
Journal of Applied Mathematics and Physics ( Z A M P )  0044-2275/81/006734-11 $ 3.70/0 
Vol. 32, 1981 �9 Birkh~iuser Verlag Basel, 1981 

On finite deformations of space-curved beams 

By E. Reissner, Dept. of  Applied Mechanics and Engineering Sciences, 
University of California, San Diego, La Jolla, California, USA 

Introduction 

We are concerned in what follows with the manner of derivation and 
with an application of large-displacement finite-strain theory of space-curved 
beams, as previously considered in [5]. 

In regard to the manner of  derivation we have two objects. One of these 
is of  an expository nature, with a clarification of the way in which our 
descriptions of the state of  strain and of the state of  stress are shown to be 
consistent without the necessity of  a "tentative assumption of  an implicit 
representation of force strains". The other is an approach to the problem of 
relations for components of moment  strain in terms of components of 
rotational displacement, without use of Rodriguez' formula, in a way which 
involves a symmetric treatment of the two components of  bending strain 
without a participation in this of  the one component of twisting strain. 

As an example of application of the general theory we consider the 
problem of helical deformations of a helical rod for the case of a simply 
symmetric cross section with unequal principal bending stiffnesses and with 
non-coincident centroid and shear center locations, in generalization of an 
analysis in Love's Treatise [3]. 

Vectorial one-dimensional equilibrium equations 
and virtual strain displacement relations 

We have as equations of equilibrium for a cross sectional force P and a 
cross sectional moment M the two vectorial relations 

P'+p=O, M '+R 'xP+m=O,  (1 a ,b)  

with primes indicating differention with respect to arc length s along the 
undeformed "center" line of the rod, and with R = R(s) being the radius 
vector to points of  the deformed center line. 

We obtain vectorial virtual strain displacement relations for a force 
strain vector ~ and a moment  strain vector ~ in terms of virtual translational 
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and rotational displacement components cSR and 5c//, as in [5], through use of 
the virtual work equation 

}2 82 
(P" 37 + M .  5x) d s =  j (p .  3R+ m.  34) ds + (P.  6R + M "  c~#)~, (2) 

81 81 

in conjunction with the equilibrium equations (1), in the form 

c~7 = (aR)' + R'  x 5q~, & = (&O)'. (3 a, b) 

In this we have that (aR) '=  5(R'), but we cannot write a(4~') in place of 
(a~)', inasmuch as we do not have the existence of a function 0~ in 
association with the stipulated c~. 

Derivation of scalar strain displacement relations and equilibrium equations 

Given the radius vectors r(s) and R ( s )  to the undeformed and the 
deformed center lines, respectively, we introduce in association with these 
two radius vectors two triads of mutually perpendicular unit vectors (t, nl,  n2) 
and (T, N1, N2). In this t is tangent and nl, n2 are perpendicular to the curve 
r(s) but no such stipulation is made relative to the triad (iv N1, N2) and the 
curve R (s), with the determination of R and iv, N1, N 2 being part of the 
problem of the rod, in a manner which will become apparent. 

In order to derive from the vectorial virtual strain displacement relations 
(3) actual scalar strain displacement relations we now take ~7 and 6a~ in the 
form 

62 = iv 67t + Ni  @i, 5~ = T 5xt + iv x N i  6xi,  (4 a, b) 

and R' in the form 

R '  = at  iv + ai  N i  , (5) 

with the choice of at, ai left open. In addition to this we define virtual triad 
vectors aT, c~Ni in terms of the virtual rotational displacement c5~ in the form 

aT = c5~ x jr, gNi = 6~ x Ni ,  

with (6) implying the supplementary relation 

2c5~ = Tx ~T+ N,~ x 3Ni. 

(6) 

(7) 

Introduction of (4a), (5) and (6) into (3a) leaves, after appropriate can- 
cellations, 

T (~/t + Ni  (~i = T ~at + Ni  5ai, 

and therewith, 

c~at----- i)Tt, 6ai = c5~ . 

