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1. Introduction 

The BKW mode, found by Bobylev [1] and Krook and Wu [2], is an exact 
similarity solution of the nonlinear spatially homogeneous (3-dimensional) 
Boltzmann equation (BE). It describes the relaxation to equilibrium of a one- 
component gas of Maxwell molecules, undergoing elastic scattering collisions, 
such that both particle and energy density are conserved. The BKW solution 
turns out to be relevant also for other classes of Boltzmann models with spatial 
dimensionality d as free parameter [3, 4]. 

As soon as Bobylev [1] discovered this particular homogeneous distribution 
function, he applied to it the Nikolskii transform [5, 6] and generated in this way 
an exact solution for the spatially inhomogeneous (d = 3-dimensional) problem. 
By introducing confining external forces new classes of homogeneous and in- 
homogeneous similarity solutions of (d > 1)-dimensional Boltzmann equations 
were discovered [7, 8]. 

In the absence of external forces (and referring to the standard case d = 3) 
other classes of homogeneous similarity solutions, differing from the BKW 
solution, may arise in problems of rarefied gas dynamics, where at least the 
condition of constant number density is relaxed [6]. This may happen when an 
external source supplies (or subtracts) molecules at an appropriate rate. Then the 
Boltzmann equation must be modified by adding a source term and, as is well 
known, one can construct (in the case of Maxwell molecules) classes of similarity 
solutions which are not of BKW type [6, 9]. 

A different physical situation, in which the particle density is also not 
conserved, arises when removal events take place in the gas [10, 1 I]: it may occur 
that the collision between two molecules does not lead to elastic scattering but 
rather to a removal event (leading to the disappearance of incident particles). 
The corresponding nonlinear spatially homogeneous Boltzmann equation for 
Maxwell molecules with removal allows a generalized BKW solution which has 
been determined recently [12] by means of a Bobylev ansatz. 
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Following Boffi, Spiga, Nonnenmacher [13-15] one may go a step further 
and consider a spatially homogeneous system of test particles (t.p., mass m) 
embedded in an unbounded host medium of field particles (f.p., mass rh) with 
fixed total density h. The corresponding Boltzmann equation for the t.p. (incor- 
porating elastic scattering, removal events, interactions with the background 
host medium and the presence of an external source [13, 16, 17]) reads as [14]: 

af (v, t) ds 
- - ~ - -  + (t~ d + n (t) C)f(v, t) - 4 rcv 2 ~ f I~ (v' ~ v) f  (v', t) dd 

R3 

Us ~ o w' + ~ ~ ~ Hs (v', -- v)f(v', t ) f  (w', t) dr' dw' + Q (v, t), (1) 
R3 

where n (t) = ~f (v, t) dv is the test particle density, and C = Cr + C~ with positive 
constants Cr, C~ characterizes the isotropic removal and scattering collision 
frequencies for t .p . - t ,p ,  interactions. For  t .p.-f ip,  interactions C = Cs + C, is 

H s, H s are the analogous expression. The scattering probability functions ~o o 
defined in Ref. 15. This Boltzmann equation, to be studied in the present paper 
for Maxwell molecules, can serve as a model for such complex situations of 
particle transport where the test particle density is not conserved in consequence 
of removal collisions [18] (t. p. - t. p. as well as t. p. - f. p.) and through the influence 
of an external source (supplying or subtracting t.p.). 

In order to solve the Boltzmann equation we introduce the moments 
of the distribution function f (v ,  t) as well as the moments of the source 

(2 (v, t) (k = 0, 1 , . . . ) :  

Ok(t)]" ( 2 k  + 1)! \ Q ( v ,  t) ' -=- m 

In the limiting case where the mass ratio m/rh tends to zero [19] the Boltzmann 
equation leads to the following system of moment equations 

dM, c, 
~o Mk_j(t)Mj(t) = Q(t). (3) d--T- + nCrMk(t) + C M~ - 1 +-~-k j 

Introducing two generating functions 

G(co, t )= ~ o kM k(t), S(og, t )= ~ cokQk(t), (4) 
k = O  k = O  

this infinite set of nonlinear ordinary differential equations can be reduced to a 
single partial differential equation (PDE). In order to obtain the PDE  in a 
convenient form we choose Mo (0) = n (0) : = qo as a reference density for the test 
particles, and we measure time in terms of t* = qo C~ t. Dropping the asterisk 
again and defining 

