordinates. To each point &, = (n, x,) we associate
the matrix 7T, with the column vectors h; and h, . For the points & = (n, x)
and f(&) = (n + 1, £,(x)) we introduce local coordinates (n, u,) and (n + 1, 4, ;)
by

x=xn+ T;t“n’ fn(x)=xn+1 + T;l+1un+1'

By Assumption A2) we can write for f,
fu(x) = £,0e0) + DSy (x,) Ty + O (1w |)
leading to
Upyy = T35 D (6) T, + O (u,|).

By i) of Proposition 1.1 and Lemma 1.6 we conclude that

) 30
tr,,+ﬁDfn(xn>n=(0 z;)

o A 1 . .
is a diagonal matrix with |1f]| <6 <1< 5§ |2, |. This shows that if the

vectors e, and e, are linearly independent the homoclinic orbit X = {(n, x,)}
carries a hyperbolic structure. Our considerations suggest the following defini-
tions:

Definition 1.7. A homoclinic point &, = (n, x,,) is called transversal if e, and
e, are linearly independent. A homoclinic orbit X = {£,|&, = (n,x,), ne Z} is
called transversal if its elements are transversal homoclinic points.

Definition 1.8. A set A = Z x R* is called hyperbolic if there are constants
0e(0,1) and t > 1 and if for every point & = (n, x) € A there is a regular matrix
T (&) = T(n, x) such that

H1) A = f(A) is invariant.
H2) The sections A,:= {(k, x)|(k, x) € A, k = n} are compact for all ne Z.
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H3) The matrices A(E):= T (n)~ Df,(x) T (&) with n = f () are diagonal with
diagonal elements 1™ (&), 1™ (&) where

Lerorso
T

égm*@»gr

holds.

H4) T (&) and T(E)™* are bounded by t.

H5) The map e A T(E)" e GL(2,2) is uniformly continuous, i.e. there is
a function 6(g) with d(e) - 0 for ¢ > 0 such that |£ —n| <e¢ implies
T =T <.

It is easy to check that the hyperbolic orbit Z = {(£,)} and the union
Zu X ={()} v {(§,)} of the hyperbolic orbit Z with the transversal homoclin-
ic orbit X are hyperbolic sets. As the following paragraphs will show the concept
of hyperbolic sets becomes interesting if the considered set contains infinitely
many transversal homoclinic orbits.

We want to find other equivalent formulations for the transversality condi-
tion of Definition 1.7 which will be easier to verify. To this end we introduce the
space X of bounded sequences x = (x,) where n e Z. Endowing X the norm

Ix] = sup |x,|

neZ
where |x, | is just any norm in R? (e. g. the Euclidean norm) the space X becomes
a Banach space. Let F: X — X be the map defined by

(F(x))n:zxn+1 —_fn(xn)'
It is obvious that the set X = {(n, x,)| n € Z} is a bounded orbit iff x = (x,) € X
and F(x) = 0 holds.

Proposition 1.9. If X = {(n, x,)} is a homoclinic orbit to the hyperbolic orbit
Z = {(n, z,)} then the following statements are equivalent.

1) X is a transversal homoclinic orbit.
i) The difference equation u,., = Df,(x,)u, has no non-trivial bounded
solution.
iii) The operator L: X — X defined by (Lu),:= u,,, — Df,(x,)u, is invertible.

Proof. 1) = ii). As we have shown so far one can diagonalize the matrices
Df,(x,) by the transformations u, = T, v,. The difference equation in assertion ii)

becomes v, = 4,v, where 4, = diag (4,7, ,) with |27 <0< 1 < —;- =1\, |

With the Ansatz v, = (2") one gets |s,| = %’;' for n >0 and |r,| = 0" |r,]| for

n
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n < 0. Thus if the sequence (u,) is bounded then r, = s, = 0 holds and therefore
v,=0forallneZ.

ii) = i). We prove the contraposition. Assume that X is not transversal.
Then e = + e, . Putting u,:= ej we get by Proposition 1.1 that

n—1
u, <H ti+> ey for n>0

i=0
-1
u, =+ <H (t{)"1> e, forn<0

is a solution of the difference equation ii). To see that (,) is a bounded solution
we notice that there is an N such that

ltF1<0<1 for n>N

1
1t;[§5>1 for n<—N

holds. If ef and e, were linearly independent the above estimates would follow
from Proposition 1.1 part iv). The weaker statement needed above holds even
if e and e, are linearly dependent, in view of Proposition 1.1ii) and since
|x, — z,| = 0 for |n| —» co.