(8) 

(9a) 
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In order to reduce equation (3b) in a corresponding manner we first 
deduce from (7) the relation 

1 
(3~)'  = ~ -  [T' x 6T+  N~ x 3N~ + Tx 6(T') + N~ x 6(N~)]. (10) 

To proceed further we make use of Frenet-type differentiation formulas 

T , = N z + N 2  m'l T N z T X~ 
- - ,  ' =  -F - - ,  X '  2 . . . . .  , (11) 

1"1 t'2 El Yt 1"2 Yt 

Introduction of (4b), (10) and (11), with 

6T '=  6NI + + N ~ 5  + N ~ 6  , etc. (12) 
r 1 r 2 

into equation (3b) leaves, after some cancellations, three scalar relations of 
the form 

6(1/rt) = 6zt, b(1/rd = 3zi. (9b) 

Having equations (9 a, b), in conjunction with the relations t = r' (s), and 

t '  n 1 n 2 , t n 2 , t n a 
= - -  + , n~  - + - - ,  n 2  = ( 1 3 )  

we conclude, on the basis of  the fact that at  = 1 and ai = 0 when R = r, and 
zt = ~ = 0 when T =  t and Ni = n~, that we will have, as expressions for the 
coefficients at and ai in (5) and for the coefficients 1/rt and 1/ri in (11), 

a,~ ?i, (14a) at = 1 + ~t, 

and 
1 1 

- - = ~ t  + -  , 
Yt Ot 

1 1 
- -  = •  + - -  (14b) 
ri Qi 

At the same time we have from equations (1 a, b) in conjunction with the 
representations 

P = P t T + P ~ N i ,  M = M t T + M i T x N t ,  (15a, b) 

and the corresponding representations for p and m, as scalar equations of 
equilibrium 

Pt P2 
P~ ~ t-Pl = O, 

F1 Yt 

P1 P2 
P; + P t  = 0 ,  

r 1 1" 2 

Mt M2 
F2 Y t  

, Pt P1 
P2 + - -  + - -  +P2 - 0 ,  (16a, b) 

F2 Yt 

M s Mz 

Yl Y2 
+ ?~1P2 - Y2P1 + m t  --- 0 , (16c, d) 

+ (1 + Yt) P1 --  Y l P t  + rn~ = 0 ,  

M 2  M t  + M~ . . . .  + ( l + y t )  P 2 - y 2 P t + r n 2 = O ,  
]~1 Ft 

(16e) 

(16f) 
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with these differing from the corresponding equations of Kirchhoff [2] by 
way of the presence of the force-deformational terms ~P. 

Strain c o m p o n e n t s  in terms o f  ro ta t iona l  d i sp lacement  measures  

In order to take account of the duality properties of the two unit normal 
vectors ni which sets these part from the one unit tangent vector t we proceed 
as follows to introduce three scaIar rotational displacement parameters (01, % 
and (or. 

We first introduce two mutually perpendicular unit vectors ~2~, sym- 
metrically in terms of (0~ and (02, by writing 

O~ll~l  = " l  - -  ( 0 1 t - -  f l  l l 2 ,  O~2fr = n2  - -  (02 t - -  f l  n~  , (17) 

in conjunction with the defining relations 

(18) 

We next take the triad vector Tin the form T = N 1 x N2, by writing 

~1Gq T=  (1 -f12) t +  ((01+fl(02) n~ + ((02 +fl(00 n2. (19) 

We thereafter introduce the third rotational displacement parameter (at by 
writing as expressions for N~ and N 2 

x l  = & + (0, x 2  : - (0, & ;  = 1 + (20) 

Having equations (19) and (20) we may obtain expressions for q ,  r2 and 
rt, for arbitrarily large (0i and ~0t, by comparing the expressions for T' and 
N~ which follow from (19) and (20) with the corresponding expressions in 
(11), in conjunction with equations (13). We are limiting ourselves in this 
account for simplicity's sake to the case of small f inite ~o~ and (or by stating the 
appropriate results including all first and second degree terms but neglecting 
third and higher degree terms in (01, (02 and (or and the derivatives of these 
quantities. 

With this we have then as expressions for T, N~ and N: 

1 1 T = (1 - -~ 9~ - -~ V~) t + (0~ n~ + V= n~, (19') 

and 

1 2 I I 
N 1 = (1 - 2 (01 - ~ ~o~) nl - ((0~ + (or (02) t 71- ((0t - -  "2 (01 (02) n 2 ,  

1 1 ~ 1 (20') N 2 = (1 - ~ ~ - "~ (ot) t/2 - -  ((02 - (or ~1) t - -  ((0t + ~ (01 (,02) " 1 ,  
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and from this follows, upon again omit t ing all third and higher  degree terms 
1 

1 1 fo2 - fo~ fat for + g ~ r fo~ + fo~ 
z~ = fo'z + for fo~ } - - ,  (21 a) 

rl 01 Ot 02 2 01 

1 
1 1 fol + fo2 for for - ~ fol fo2 fo~ + fo~ 

z2 - fo; - for fo[ + - - ,  (21 b) 
r2 0i Ot 01 2 02 

1 1 fo~ fo~ - fol fo; fo~ fo~ fo~ § fog 
zt = fo~ q ~ (21 c) 

rt Qt 2 Q1 02 2 Qt 

As regards the components  of  force strain yt and ?~ we obtain, on the 
basis of  equations (5), (14a), (19') and (20') and with R ' =  t + u ' ,  the 
vectorial relation 