- c o  z 
x = (1 -- co)/co, u = co G/q o, a - qg Cs 8co (co S (co, t)), (5) 
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the partial differential equation can be written 

H (Uxt, Ux, u, x, t) = uxt + B (t)u x + 132 - -  • (X ,  t )  = O 

with a (x, t) being the characteristic function of the source and 

B ( t ) = f ~ + ( l  +a~)M o(t)/qo, ~=fid~/qoC~, 6~=CJC~. 

607 

(6) 

(7) 

Equat ion (6) possesses particular solutions, called similarity solutions [19], for 
which H is invariant unter a Lie group of transformations containing 4 free 
parameters. In varying these parameters (Lie group constants) one obtains 
various subclasses of similarity solutions of Eq. (6) with different types of similar- 
ity variable. For each subclass there remains the twofold task of reconstructing 
(i) the source term in the BE, and (ii) the corresponding type of distribution 
function for the test particles. 

At present this program has been carried out completely [20] only for the 
special class of similarity solutions where two of the group constants vanish and 
where time t represents the similarity variable. However, in the most  general case 
the similarity variable is log (Tx + ~)/y - yF(t)  [21], and we intend to discuss 
here similarity solutions of this type referring to the two-component  case. Under  
the assumption that neither of the Lie group constants vanishes we show that 
the Lie group constants can be fixed such that the source term in the BE 
vanishes. In this case we derive systematically the generalized BKW solutions 
found by Spiga [12] and Nonnenmacher  [11]. With aid of an appropriate limiting 
process (where all removal parameters tend to zero) we can discover also the 
original BKW mode with similarity variable log (x) + c t. Other allowed choices 
of the Lie group constants, belonging to non-zero source terms, are discussed, 
and the class of known exact homogeneous distributions is enlarged in this way. 
Special attention is focused, thereby, to the role played by the characteristic 
constants and the Lie group constants with respect to the positivity of homoge- 
neous t.p. distribution functions. 

2. Results of  the similarity analysis 

An important  result of previous investigations [9, 19-22] is that similarity 
solutions exist only if the characteristic function of the source, o- = a (x, t), satis- 
fies a compatible condition - a first-order partial differential (Eq. (20 a) in Ref. 9) 
involving the generators ~ (x) and ~ (t). In the case where these generators do not 
vanish identically an admissible class of characteristic functions is given by [19] 

7) 
a =  (~(x) z(t)) 2 ' (8) 

3 g) (7 ~0 2 (0c, 7) -- ~ (7 + 6 e) (y + g ~), (9) 
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and the corresponding class of similarity solutions is 

u = (x) (t)), (1o) 

where ( represents the similarity variable 
t 

= log ~(x)/7 -- 7F(t), F(t) = ~ dt'/r(t'). (11) 
0 

~o (~) is the similarity function 

~0(~) = ~01 (~, ~) + 6 ),2 W 2 (if), (12) 

w ( o  = 5 (13) 

which has to satisfy the side-condition 

lira ~0 (~) = fl 7. (14) 

The generators ~ (x), r (t) read as 

(x) = x + (15) 

T ( t ) = f l + 2 t ,  p r = 0 ,  (16) 

(t) = (fl + 2/~r) exp (~, t) - 2/~r, ~r + 0 (17) 

with 2 = (1 + 6 , ) f l -  ~. The parameters ~, fl, ~, 6 (Lie group constants) and 
91,94 (integration constants) in these equations are arbitrary constants intro- 
duced by the similarity analysis. With respect to the side condition (14) we 
remark that  the Eqs. (12-13) contain similarity solutions of the PDE (6) for 
which ~0(oo)+ fly. These solutions lead, however, to a contradiction in the 
moment  equation of order k = 0, Eq. (3), and must  be discarded in the context 
of our problem. Using the above expressions for u (x, t), a (x, t) we adress to the 
problem of calculating explicitly (a.) the infinite sets of moments  {M, (t)}, {Q, (t)} 
as well as (b.) the final form of the distribution function f (v, t) and the corre- 
sponding source term (2 (v, t). 