ii) = iii). By ii) the equation Lu = 0 implies u = 0. Since L is linear this
implies that L is injective. Again by the transformation u,= T,u, we get
0,4, = A,v, where 4, = diag (4, 4,). L is invertible iff the transformed opera-

n

tor L is invertible. L is given by
, W,

(Lv)n =Upy1 — AnUn =W, = ( n~>
For any w € X one simply computes the solution v = (1,) = ((r,,)) of Lv=wto
be S

Ta =Wy + A Wi+ A AW

1 1 e 1 -
Adwir T A A T

Thus L is surjective and

1
1L wl S v

holds implying that L' is bounded.

iii) = ii) is trivial. [
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Now we consider the case where there are infinitely many transversal homo-
clinic orbits to the hyperbolic orbit.

Theorem 1.10. Let Assumptions A1), A2) and A3) hold. If for every j € Z there
is a number m; and a homoclinic orbit

XO=ED D = (n, xP), ne Z} to Z = {{,|(, = (n, z,), ne Z}
such that

a) For every >0 there is a ¢ >0 such that xP¢ U (z") implies
|x@ — xP| = & for every je Z — {i}. Uy(z,) denotes the a-neighborhood of z,.

b) For all ¢ > 0 there exists a number N (o) such that |x¥ — z,| < o holds for
all n with |n — m;| > N (o). (Note that N (o) is independent of j).

¢) The linear operators L;: X — X defined by

(Lj U, =u,,; —Df, (xfj)) u,

are invertible and there exists a constant c, with || L1 || £ ¢,.

Then the set A:=Z U | | XY is hyperbolic.

jeZ

Remarks. 1) Condition a) means that the only limit point of {x{’|j e Z} is z,,.

2) Condition b) means that the orbits X stay g-close to the hyperbolic
orbit Z with 2N (g) + 1 exceptional points.

3) Condition c) implies by means of Proposition 1.9 that the homoclinic
orbits X are transversal.

4) In the case where f is 1-periodic in time, i.e. all f, are identical, the
theorem follows immediately from Proposition 1.1, Proposition 1.9 and Lem-
ma 1.6.

Proof: According to Proposition 1.1 for every orbit X9 = {(n, x\")} there are
unit vectors e’ * and e~ and numbers 1 and t¥~ with the properties i)~iv)
of Proposition 1.1. Now we want to rescale these vectors in a uniform manner
such that Lemma 1.6 holds for all orbits X . As in the proof of Proposition 1.1,
Sect. a), we consider the maps

F;,,(X, )= ¢n+1 onn(x): Gn(i) - Gn+1

and analogously the maps

By (%)= Yoy o D (x): H, (1) > H, o
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Figure 1.7 GI{I)

By the estimates of Sect. a) in the proof of Proposition 1.1 we know that if x is
sufficiently close to z, then the map F, (x, -) is defined on the segment G, (1) and
is contracting with contraction factor 0 <1 and & is independent of n.
Analogously the map F, (x, - ) is defined on the segment H, (1) and is expanding

with expansion factor —;;> 1. By Proposition 1.1 we have

0% 0y = D, (x4 e

By the remark following the proof of Proposition 1.1 the following holds: If
(X — 2.1, 1e¥" — Ef| and [e{’” — E, | are sufficiently small then the estimates

. — . 1
<t <0<, T2V 22> 1
n n 0

QY=

hold. By assumption b) there is an N, such that for all orbits X = {(n, x{)} the
point x{ is a close to z, as we wish, provided |[n — m;| > N, holds. Now we prove
the following lemma:

Lemma 1.11. For every 6 > 0 there is an N, such that for every je Z and
for every n with |[n — m;| > N, the estimates

le" —ES| <9
e~ —E;| <5
hold.
Proof. For w = (w,) with

_ fePr £ for k=n—1
=0 for k+n—1
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the equation L;u = w has the solution u = (u;) with

= + 1 (6} 0
U, 3 T = €n-3
tgl 1 tg)_z tﬁ{)_g,

_ - U)=
Un—2 = X G- @2
im1li=2

_ — ()~
unvl i t(i)— enj~1
n—1
u, = eP+
N e
Upyy = tﬁ{) eiﬂw

ot ot Dt
”n+2—ty) tyil eﬁﬂrz

Assumption ¢) yields

1
jul = — fu,| = =

) ) 1 1
e 2 97| = [wl 2
Co Co

B
This inequality shows that e/’ * and + e~ have a minimal distance independent
of n and j. Constructing e¥)~ we have seen that ¢,(e{’ ") e G,(1) holds for all

n < m; — Ny. Analogously y, (¢"*) € H,(1) holds for all n = m; + N,. We show
that there is an N’ = N, such that for all j€ Z and all n with [n —m,| = N’

(e ") e G, (1)
v (ei” ") € H,(1).