/ / ~  , 1 1 
= - - - - t 

+ [(1 + ;at) fo~ + 7z - Yz for] nz + [(1 + ?~t) fo2 + Y~ + Ya fot] n2 (22) 

for the determinat ion of  components  of  translational displacements in terms 
of  force strains and rotational displacement  measures. Alternately,  we may  
obtain force strains in terms of  translational and rotat ional  displacement 
measures in the form 

7t = (t + u ' )"  T -  1, ?'i = ( t +  u ' )"  N i ,  (23 a, b) 

with the form of  the final formulas depending on the nature  of  the component  
representation for u. 

Helical  deformations  o f  a hel ical  rod 

We now consider a slightly generalized version of  the classical problem 
of  a helical rod, acted upon by forces P the line of  action of  which coincides 
with the axis of  helix, and by moments  M turning about  this axis, with this 
condit ion of  loading sometimes being designated as a "wrench",  with the 
axis of  the wrench coinciding with the axis o f  the helix. We observe that  for 
this system of  loading we have as explicit solution of  the equil ibr ium 
equations (1 a, b) the expressions 

P = P e~, M = M e 3 - P R x e3, (24 a, b) 

where it remains to determine the shape of  the deformed rod, in terms of  the 
geometrical parameters  describing the undefo rmed  rod, and in terms of  the 
loads P and M. 

With r and 0 being polar coordinates in the plane perpendicular  to the 
axis of  the helix and with a and b indicating radius and rise of  the center line 



Vol. 32, 1981 On finite deformations of space-curved beams 739 

curve ,  we  have  as vec to r  e q u a t i o n  o f  the  cen te r  l ine o f  the  u n d e f o r m e d  rod  

r = a er + b 0 e3, e~ = ea cos 0 + e z sin 0 (25) 

and  f r o m  this we d e d u c e  as express ion  for  the  t angen t  un i t  vec to r  t, wi th  the  
help o f  the  re la t ion  ds  = (a ~ + b2) a/z dO = c dO, and  wi th  a = c cos 09, b = c sin ~0, 

t = r '  = cos (p e0 + sin ~0 e3, e0 = -- e 1 sin 0 + e 2 cos 0 .  (26) 

As regards  the  n o r m a l  un i t  vectors  n~ a n d  n 2 we  first i n t r o d u c e  a specia l  

set hz and h2 o f  uni t  vectors  by  wr i t ing  

1~1 = e~, fi2 = e0 sin q) - e a cos ~0, (27) 

wi th  t, fi,, h 2 ev iden t ly  be ing  m u t u a l l y  p e r p e n d i c u l a r ,  and  by  then  wr i t ing  in 

in te rms  o f  an  angle  V,', 

n~ = ~, cos ~u + f~2 sin ~,, n2 = ti2 cos ~//- fi~ sin ~u, (28) 

with the directions o f  n 1 and  n 2 coinciding with the pr incipal  axes  in the p lane  o f  

the cross section o f  the rod. 

G i v e n  equa t i ons  (26) and  (28) as d e f i n i n g  re la t ions  for  the  t r iad  t, n~, n 2 

it is then  read i ly  es tab l i shed  

f o r m u l a s  (13) are  

1 cos (o cos ~, 1 cos ~0 sin ~ 1 

01 c Q2 c Qt 

G i v e n  e q u a t i o n  (25) 

c o r r e s p o n d i n g  re la t ion  for  the  d e f o r m e d  cen te r  l ine as 

R = A  e R +  B O e 3, e R =  e 1 cos O + ez sin O ,  

t ha t  the  coef f ic ien ts  in the  d i f f e r en t i a t i on  

sin ~0 
(29) 

c 

for  the  u n d e f o r m e d  cen te r  l ine we n o w  wri te  the  

(30) 

with  O be ing  g iven  in te rms  o f  0 in the  f o r m  O = k 0. W e  t h e n  have  f r o m  this 

d R  dO k 
R '  = - -  - (A eo + B e3), eo = e2 cos O - e 1 sin O (31) 

dO  ds c 

and  it n o w  r em a i ns  to def ine  uni t  vec tors  T, N , ,  N 2 a s soc ia t ed  wi th  the  rad ius  

vec tor  R as g iven  b y  (30). 
W e  will in w h a t  fol lows restr ic t  a t t en t ion  to cases for  w h i c h  T is t angen t  

to the R - c u r v e  by  wr i t ing  

r =  cos q~ eo + sin r e 3, 

w h e r e  cos ~ = k A / C  and  sin 4) = k B / C ,  

with  

R' C T ,  
c 

(32) 

wi th  C = k ( A  2 + B2) a/z, a n d  there-  

(33) 
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so that, in accordance with (5) and (14a), 