The restrictions, imposed by Eq. (14), can be worked out explicity by analyz- 
ing the asymptotic behavior of W(~): According to the sign of the argument in 
the exponential function the limit ~--. + ~ yields two different asymptotic 
values for the similarity function ~0(~), namely ~o~(~, 7) if c~/7 < -  1 and 
- ~o 2 (e, ?) if e/7 => - 1. Inserting these asymptotic values into Eq. (14) one ob- 
tains: 

fl ___ _1 ~ol (c~, 7) for a/y < - 1 (18) 
7 

1 
f l = - - ~ o 2 ( a , ? )  for a / y = > - l .  (19) 

Y 
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The side condition (14) evidently gives rise to two different subclasses of 
similarity solutions: those for which e/7 < - 1 (class C1) and c~/7 > - 1 (class 
C2) , respectively. Within each subclass the group constant fl can be expressed in 
terms of the group constants e and 7 alone; this implies that the number of 
independent group constants is reduced by one, and we may choose c~, 7, 6, 91, g4 
as a convenient set of independent parameters within each subclass C~, C z. A 
further reduction of the set of free parameters arises from the following observa- 
tion: All the relations (8-19) are homogeneous with respect to the group con- 
stants. This implies that we may set 7 = 1 without loss of generality. 

3. Reconstruction of the source term Q (v, t) and preliminary remarks on the t.p. 
distribution f (v, t) 

When 7 = I the characteristic function of the source, Eq. (8), yields for any 
choice of cq fl, 6 a generating function of the type 

S (co, t; c~, fl, 6) = ~ [ -  q2 C~ ~0a (c~, 1) rp2 (e, 1) (1 - 6)k/z 2 (t; c~, fl)] cok 
k = O  

(20) 

which contains all information about the moments Qk - according to the basic 
definition S = 22 Qk cok 

By the standard F'ourier-Cosine-transform method [2] the generating func- 
tion (20) leads to the source distribution 

Q (v, t; = - G 1) f02 1) m (v; 1 -  )/r2 (t; Z) (21) 

where the velocity-dependent term re(v; 1 -  6) represents a generalized 
Maxwellian 

1 
m (v; y) - (~ v2 y)3/2 e -  ~2/4Y (22) 

with argument y = 1 - 6. Hence, the type of source admitted in the Boltzmann 
equation is completely specified by fixing e, fl, 6. From Eqs. (22) and (2) one can 
see that the temperature of the source is T* = T O (1 - 6 ) .  Since T* has to be 
non-negative the group constant 6 is restricted to 8 < 1. As we shall see in the 
following investigation of the distribution function f (v, t), also the remaining 
group parameters c~, fl cannot be chosen arbitrarily. In particular, they can take 
discrete values only. 

All information about the distribution function f is contained in Eq. (10) 
when inserting for ~, 5, r the expressions given in Eqs. (12-13), (15-17) and 
eliminating the similarity variable ( via Eq. (11). Replacing x ~ (1 -- co)/co every- 
where we obtain the generating function G = qo u/co in the appropriate variables 
co, t . . . .  etc. Since the basic definition (4) requires for G a power series in co it is 
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important to analyze the behavior of 1/3 and ~0 under this substitution: (i) 
1/~(x; 3) leads simply to co for 6 = I and, otherwise, to a power series in co; (ii) 
the similarity function ~0 yields, however, a more extensive class of series involv- 
ing non-integer powers of co since 

A 
W = A ,  Z = + 01 04A e aF(t;~'a) (1 - -  6 )  a (23) 

l + z  i - ( i - 3 )  co 

where 91 = 91( 1 - 6) -a,  04 = - 94, A(a) = (1 + e)/5. In the limit co ~ 0 we 
have W ~ A(1 - z c o A . . . )  for A > 0 and W 2= (A/Z)co  [al . . .  in the case A < 0. 