Assume that ¢, (el’”) & G, (1) for some jand n = m; + N;. y, (e} and y, (e’ ")
have a minimal distance independent of n and j as follows from the previous

. . o= . . . . 1
estimate on [ef?* 4+ €0 7|. F, (x,-) is expanding with expansion factor 7 for

n = m; + N;. Thus there is an N’ > N, independent of j such that for some
k € [m; + Ny, m; + N'] we have y, (e’ ) ¢ H, (1). By definition of H, (1) and G, (1)
we therefore conclude ¢, (e’ ) € G, (1) cf. Fig. 1.7. Since G, (1) is invariant under
E,(x9,-) we have ¢,(¥")e G,(1) for all n > k and in particular n = m;+ N'.
The claim for ?* is proven analogously.

Given 6>0 we show that there is an N”"> N’ such that
| @,(e”) — E, | <6 holds for all n = m; + N".

. 1 N d\.
Thereisan N <§> such that F, (x¥, - Ymaps G, <§) into G, (g) foralljandall

nzm;+N (5) This follows from assumption b). Put M:= max <N <§> N’).
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For every j we define a sequence of points QY), n = m; + M by

_ )
QU)+M = Em +M€GCuum <2>
Q(J) - (xU) Q(J)) for n > m; + M.

. 0
It follows QYegG, <§> for all n=m,+ M. For n=m;+ M we have

|p,(e¥ ") — E, | < 1. Since F, (x4, -) are contractions with contraction factor §

there is an N” independent of n and j such that |¢,(e¥™) — Q9| gg for
nz=m; + N” and therefore
| gu(ed ™) — E; [ 10,(7) — Q91 + 1090 — Ef | <6

Similarly one shows that | g, (el ™) — E, | < J holds for all n < m; — N". Now
the lemma follows immediatly from Fig. 1.5. [

Thus by the remark after the proof of Proposition 1.1 there is an N, such
that the estimates

- ]
Lowri<o<1 and Tz 25> 1 “)
T

hold for |n — m;| > N,. Now we build the products

N

0Ff (W)= T1_[tD3l.

i=—N

Since the derivatives of f and f ~! are bounded and regular there are bounds S
and T independent of j such that the estimates

1
—17;<Q1*(N2)<S and T>QJ.'(N2)>§

hold. According to Eq. (4) there is a number M = N, independent of j such that

;,,<Q} (M)<1 and T'>Q; (M)>2

holds for some T". -
Now we proceed as in the derivation of Lemma 1.6. We choose 9+ and

70* guch that (fV*)*M** = Q7 (M) and put
dorE =1 for n<m;—M and for n>m; + M
(it guyE

+__ n
diz T(z)_i— for m; —M<n<m+M
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and
hOE = d9* D% for neZ.

For the vectors h?* the relations

2PE 9 = DS, (xP) )+ ()
it o B .
hold with A9+ = (0+ 0% The estimates
n

Lo <o
T
©)

=497 >1
= n 0

with 6 = max {0, 8} and 7 = max {%,é_ are easy to verify. We now are at the
point where we can show that 4 is a hyperbolic set. We define

T, x):= (B9, 197)
to be the matrix consisting of the column vectors h%* and A9~

H1) A is invariant since it is the union of invariant sets.

H2) The sections 4, = {z,} v {x{|j e Z} are compact since by assumption a)
x% — z, holds for j — + c0.

H3) According to Eq. (5) and Eq. (6)

, . N7 A
A(n, x®) = T(n+ 1,7 DJ, () Tn + 1,x<;>)=( ) w)->

holds with the estimates

1 )
<2V <0
T

- 1

7> |40 > 0

H4) Since h* and hY’~ are bounded and bounded away from zero and
since the angle between them is bounded from below the matrices T (n, x) and
T (n, x)~* are bounded.