C 
7 t = - - -  1, ?1= 72 = 0.  (34) 

c 

Having ir as in (32) we now define vectors Ni and N~, consistent with 
(27) and (28), in the form 

N'x = eR, Nr2 = eo sin {b - e 3 cos ~ ,  (35) 

and 

N~ = A?~ cos T + Nr~ sin ~ ,  N 2 = Nr 2 cos T -  Nr~ sin T .  (36) 

With  T as in (32) and N~ as in (36) we obta in  as expressions for the 
coefficients in the different iat ion formulas (11), 

1 cos q~ cos T 1 cos q} sin T 1 sin {b 
- - =  k , - k , k - - ,  ( 3 7 )  
r I c r 2 c r t c 

and therewith, in accordance with equations (14b), as expression for bending 
strains z~ and twisting strain zt 

Zl = - c -~ (k cos r cos T -  cos {o cos ~,), 

x2 = c -~ (k cos r sin T -  cos {0 sin ~,), 

xt = c -~ (k sin {b - sin ~0). 

(38 a) 

(38b) 

(38 c) 

Formulation of  stress strain relations 

We assume that  the cross section of  the rod in its deformed state will be 
symmetr ic  with respect to an axis parallel to N 1 and we will designate cross 
sectional coordinates in the directions of  N1 and N 2 by xl and x2. We further  
assume that  the origin of  the xl ,  x2-system defines the center line of  the rod 
which is taken to be the line of  shear centers of  the cross sections, with the 
centroids of  the cross sections being on the xl-axis, at a distance x~ f rom the 
shear center. Limit ing at tention to the case of  l inear stress strain relations we 
may  then immedia te ly  write two of  the stress strain relations in the form 

Mt = Dt xt, M2 = D2 x2 . (39 a, b) 

Two addit ional  one-dimensional  stress strain relations follow from the 
integral relations 

Pt = ~ E t (Tt + Xl ZI) dxl' M~ = ~ E t (Tt + xz xl) xl dxx. (40 a, b) 

in conjunction with the defining relations 

S E t d x z = S ,  S E t x ~ d x z = x ~ S ,  ~ E t x ~ d x l = x ~ S + D z ,  (4t) 
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where D 1 = S E t (xl - xc) 2 dx~, in the form 

Pt = S ~/t + xc S •1, M1 = x~ S yt + (xg S + D1) ~1" (39 c, d) 

The four equations in (39) in conjunction with the four defining relations 
in (34) and (38) will become a system of four simultaneous equations for the 
determination of the four quantities 45, T, k, C in terms of the given 
geometrical quantities ~0, gt, c and the given loads P and M, upon expressing 
Mr, M2, M~ and Pt in terms of P and M through use of the defining relations 
which follow from (15), in conjunction with (24), (32) and (36), in the form 

Pt = P" T =  P ea " T =  P sin 45 , (42a) 

M 1 = M .  N 2 = ( M  e 3 + PA eo)" (1~2 cos T -  A?~ sin 

= - M cos 45 cos T + PA sin 45 cos T ,  (42 b) 

Ms = - M .  N~ = M cos 45 sin T -  PA sin r sin T ,  (42 c) 

Mt = M .  T = M sin 45 + PA cos 45. (42 d) 

With A = k -z C cos 45, in accordance with the defining relations in the text 
which follow equation (32), we then have altogether as equations for the 
determination of 45, T, k and C, 

1)  c  cosoco   cos cos  ] 
[ c 

C 
- M  cos 45 cos T + ~-  P cos 45 sin 45 cos T 

=XcS(C--11 x2S-IFD1 (k cos 45 cos T -  cos ~0 cos ~) , (43b) 
\ c  / C 

C 
M cos 45 sin T -  -~- P cos 45 sin 45 sin T 

_- D2 (k cos 45 sin T -  cos ~0 sin ~u), (43 c) 
C 

C Dt 
M sin 45 + -k- P cos 2 45 = c ( k  sin 45 - s i n  q~) .  

Among the various special cases of the system (43) we 
following. 