It is obvious that the expressions for W, p, u as well as for G reduce to power 
series in co only if I A (c01 e No. This condition is met when c~ takes the following 
discrete values: 

= - 1 - 5 ( n + 1 ) ,  classCi;  e = 5 n - 1 ,  classC2 (24) 

with n = 0, 1, 2 , . . .  Then ~0, u, G reduce to rational functions of the variable co, 
and the decomposition of G into partial fractions provides an important step for 
the final representation of the generating function as a power series in co. In this 
paper we do not discuss systematically the representation of G in terms of partial 
fractions and the subsequent power-series expansion in co for arbitrary n. We 
concentrate rather, on three illustrate examples: n = 0 in class Ca and n = 0, 1 
in class C2. 

4. Exact distribution functions 

In the classes C a and C2, c~ can take only the discrete values given in the 
last section. From Eqs. (18) and (19), respectively, one can infer that fl is also 
restricted to discrete values. This discretization must be observed in order 
to remain within the class of generating functions, Eqs. (4), allowed for the 
modified Krook and Wu procedure (and to be consistent with the basic set of 
moment  Eqs. (3)). The remaining parameters 3, 01 and 04, however, are not 
restricted to discrete values. We investigate now the peculiar role which these 
parameters and the removal constants ~r, 6r play with respect to the positivity 
of the distribution function f ( v ,  t). For this purpose we analyze the three 
examples given in Sect. 3. In the discussion of these examples the lowest 
order moment  of the distribution function, the particle density Mo, plays an 
exceptional role. Since all information about  Mo can be obtained from the 
similarity analysis alone (i. e. without calculating f (v, t) explicitly) we give here 
some remarks on the time evolution of the density [19] and its dependence on 
the group constants: 

Mo(t; ~, fl) = f lqo /z ( t ;  c~, [3). (25) 
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This relation shows that  the time evolution of the particle density is inti- 
mately connected with the time dependence of the generator  T as given by 
Eqs. (16) and (17), in the cases ))r = 0 and )7 r :4= 0, respectively. For  physical 
reasons the particle must  be non-negat ive for all t _-> 0. Using Eqs. (18) and (19) 
one can easily show that  this condit ion is met  for any 7r > 0 if 

CSr>=-- (o2(~,1)/~0t(~,1) i n C , ,  c5~_>_--{01(0{,~)/@2(~,~ ) inC2,  (26) 

with ~01, ~0 z given in Eq. (9). 

4.1 The case n = 0 in class C2 

The group constants  are now (~, fi, 7, 6) = (-- t, - 1/2, 1, 6), and the similar- 
ity function ~0, Eq. (12), becomes independent  of x and t(~0 = - 1/2). With the 
zeroth order  m o m e n t  M o (t) = M o (t; - 1, - 1/2), Eq. (25), the moments  and the 
source moments  can be writ ten as 

Mk(t ) = Mo(t) (  1 _ fi)k, Qk(t ) = CsM2(t)(1 _ fi)-k. (27) 

The scaled distribution functions (evaluated by the Fourier  t ransform method)  

f (v, t)/M o = Q (v, t)/Qo = m (v; 1 - c~) (28) 

are of Maxwell ian type. 
F r o m  Eq. (28) it is obvious that the time dependence in the distributions 

f (v, t) and  Q (v, t) enters only via M o (t) and Q0 (t) as given by Eqs. (27) for k = 0. 