H5) The angle between h9* and h%)~ being bounded from below it suffices
to show that the vectors h{’* are uniformly continuous. Since by Assump-
tion A2) a neighbourhood of z, (the width of which is independent of n) is
hyperbolic there is a ¢ > 0 such that !x,‘,{; — 2,71 > ¢ holds for all je Z. And
therefore there is a ¢’ such that [x{’ — z,| > &' holds for all n with [n — m;| < M.
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This means that in the §’-neighbourhood of z, we have h{?* = e{’*. By Assump-
tion a) the points outside these neighbourhoods have a minimal distance inde-
pendent of j and n. Thus it suffices to show that the vectors e{’* are uniformly
continuous, i.¢. that for all ¢ > 0 there exists a § > 0 such that |x{? — x¥| < §
implies [e¥* — eP*| < &. By Assumption a) it suffices to show that for all ¢ > 0
there is a 6 > 0 such that |x\ — z,| < § implies [e{’* — EX| < &. One can con-
clude that if |x{ — z,| is small then |n — m;| is large. Thus the last statement
follows from the uniform contraction property of E, (x,-): G,(1) = G,.., (1) and
the uniform expansion property of F,(x,-): H (1) » H,,,(1). O

2. Pseudo orbits and the shadowing lemma

In this paragraph we prove that the Shadowing Lemma holds for maps
admitting a time dependent hyperbolic set. The proof follows essentially the
ideas of Kirchgraber [2] where the Shadowing Lemma is proved for autonomous
maps. Now we have to work in the ¢ — x space instead of the x-space only. All
considerations can be carried over from one case to the other. For completeness
we give the full proof of the Shadowing Lemma for the new situation.

We consider a map f: Z x R> — Z x R? with f(n,z) = (n + 1, f,(z)) admit-
ting a hyperbolic set 4 (see Definition 1.8).

Definition 2.1. 4 set P={(n, p,)|n € Z, p, € R*} is called orbit if p,.; = f,(P,)
holds for allne Z.

Aset Q =1{nq,)|neZ, q,eR*} < Ais called pseudo orbit.

Aset Q ={(n,q,)|neZ, q,cR*} < Ais called e-pseudo orbit if Q is a pseudo
orbit and if additionally |q,,, — f,(q,)| = € holds for allne Z.

A set P={(n,p,)neZ,p,cR?} is called g-shadowing orbit of the pseudo
orbit Q if P is an orbit and if in addition |p, — q,| < ¢ holds for all ne Z.

We give the set ¥ of all pseudo orbits a topology. To every pseudo orbit
0 = {(n,q,)} we associate the unique sequence (g,)e [] 4,. For the set
z

Q:= [ 4, we choose the product topology. The map which takes the sequence
neZ
(g,) to the pseudo orbit Q = {(n, g,)} induces our desired topology in ¥. The sets

1 .
Bp:=1{Q = {(n. )} |14, — gul < for all n with {n] < L}
form a base of neighbourhoods of Q = {(n, g,)}.

Proposition 2.2. i) The set ¥ of the pseudo orbits is compact.

ii) The set ¥, of the e-pseudo orbits is compact.
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Proof. 1) As product of compact sets the set £2 is compact. Hence the set ¥
is compact as well.

i) The subset ¥ of the compact space ¥ is compact iff it is closed. We show
that the complement C ¥, of ¥ is open. We have g € C %, iff thereis an n € Z such
that |g,+1 — f, (g, = d > & holds. Since f, is continuous there is a > 0 such
that

|gns1 — Gnir| <8 and g, —q,| <9 (1)

mplies {q,, 1 — f,(g.)] > & The set of all pseudo orbits satisfying (1) form an
open neighbourhood of g which is contained in C ¥. Thus C ¥ is open and
therefore ¥ is closed implying that ¥ is compact. [

Theorem 2.3. (Shadowing Lemma). Let assumptions Al) and A2) of Para-
graph 1 be satisfied. If f admits a hyperbolic set /A then there is a g, such that for
each ¢ with 0 < ¢ < g, there is an ¢ > 0 such that the following statement holds:
For every e-pseudo orbit Q = {(n, q,)} there is exactly one g-shadowing orbit

P = {(n.p)} of Q-

Proof. Let Q = {(n, q,)} be an e-pseudo orbit. Since (n, g,) € 4 holds there are
matrices T'(n, g,) such that statements H1)—H35) of Definition 1.8 hold. To sim-
plify the notation we introduce the following abreviations:

Gui1:= 1) T,=Tmaq) T,:=Th+1,4,.,)
A,:= A, q,)=T,71 Df,(q,) T, =diag (4], ;).