(43 d) 

mention the 

Rod  with doubly symmetric cross section 

Setting Xc = 0 in equations (43 a, b) we may use equation (43 a) in order 
to reduce (43b, c, d) to a system of three equations for 45, T and k, upon 
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setting in these three equations C = c + S -1 P sin 4.  In general, this latter 
relation will be effectively equivalent  to C =  c, as implied by the original 
Ki rchhof f  form of  the theory. Strictly speaking, we will have C =  c upon 
stipulating S = oo, with P then being reactive. Aside from the fact that  it is 
possible to imagine cases for which this would not be just if ied (as for 
example for a rod with helical spring cross sections) it should be noted that, 
on the basis of  equations (41), the st ipulat ion S = oo should by rights be 
associated with a st ipulation D 1 = 0% that  is with a st ipulat ion of  complete 
circumferential  fiber inextensibility. This difficulty,  however, may  be by- 
passed by considering the problem with C = c and D1 < oo as the first step 
of  a perturbat ion expansion in powers of  P/S.  

Rod with kinetically symmetric cross section 

By kinetic symmetry  we mean,  in accordance with Love [3] that, in 
addi t ion to Xc = 0, we have D2 = D1 - Db. We obtain the results stated in [3], 
and there credited to Kelvin and Tait  [1], wi th in  the present context by 
recognizing that  when D 2 = D 1 then part  of  the solution of  the system (43) is 
given by the relation 

7 j = r (44) 

With this equations (43b) and (43c) are both equivalent  to the one 
relation 

C Db 
M cos cb - ~ P cos r sin q5 = (k cos ~b - cos ~0), (45) 

C 

with (45) and (43 d) now being two equations for the determinat ion of  ~b and 
k, in terms of  M and P, [with C = (P/S)  c sin q)]. We will l imit  ourselves here 
to using (45) and (43 d) for the derivat ion of  the set of  relations 

Dt Db 
M = sin ~b (k sin ~ - sin ~) + cos r (k cos r - cos <p), (46 a) 

c c 

C Dt Db 
- -  P cos q5 = cos (b (k s i n ~  - sin ~0) - - -  sin (b (k cos r - cos q)), 
k c c 

(46 b) 

which may  readily be recognized to be equivalent  to equations (40) on 
page 415 in [3], upon setting C = c. 

Finite pure bending of  a circular ring 

We obtain equations for this problem upon setting ~0 = r = 0, c = a and 
P = 0 in the system (43). We then have (43d) satisfied automatical ly and 
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equations (43 a, b, c) assume the form 

A 1 XC(kcos5  u - c o s q / )  0 ,  (47a) 
a a 

M cos ~u = D1 (k cos 7 " -  cos ~/), (47 b) 
a 

M sin ~ = D 2  (k sin ~ -  sin ~,). (47 c) 
a 

Equations (47b, c) imply as implicit  relat ion for k in terms of  M, for given 
values of  a, ~,, D2 and DI, 

( ( 
a M - D 2 k ]  + \ a M - D i k  ] = 1 '  (48a) 

with 5u given in terms of  k and M in the form 

t a n 7  t Dz a M - D  l k  
- - -  (48b) 

tan~,  D1 a M - D  2k"  

Bending and twisting of  a partially rigid rod 

Given a rod with narrow cross section, such that  D 2 ~ D i, we may  
consider the problem of  bending and twisting approximately,  by considering 
equations (43) subject to the assumptions D1 = oo and S = oo. We now have, 
from (43 a, b), as constraint conditions 

k c o s ~ c o s 7  j - c o s q )  c o s ~ . , = 0 ,  C = c ,  (49 a, b) 

with k, q~ and 7 j to be determined,  in terms of  M and P, by means of  
equations (49a) and (43c, d). We note that  the special case ~0= 0 of  this 
problem is the one-dimensional  analogue of  a problem of  inextensional 
bending in two-dimensional  shell theory which has been considered in [4]. 
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Summary 

A recent generalization of Kirchhoft's equations for the analysis of spacecurved beams, in 
which account is taken of force-deforrnational effects in addition to the deformational effects of 
bending and twisting moments (Studies Appl. Math. 52, 87-95, 1973), is re-derived more simply, 
including a new description of rotational displacement states, and including an application to the 
problem of helical deformations of originally helical beams. 

Zusammenfassung 

Eine Verallgemeinerung der Kirchhoffschen Stabgleichungen, in welcher der EinfluB der 
Stabkr~ifte auf die Verformungen beriicksichtigt wird, zus~itzlich zu dem Einflul3 der Biege- und 
Torsionsmomente (Studies Appl. Math. 52, 87-95, 1973) wird neu und vereinfacht abgeleitet, 
einschlieglich einer neuen Beschreibungsweise fiir rotationelle Verschiebungszust~inde, und ein- 
schliel31ich einer neuen Anwendung auf das Problem der schraubenf6rmigen Verformungen von 
urspriinglich schraubenf6rmigen St~iben. 
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