4.2 The case n = 0 in class C1 

The relevant set of group constants reads as (c~, fl, Y, 6) = ( -  6, - 6, 1, fi), and 
this is the only choice for which {Qg (t) =- 0} and hence Q (v, t) --- 0. In the case 
fir, Pr + 0 the complete  sequence of moments  can be written as 

6 qo (~ g(t) ~ ( i  +g(t ) )  k (1 -c~)  k, k = 0 , 1 ,  (29a) Mk (t) = r (t; ~-6~ --6) _1 -- k ~ J l  

where 

g (t) = 01 0--~ (3 (t; - 6, -- 6)J (29 b) 

and r( t ;  - 6 ,  - 6 )  is given by Eq. (17). The formulae for the case Yr = 0 and/or  
6r = 0 can be obtained from these expressions by carrying out (appropriately) 
the limits 7r ~ 0 and/or  fir ~ 0. 

In t roducing the particle density via Eq. (25) we obtain from Eqs. (29), using 
the Fourier  t ransform method,  the distribution function in a form which is very 
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convenient for discussing the problem of positivity: 

( v ~ 5 )} 
f (v, t) = M o (t; - 6, - 6) 2 b (t) z - b (t)) v2 (1 - fi) + 2 - 3 b (t m (v;(1 - 6)/b (t)) 

(30) 
with 

b(t) = 1/2(1 + g(t)). 

According to inequality (26), the first factor in Eq. (30), the test-particle density, 
is non-negative for 0 < t < oo and any choice of the removal parameters 6,, 
~, > 0. At a given time t, the distribution function f ( v ,  t) is a non-negative 
function of v 2 if the following conditions are met: (i) 6 < 1 (the physically 
relevant range for the group constant 3) and (ii): 1/2 < b (t) < 5/6. Condition (ii) 
imposes a restriction on the parameters 01,04, namely: 01 04 < - 5 / 2 .  Hence, 
when a, fl, ~ are fixed as above, the natural restrictions upon the remaining 
continuous parameters are 6 <__ 1 and 01 g4 < - 5/2. Under these conditions M o 
and f are non-negative functions in the time interval 0 _< t < ~ ,  and - in 
contrast to the other cases considered in this paper (Sects. 4.1, 4.3) - the removal 
parameters may take any values ~,, 3, > 0. The solution, obtained in Ref. 11 
with a quite different method, follows from Eq. (30) by setting 6 = 0 and 
02 04 = - exp (7o/6). It is clear that the equations of this section imply various 
limiting cases, where the removal parameters tend to zero. In this sense the 
distribution function, Eq. (30), implies for ~, ~ 0 the result, obtained previously 
by Spiga [12]. This limit corresponds to the physical situation, where the test 
particles are not influenced by the particles of the host medium [14]. Therefore, 
Yr ~ 0 is formally equivalent to the transition of our two-component system to 
a one-component gas of test particles: Setting 6 = 0, we rediscover the general- 
ized BKW solution for a single gas with removal between the test-particles 
(6r + 0) which has been found by Spiga, using a Bobylev ansatz [12]. In order to 
obtain identical results the integration constant flo in Ref. 12 has to be correlated 

to 01,04 as follows: 01 04 = - ( 1  + flo)/flo. 
Furthermore, if both ~r and fir tend to zero, we obtain the particle conserva- 