We introduce local coordinates u, by p, = q, + T,u,. The set P = {(n,p,)} is a
g-shadowing orbit of Q = {(n, ¢,)} iff for aline Z

|T;1un|:1pn—"qnlég and un+1:Anun+gn(];zun)
holds where

gn(x) = T;:li (qn-{»i - qn+1) + (T;z:L]i - 7;:-—#11)Df;1(qn)x + ﬂll]kf;:(Qm X)
and f, has the same meaning as in Paragraph 1, i.e.

LG+ ) =100 + DALy + (x ).
The functions g, (x) satisfy the following estimates

() S t-64+3d@E)-c-o0+7-¢-0? 5
IDg,(x)| £0(@)-c-t+1°Cc-p @)

for all x with |x| < ¢. The constants 7, & (¢) and ¢ have the following meaning:
T is an upper bound of T'(n,g,) and T(n,q,)” ' and &(¢) is the modulus of
continuity of T'(n, ¢,)~ . ¢ is the constant of Assumption A2).
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Let X be the space of bounded sequences x = (x,), ne Z. X is given the
sup-norm and this way it becomes a Banach space. Let us define the following
operators in X:

T:X - X, (Tw),:= T,u,.
G:B,:= {ueX[|Tu| <o} > X, (G),:=9,()
L:X-X, Lw),:=u, , — A, u,.

There exists a unique g-shadowing orbit iff there is a unique ue X with
| Tu| £ ¢ and Lu = G(Tu) or iff there is a unique ve X with o] < ¢ and
LT v = G(v).

Proposition 2.4. Let (4,) be a sequence of 2 x 2-matrices with

=2,

" |

(72N

. 1
An:dlag(i;—nin—)’ ¥§ M‘rj—lég and T

1
0
for some constants §e(0,1) and 7> 1 and let g,(x), n€ Z be continuously
differentiable functions which satisfy the following conditions:

o
19,0 = =2

T
IDg,(x)| <o forall x with [x| ¢

1
where o« = —— (1 — 6). Then there exists exactly one sequence v = (y,) € X such
that

lv] €0 and LT 'v=G(v)
holds.

Equation (2) implies that this proposition applies. One first fixes ¢ suitably
and afterwards chooses ¢ sufficiently small. Thus Theorem 2.3. is proven up to
Proposition 24. O

Proof of Proposition 2.4. We show that L is invertible. From the structure
of the matrices A, it follows that the equation Lu = 0 only admits the trivial
solution. We show that Lu = w has a solution for all w e X. Putting

u,f w
U, = ) W= _
un wn
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we get the solution
uy = w4 w4 A Wi

1 1 1

U, =— =Wy — 7= Weyo — 75— 5= Waez — "
j‘n }“n A‘n+1 A 'J“n+1)“n+2

One verifies easily that the series converge (this follows from

1
=0 <1 <5214,

that u = (u,) solves the equation Lu = w and that |u| < |w]| holds. Thus

(-0

L is invertible and L ! satisfies the estimate |L™'| < . By the assumptions

(t-0
of the proposition the map G has Lipschitz constant o and |G (0)| < %Q holds.

It remains to show that the equation LT ~* v = G (v) has exactly one solution
in B,. An equivalent equation is H(v):= TL"' G(v) = v. The function H is
Lipschitz with Lipschitz constant £ and for ve B,

HOISHO|+ HO) - HO| s+ <0

holds. Consequently H (v) € B, holds. Now the proposition follows from the
Banach Point Theorem. [

We derive a first application of the Shadowing Lemma. Let ¢ and ¢ be
chosen according to the Shadowing Lemma. For every jeZ the orbit
P = {(n, p,)} is uniquely determined by the point (j, p;). The Shadowing Lemma
says that for every e-pseudo orbit Q = {(n, q,)} there is exactly one p; with
|p; — g;| < ¢ such that the orbit P = {(n, p,)} generated by (j, p;) is a g-shadowing
orbit of Q. We denote the map from the e-pseudo orbits to (j, p;) by ;.

n: ¥, > ZxR*, Q- m(Q)=(,p)
In other words: ; takes the e-pseudo orbit Q to the point (j, p;) which generates
the uniquely determined o-shadowing orbit of Q.