tion law Mo = const = qo > 0 and the famous BKW mode [2] for the relaxation 
of a classical gas of Maxwell molecules towards an equilibrium state. Since 
the BKW mode corresponds, however, to the choice 01 04 = - 1, the positivity 
o f f  (v, t) in the range 0 < t < oe is violated. As is well known [2, 6] this problem 
can be overcome by considering the BKW-mode in a shifted time interval 
to < t < oe. The appropriate initial time t o is given by t o = 6 log ( -  5/2 01 04). In 
Fig. 1 the time evolution of the t.p. distribution vZf  (v, t) =- h (v, t) is illustrated 
for t > 0, 0104 = - 5/2, qo = 1, 6 - 0 and two different choices of the removal 
parameters 9, = 3, -- 0 (Fig. 1 a) and ?)r = 6r = 0.001 (Fig. 1 b). When the removal 
parameters vanish both particle and energy density are conserved, and we have 
the relaxation of the distribution function towards a Maxwellian (limiting 
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curve  t = oo in Fig. 1 a). D u e  to o u r  a s s u m p t i o n  91 g4 = - 5/2 the d i s t r ibu t ion  
func t ion  does  no t  v iola te  pos i t iv i ty  for  0 < t < oo and  Ivj < oo - ' i n  con t r a s t  
to  the or ig ina l  B K W - m o d e  where  91 94 = - 1. A slight change  in the values  of  
the r e m o v a l  p a r a m e t e r s  (here by  an  a m o u n t  of  1/1000) leads to  a comple t e ly  
different  s i tua t ion  where  par t ic le  and  ene rgy  dens i ty  are  no  longer  conserved .  
Since the  t .p.  dens i ty  M o ( t ; - 6 , - 6 )  vanishes  for  p~, c~r + 0, a cco rd ing  to  
Eqs.  (24) and  (17), the d i s t r ibu t ion  func t ion  does  n o t  r each  a Maxwe l l i an  (as in 
Fig. 1 a) bu t  tends,  ra ther ,  t o w a r d s  ze ro  in the limit t -+ r D u e  to  the fact 
h(v, oo) = v2 f (v, oo) -= 0 it is c lear  t ha t  the n o r m a l i z a t i o n f  (v, t ) / f  (v, oo), k n o w n  
f rom the K r o o k  and  Wu s tudy,  does  no t  m a k e  sense in the  p resence  of  r e m o v a l  
effects. 

4.3 Distribution funct ion  fo r  n = 1 in class C 2 

T h e  set of  the g r o u p  cons t an t s  is n o w  (a, fl, y, 6) = (4, 5, 1, c~). F o r  )~r, c~r �9 O 
the fo l lowing  set o f  m o m e n t s  is ob t a ined :  

M k (t) - M~ (t; 4, 5) 5 {6q( t )k (k  + 1 -- k q ( t ) - * )  -- 1} (I -- c~) k (31 a) 

where  

q ( t ) =  l - O t g 4  I + ( 1 - e  -pr') + 5  
5 ?St ' (31 b) 
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and the corresponding source moments  (written in terms of Mo) are 

Qk (t) = -- ~ M 2 (t; 4, 5) (1 - 6) k. 
3 

(32) 

Then the function 

f ( v , t ) _ 3 M o ( t ; 4 , 5 ) ~ (  3 ) ( 2 2 ) v 2 } 
5 [ _ ( \ q ( t ) - - I  + q(t) qZ(t i v2(1- -6)  

�9 m (v; q(t) (1--  6)) - ~m(v;  1 -  6)J 

is the exact solution of the Boltzmann Eq. (1) for 

(33 a) 

Q (v, t) = - ~ Mo z (t; 4, 5) m (v; 1 - 8) (33 b) 

which is, in fact, a sink term, because Cs > 0. 
A first insight to the physical content of these equations can be obtained as 

follows: We think of a concrete two-component  system with all characteristic 
constants being fixed such that  the removal parameters 7r, 6r are strictly positive. 
Fur thermore  we assume the initial t.p. density as M o (t = 0) = qo = 1, and (for 
sake of simplicity) we may suppose that the source subtracts t.p. at constant 
temperature To (corresponding to 8 = 0). Under  these conditions (i) the time 
evolution of the t.p. density, and (ii) the behavior of the source term (33 b), 
separable in v and t, are completely determined (in the sense that these two 
functions contain no arbitrary constants). The initial distribution of t. p. f (v, 0), 
however, depends on the remaining free constants 01,04 since q(t = O) 
= I - 01 04. Therefore, the only way of changing the initial velocity distribution 
of t.p. in the present case consists of varying 0104. For t + 0 the auxiliary 
function q (t) as well as the distribution function depend on the product  01 04. 
Hence, there arises the question whether 01 04 can be chosen such that the 
similarity solution (33 a) of the BE is physically acceptable, i.e. a non-negative 
function of the variables v and t for any choice Iv[ < oo and t > 0. With respect 
to the discussion of this problem we proceed as follows: Leaving aside the trivial 
case 01 g4 = 0, we show in a first step that  the inequality f > 0 is violated in the 
limit I vl ~ oo for any choice 01 04 > 0. Hence, the choice 01 04 > 0 is physically 
irrelevant. In the opposite case 01 04 < 0 the inequality f > 0 may be violated. 
Therefore, we aim at finding a sufficient condition - an inequality between the 
quantities 0104, 7~, 6~ alone - such that f > 0 for any I v l < oo and t > 0. 