Proposition 2.5. For every j € Z the map ; is continuous.

Proof. Since in ¥ every point has a countable base of neighbourhoods it
suffices to show that for every sequence (Q™) of e-pseudo orbits which converges
to Q the sequence (z;(Q™)) = ((j, p{¥)) converges to 7;(Q) = (j, p;). For every
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N e N there is a k, such that k > k, implies [¢{ — g;| < % for all j with [j| < N.
For the o-shadowing orbit P® of Q® every p{® lies in the g-neighbourhood of
¢\ and therefore in the ¢ + %-neighbourhood of g;if k > k, and |j| < N holds.

Thus for j = 0 the sequence (p®), k € N, is bounded and therefore it suffices to
show that p, is the only limit point of that sequence. Let j, be any limit point
of (p¥), ke N. Then there is a subsequence (p&) which converges to p,. We
consider the g-shadowing orbits P%) = {(n, p%*))} of the e-pseudo orbits
Q%) = {(n, q*)}. Since f, and f,” ! are continuous one concludes by induction
with respect to n that p{ converges to some p, as k; — co and that f (3,) = , .1
holds. Thus the set P:= {(n, 5,)} is an orbit. Moreover

Iﬁn - qnl é |ﬁn _pgki)l + IPfuki) - qﬁki)l + IqSIki) - Qn!
-0 e -0
holds for i— oo. Since the Lh.s. doesn’t depend on k; one concludes
|B, — q,] < 0. That means that P is a g-shadowing orbit of Q. Since by the
Shadowing Lemma the g-shadowing orbit is uniquely determined the orbits P
and P = {(n, p,)} coincide and p, = p, holds for all n € Z. Thus p, is the only limit
point of the sequence (p¥), ke Z. O

3. The shift map as a subsystem for non-autonomous maps

We consider the following situation. Let Assumptions A1)—A3) of Para-
graph 1 be satisfied, i.e. the differentiable map f:ZxR?> —» Z xR* with
f(n,x) =+ 1, f,(x)) admits a hyperbolic orbit Z = {n, z,)}. Moreover we as-
sume that there are infinitely many homoclinic orbits X9 = {(n, x4)} which
together with Z form a hyperbolic set 4. We make an additional assumption on
these homoclinic orbits: There are infinitely many points x{’ on the local stable
manifold M, of z, as well as on the local unstable manifold M. By this
statement we mean the following: in any neighbourhood of z, there are infinitely
many indices j for which

IxD, —z, ] £ ¢°|xY — z,| for ke N and some g (0, 1)
holds,

X, —z,_ | £ ¢ |x{» — z,| for ke N, respectively.
We prove a theorem of Smale for non-autonomous systems for which the map
f admits a hyperbolic set. To this end we have to extend the symbolic sequences
to the t-s-space. Let A:= {0, 1, ..., N — 1} be the set of symbols called alphabeth

(N=2). Let Z:={s]|s= (..., S_1;Sqs51,.-)s ;€ A} = A% be the usual set of
symbol sequences and ¢: X — X the (Bernoulli) shift map (g (s)), = 5,41 4 18
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given the discrete topology and X = A% the product topology. We consider the
extended shift space

S:=ZxXx

and the extended shift map
555

defined by

6(m,s):=m+1,0(s).

Definition 3.1. For an infinite set T = {...,t_,tq, t1,...} < Z of integer
time values t; with t; < t;,; we define the generalized Poincaré map

P.:TxR*> > TxR?
by
Pr(t;, x):= (ti+1:ﬁti+1—1)o./f;ti+1‘2)o °f(ti+1)°fti(x))-

Remark. Py is the return map of f with respect to the set T x R% If
X = {(n, x,)} is an orbit of f then the map P takes (t;, x,) to (t;1, x,,, ). The
map P, describes the change of the state of an orbit X < Z x R? on its reduction
to the set Tx R%.