As to the first step we note that  the second argument in the generalized 
Maxwellians, occuring in Eq. (33 a) and Eq. (33 b), must  be positive for physical 
reasons. Hence, we have to choose the group constant 6 in general such that 
6 > 1, and for the auxiliary function, defined in Eq. (31 b), we have to require 
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q(t; 01 04, )~r, fir) > 0. For any choice t, Pr, fir > 0 one can see that there exist 
upper and lower bounds for q, according to the sign of 0~ 94, namely (i) 
q (t; 91 94, ~r, ~r) < 1 for 91 94 > 0 and (ii) q (t; 91 94, ~r, fir) > 1 for 91 94 < 0. An- 
alyzing the high speed limit of the distribution function (33 a) and observing the 
condition l i rn  f (v, t) > 0, one can rule out case (i). 

Even for gl 94 < 0, which will be assumed now, the condition f > 0 is not 
met for all choices of 91 94, ;r, 0r and v, t. In order to obtain a sufficient condition 
f o r f  > 0 in the whole range [v] < ~ ,  t > 0 we start with the following observa- 
tion: The auxiliary function q, Eq. (31 b), has a positive lower bound, i.e. is 
strictly positive for the allowed removal parameters :�r, 0r > 0 and for t > 0. 
Therefore, we may rewrite Eq. (33 a) in the following form, which is convenient 
for discussing positivity: 

f (v, t) = gl Mo(t :. 4, 5)q(t)3/Zm(v; q(t) (1 -- fi))X(v z, t), (34) 

with 

X (/)2 [-) = a (t) + b (t) X (v 2, t) - exp { - X (v 2, t)}, 

and the auxiliary functions 

X(v 2 , t ) - v o  2 ( i - f i )  1 - q ~  , (35a) 

a(t) 3 ( 3  ) 6 
q(t)3/2 ~ - 1 , 5 ( 0  - q ( @ / 2  �9 (35b)  

Each of the first three functions on the r h s of Eq. (34) is non-negative for 
any choice t, Pr, c~r > 0. Hence,)f (v 2, t; 91 94, )~r, fir) > 0 is necessary and sufficient 
for f to be non-negative. Since Eq. (35a) allows to express v 2 in terms of X 
we see that z ( X ,  t; 91 94, Pr, fir) > 0 is also necessary and sufficient for f to be 
non-negative. The implications of this inequality can be worked out easily in 
the limiting cases, where X ---, 0 and X ~ oo, respectively: one obtains two 
inequalities a (t; 91 94, ~r, fir) > I and q (t; 91 94, Pr, fir) > 1, respectively. The last 
inequality is met whenever 91 94 < 0. In order to find conditions, where the 
first inequality is also met, we note the following property a(0; 91 94, Pr, fir) 
> a (t; gx 94, )~r, fir) > a (oo ; 91 94, )~r, ~r), holding for 91 94 < 0. Hence, by assum- 
ing a (o% 91 94, ~r, fir) > I we ensure that both inequalities are met. Observing the 
relation between a and q, Eq. (35 b), the last inequality is equivalent to 

q(oO;9104,)~r, fir)= 1--9104 1 + + < ~ ,  (36) 
5~r ) = 

where ~ is given approximately by 1.715374931. 
The above conditions are sufficient for X and f to be non-negative in the 

limits X ~ 0 and X ~ oe (corresponding to low- and high-speed limits of Z, f) .  
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Figure  2 2 
The  d is t r ibu t ion  funct ion  h -- v a f  (in units  
of v~) versus v/v o, Eq. (33 a), for var ious  t imes 
t and  the following values of pa ramete r s :  0 
6, = 0, ?~, = 0.05, 0104 = -- 0.1, 6 = 0, qo = 1. 

, I , I , I 

t=0  

4 

o i 
v/v o 

A more detailed investigation shows that these conditions ensure also Z > 0 in 
the whole range 0 __< X <__ oo and for all t > 0. Hence, in the case 01 04 < 0 the 
inequality (36) represents a sufficient condition on Z and f to be non-negative 
functions of the physical variables v and t. In contrast to the previous examples 
positivity of f ( v ,  t) requires specific restrictions on both, removal parameters 
~r, Jr and the free constants 01 04- 

As an example illustrating the behavior of the one-particle distribution 
function, Eq. (33a), we have plotted h(v, t ) -  v2f (v ,  t) versus v/v o in Fig. 2 
for various times and a set of parameters where the above conditions are 
satisfied. 

5. Conclusions 

In this paper we have studied the problem of constructing exact homoge- 
neous distributions of t. p. in a host medium on the basis of a nonlinear BE. The 
difficulties in treating analytically the influence of an external source upon these 
distributions may be overcome at least in certain cases of interest where (i) the 
BE can be transformed into a PDE, and (ii) the source term in the BE is such 
that the associated PDE admits a Lie group. We have focused attention to a 
particular type of source term in the BE involving 4 Lie group constants. To each 
allowed source term, obtained by obseving certain selection rules for the group 
constants, there corresponds a specific kind of distribution function. These 
homogeneous distributions, constructed via similarity methods, may be called 
similarity solutions of the BE. They can be arranged in two distinct infinite 
sequences determined by Eq. (24). It should be noticed here that the term "sim- 
ilarity solution" is also used in the literature in a different context - namely for 
spatially inhomogeneous solutions (of other types of Boltzmann equations) 
which depend on the moving wave variable v -  v t or on the more general 
variable 7 (v, t) (v - Vo (r, t)) [8]. The three examples, studied in the present work, 
give a first insight to possible homogeneous distributions of t.p. in the host 
medium. In our considerations the (generalized) BKW mode appears as a special 
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member in one of the infinite sequences of possible distributions when the source 
term vanishes (class C a, n -- 0). For non-zero source terms we have demonstrat- 
ed that the similarity solutions contained in the classes C1 and C2 (n = 0, 1) are 
markedly different from the well-known BKW-type. Sinces these distributions 
do not violate the requirement of positivity - when removal effects are present 
in the system - it seems reasonable to continue the analysis for higher n in order 
to improve our understanding of these two sequences of similarity solutions. 
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Abstract 

The diffusion of Maxwell molecules in an unbounded host medimn is considered in the case 
where the particle density is not conserved in consequence of removal events and through the 
influence of an external source. Heretofore undiscovered classes of similarity solutions of the 
corresponding nonlinear isotropic and homogeneous Boltzmann equation are presented and already 
discovered special solutions are classified in terms of Lie group constants and removal parameters. 
The conditions under which these homogeneous distribution functions do not violate positivity are 
discussed, and the restrictions upon the parameters of the underlying collision model are determined. 
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Zusammenfassung 

Die Diffusion yon Maxwellmolekiilen in einem unbegrenzten Hintergrundmedium wird unter- 
sucht ffir den Fall, dab die Teilchenzahldichte aufgrund von ,,removal"-Effekten und durch den 
Einflug einer/iuBeren Quelle keine ErhaltungsgrSBe ist. Bisher unbekannte Klassen yon Similarity- 
L6sungen der entsprechenden nichtlinearen, homogenen und isotropen Boltzmanngleichung wet- 
den hergeleitet und bereits bekannte spezielle LSsungen werden anhand von Lie-Gruppenkonstan- 
ten und removal-Parametern klassifiziert. Die Bedingungen, unter denen diese homogenen 
Verteilungsfunktionen positiv sind, werden diskutiert, und die Einschr/inkungen an die Parameter 
des zugrundeliegenden StoBmodells werden bestimmt. 

(Received: February 19, 1988) 