Theorem 3.2. Let Assumptions Al)—A3) (see Paragraph 1) be satisfied and let
there be infinitely many transversal homoclinic points on the local stable and on the
local unstable manifold. Let the union of all homoclinic orbits together with the
hyperbolic orbit form a hyperbolic set. Then there is a set T of integer time values
t; such that the following holds:

1) The generalized Poincaré map Py admits the shift map & as a subsystem,
i.e. there is a homeomorphism t: 5 — (&) = T x R? such that the follow-
ing diagram commutes:

X d z

T T

1(X) = TxR>-25 1(5) =« TxR?

(i) If so = 0, 5o = 1 respectively, then |t(n,s) — z, | < o, |t (n, s) — z, | > 20 re-
spectively.
(i) If 5o =0 and s, = 0 and if P = {(k, p,)} is the orbit generated by t(n, s) then

b — 2zl <@ for kelty, t,.q].
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Proof. We prove the theorem for the case where 4 = {0, 1}. (Note that for
every N there is a generalized Poincaré map of the shift of two symbols which
admits the shift of N symbols as a subsystem). In the first part we determine time
values r; and ¢t; for ie Z. In the second part we associate to every element
§ = (n, s) € X an g-pseudo orbit @ = {(j, q;)}- According to the Shadowing Lem-
ma we apply the map =z, (see Proposition 2.5) to Q. Finally we show that the
composed map is the homeomorphism we are looking for.

By Assumption A2), A3) there exists a g, > 0 such that for every orbit
XV = {(n, x")} different from the hyperbolic orbit Z = {(n, z,)} there is a time
value m such that |x{) — z, | > g, holds. We fix ¢ < 1 g, and & < ¢ according to
the Shadowing Lemma and define the time values r; and the set T of time values
t, as follows: We put r, = 0 and choose a transversal homoclinic point x§® on

the local unstable manifold M,,, with |x§? — z,| < % We consider the images

xXPo = fo (), x§° = fi ° fo(x), ..., X = Jem1° ez 00 fro fo(x6) At
the beginning as k increases the distance |x{® — z,| gets larger and larger and
there is a time value t, > r, such that |x{ — z, | > g, holds. But since x§® is a

homoclinic point there is a r; > t, such that |x{? — z, | < % Again there is a
transversal homoclinic point xU? on the local unstable manifold M,,, with
[xU) —z, | < g The distance between x{V = fi_ o fi_,°--- o f, (xUY) and z, is
increasing for k slightly larger than r, and for some t, >r, the estimate
|xU — z, | > g, holds. There is a r, > ¢, such that [xJ® —z, | < % holds since

x¥1) is a homoclinic point. Going on in the same manner one gets the time values
TosTy>Ts...and g, t(,t,,.... The time values ¥ _,r_,,...and t_y,t_,,... are

constructed analogously. One takes the map f ~! instead of the map f and the

homoclinic points are to be chosen on the local stable manifold M, i.e. the

local unstable manifold of f ~!. Finally the following holds:

For all i € Z there are time values r; and ¢; and a transversal homoclinic
point xU? with the following properties:

1) o <r_ <t 1 <rp<tog <Py <ty <--

2) |x —z,| < % and |x9) —z, |

3) lxﬁfi) - Ztil > Qo-

Now we define the following finite sections of orbits
0= {lk, x) |1, Sk <Fpiq, X =2}

Q(ln):= {(ka x)lrn é k < rn+1ﬂx = xijn)}‘
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We associate to every element § = (n, 5) € £ an e-pseudo orbit in the following
way:

S=(ns)m @)= ) 05 =LY VWU QLTI L
icZ
Property 2) guarantees that ¢(3S) indeed is an e-pseudo orbit. We define
1: 5 - ZxR? by

T(n,8):=m, ° ¢(n,s)

where 7; denotes the map defined in Paragraph 2 which takes the e-pseudo orbit
0 to the point (j, x;) generating the g-shadowing orbit of Q.

We show that 7 is the homeomorphism we are looking for. First we show
that the diagram commutes. By definition of ¢ we have ¢ (5) = ¢(6(3)). Thus the
shadowing orbits {(k, p,)} of ¢(8) and of ¢(5(3)) are the same and hence

tedms) =t +1,00) = sy, 00,,) = Pr(t,, p,) = Protins)

holds. Now we show that 7 is one to one. Let § = (n, s) + §' = (v, &) be given. If
n =+ n' thent(8) = (t,, p,,) * (t,, p,,) = ©(§) since ¢, =+ t,,. Therefore it suffices to
show that s & §" implies 7(n, s) + t(n, s). If s + s’ then there is an index k with
s, + s and hence Q0 *9 + Q¥*H. Thus by property 1) and 3) the e-pseudo orbits
e(n,s) = {(j, q)} and ¢ (n, s") = {(j, ¢})} are different and for the index m:= 1,

(G — Gl Z 00 Z 30

holds. Now the estimate

1w = Pl 219 — Goal = P — @] — 1@ — Pl 230 —2e2 ¢

follows implying p,, # p;, or 7(n, s) & 7(n, ). It remains to show that r and 77!
are continuous. 7 is continuous since it is the composition of two continuous
maps. The continuity of 7~ follows from the following Lemma the proof of
which can be found in G. Preuss [9].

Lemma 3.3. Let f: X — Y be a bijective map from a compact topological
space onto a Hausdorfl space. Then f is a homeomorphism iff f is continuous.

This completes the proof of (i).

Let t(n,5) =7, (p(n,s) = (t,,p,) with ¢(n,s)= Q. In the time interval
[Fns Tn4+1) We have Q = Q. Thus if s, = 0 then by the Shadowing Lemma
|p., — z.,] < ¢ holds and if s, = 1 then |q,, — z, | = g, holds implying

ipt,Z _Zt,,l = Iqtn~ Zt,,] - ]ptn_ anl Z3pg—¢2 29.

This proves (ii).
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To prove (iii) we note that s, = s; = 0 implies ¢, = z; for i e [r,, 7,1 ,) con-
taining the interval [t,, ¢,, ,]. Now the assertion follows from the Shadowing
Lemma. [

In analogy to the notion of Li-Yorke chaos (see Li and Yorke [4]) one can
conclude from Theorem 3.2:

Corollary 3.4. Let the assumptions of Theorem 3.2 be satisfied. Then there is
an uncountable set M and a constant ¢ with the following properties:

@ f(M) =M.
@) lim inf|f*(k, x) — f"(k, )1 =0 forall keZ, (k,x)e M, (k,y)e M.
@ii) lim sup |f"(k, x) — "k, y)|Z0>0 forall keZ, (k,x)e M, (k,y)e M,

X+Yy.

Sketch of the proof. In Stoffer [12] it is proven that the shift space X'is chaotic
in the sense of Li and Yorke. Thus there is a uncountable subset My of 2’ with
the above properties. Now put M:=Z x M; and define Mp:= t(M). From
Theorem 3.2 assertion (i) it follows that M, is invariant under the Poincaré map
P;. Now let (t,, x)e Mp and (¢, y)€ Mp with x % y. There are sequences u,
ve My such that 7(k, u) = (t;,x) and v(k,v) = (f,y). Since M; is Li-Yorke
chaotic with respect to the shift map o there are infinitely many indices i with
u; % v,. Property (ii) of Theorem 3.2 implies

|Pp(tysis X) — Pr(tyris M 218, — sznl NPy — s = 3g—e22¢

and thus assertion (iii) holds for the Poincaré map P;. In Stoffer [12] it is proven
that there are intervals I of arbitrary length with u; = v, = 0. By property (iii) of
Theorem 3.2 it follows that the orbits stay simultaneously g-close to the Hyper-
bolic orbit for arbitrary long time. Thus they are arbitrary close together for
a certain time value. Hence the set M, satisfies (i), (ii) and (iii) for the Poincaré
map P,. Now extend the set Mp = TxR> to the space Z x R?, i.e. put
M:= | f}(Mj;) and the corollary follows immediately. [
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Abstract

A concept of generalized hyperbolic sets for non-autonomous maps is developed. Starting
from transversal homoclinic orbits such generalized hyperbolic sets are constructed. The Shadowing
Lemma is proven for maps admitting a generalized hyperbolic set. Time dependent symbolic
dynamics is introduced and related to non-antonomous maps.

Zusammenfassung

Das Konzept von verallgemeinerten hyperbolischen Mengen fiir nicht-autonome Abbildungen
wird entwickelt. Ausgehend von transversalen homoklinen Bahnen werden solche verallgemeinerte
hyperbolische Mengen konstruiert. Das Shadowing Lemma wird fiir Abbildungen bewiesen, welche
eine verallgemeinerte hyperbolische Menge haben. Es wird zeitabhingige symbolische Dynamik
eingefithrt und der Zusammenhang mit nicht-autonomen Abbildungen dargestellt.
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